103 research outputs found

    Search Strategies for Binary Feature Selection for a Naive Bayes Classifier

    Get PDF
    We compare in this paper several feature selection methods for the Naive Bayes Classifier (NBC) when the data under study are described by a large number of redundant binary indicators. Wrapper approaches guided by the NBC estimation of the classification error probability out-perform filter approaches while retaining a reasonable computational cost

    Evaluation of the Performance of the Markov Blanket Bayesian Classifier Algorithm

    Full text link
    The Markov Blanket Bayesian Classifier is a recently-proposed algorithm for construction of probabilistic classifiers. This paper presents an empirical comparison of the MBBC algorithm with three other Bayesian classifiers: Naive Bayes, Tree-Augmented Naive Bayes and a general Bayesian network. All of these are implemented using the K2 framework of Cooper and Herskovits. The classifiers are compared in terms of their performance (using simple accuracy measures and ROC curves) and speed, on a range of standard benchmark data sets. It is concluded that MBBC is competitive in terms of speed and accuracy with the other algorithms considered.Comment: 9 pages: Technical Report No. NUIG-IT-011002, Department of Information Technology, National University of Ireland, Galway (2002

    A Decision tree-based attribute weighting filter for naive Bayes

    Get PDF
    The naive Bayes classifier continues to be a popular learning algorithm for data mining applications due to its simplicity and linear run-time. Many enhancements to the basic algorithm have been proposed to help mitigate its primary weakness--the assumption that attributes are independent given the class. All of them improve the performance of naïve Bayes at the expense (to a greater or lesser degree) of execution time and/or simplicity of the final model. In this paper we present a simple filter method for setting attribute weights for use with naive Bayes. Experimental results show that naive Bayes with attribute weights rarely degrades the quality of the model compared to standard naive Bayes and, in many cases, improves it dramatically. The main advantages of this method compared to other approaches for improving naive Bayes is its run-time complexity and the fact that it maintains the simplicity of the final model

    Forward Stagewise Naive Bayes

    Get PDF
    The naïve Bayes approach is a simple but often satisfactory method for supervised classification. In this paper, we focus on the naïve Bayes model and propose the application of regularization techniques to learn a naïve Bayes classifier. The main contribution of the paper is a stagewise version of the selective naïve Bayes, which can be considered a regularized version of the naïve Bayes model. We call it forward stagewise naïve Bayes. For comparison’s sake, we also introduce an explicitly regularized formulation of the naïve Bayes model, where conditional independence (absence of arcs) is promoted via an L 1/L 2-group penalty on the parameters that define the conditional probability distributions. Although already published in the literature, this idea has only been applied for continuous predictors. We extend this formulation to discrete predictors and propose a modification that yields an adaptive penalization. We show that, whereas the L 1/L 2 group penalty formulation only discards irrelevant predictors, the forward stagewise naïve Bayes can discard both irrelevant and redundant predictors, which are known to be harmful for the naïve Bayes classifier. Both approaches, however, usually improve the classical naïve Bayes model’s accuracy

    Reduction of Irrelevant Features in Oceanic Satellite Images by means of Bayesian Networks

    Get PDF
    This paper describes the use of Bayesian networks for the reduction of irrelevant features [1,2] in the recognition of oceanic structures in satellite images. Bayesian networks are used to validate the symbolic knowledge -provided by neuro symbolic or HLKPs (High Level Knowledge Processors) nets- and the numeric knowledge. This provides an automatic interpretation of images. The main objective of this work is the construction of an automatic recognition system for processing AVHRR (Advanced Very High Resolution Radiometer) images from NOAA (National Oceanographic and Atmospheric Administration) satellites to detect and locate oceanic phenomena of interest like upwellings, eddies and island wakes. With this aim, this paper reports on a methodology of knowledge selection and validation. In knowledge selection, filter measures are used. For knowledge validation, Bayesian networks (Naïve Bayes, TAN and KDB) are evaluated
    corecore