
Working Paper Series
ISSN 1170-487X

A Decision Tree-Based Attribute Weighting
Filter for Naive Bayes

Mark Hall

Working Paper: 05/2006
May 29, 2006

c©Mark Hall
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29194661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




A Decision Tree-Based Attribute Weighting Filter

for Naive Bayes

Mark Hall
University of Waikato, Hamilton, New Zealand

mhall@cs.waikato.ac.nz

May 29, 2006

Abstract

The naive Bayes classifier continues to be a popular learning algorithm
for data mining applications due to its simplicity and linear run-time.
Many enhancements to the basic algorithm have been proposed to help
mitigate its primary weakness—the assumption that attributes are inde-
pendent given the class. All of them improve the performance of naive
Bayes at the expense (to a greater or lesser degree) of execution time
and/or simplicity of the final model. In this paper we present a simple
filter method for setting attribute weights for use with naive Bayes. Ex-
perimental results show that naive Bayes with attribute weights rarely
degrades the quality of the model compared to standard naive Bayes and,
in many cases, improves it dramatically. The main advantages of this
method compared to other approaches for improving naive Bayes is its
run-time complexity and the fact that it maintains the simplicity of the
final model.

1 Introduction

All practical learning algorithms based on Bayes’ theorem make some inde-
pendence assumptions. The naive Bayes method takes this to the extreme by
assuming that the attributes are statistically independent given the class. This
leads to a simple algorithm where training time is linear in both the number of
instances and attributes. Although the independence assumption is grossly vio-
lated in practice, naive Bayes performs surprisingly well on many classification
problems [7]. However, because of this assumption, the posterior probabilities
estimated by naive Bayes are typically poor. For example, in an extreme case
where a single redundant attribute (i.e., an attribute that is perfectly correlated
with another) is present in the data, that attribute effectively has twice as much
influence as the other attributes.

Many techniques have been developed to reduce the ‘naiveity’ of the naive
Bayes algorithm. Zheng and Webb [28] provide a comprehensive overview of

1



work in this area. One simple approach that often works well is to combine naive
Bayes with a preprocessing step that attempts to remove redundant attributes
from the training data. Various methods from the attribute selection community
have been applied to naive Bayes for just this purpose. However, one related
area that has received little attention with regards to naive Bayes is the use of
attribute weights1.

This paper presents a filter method that sets attribute weights for use with
naive Bayes. The assumption made is that the weight assigned to a predictive
attribute should be inversely related to the degree of dependency it has on
other attributes. Our method estimates the degree of attribute dependency
by constructing unpruned decision trees and looking at the depth at which
attributes are tested in the tree. A bagging procedure is used to stabilize the
estimates. Attributes that do not appear in the decision trees receive a weight
of zero. Our experimental results show that using attribute weights with naive
Bayes improves the quality of the model compared to standard naive Bayes in
terms of probability estimation and area under the ROC curve.

This paper is structured as follows. In Section 2 we present our approach
for enhancing naive Bayes by learning attribute weights. Section 3 contains
experimental results for a collection of benchmark data sets and shows that the
performance of naive Bayes can be improved by using attribute weights. Section
4 discusses related work on enhancing the performance of naive Bayes. Section
5 summarizes the contributions made in this paper.

2 Using attribute weights with naive Bayes

Naive Bayes computes the posterior probability of class cl for a test instance
with attribute values a1, a2, ..., am as follows:

p(cl|a1, a2, ..., am) =
p(cl)

∏m
i=1 p(ai|cl)∑o

q=1 [p(cq)
∏m

i=1 p(ai|cq)]
, (1)

where o is the total number of classes. The term in the denominator of
the the right-hand side of Equation 1 can be omitted as it is a normalizing
factor. The individual probabilities on the right-hand side of this equation are
estimated from the training data. In the case of discrete attributes they are
computed from frequency counts. If a numeric attribute is present, we make
the normality assumption and estimate its mean and variance. Incorporating
attribute weights into the formula gives:

p(cl|a1, a2, ..., am) = p(cl)
m∏

i=1

p(ai|cl)wi , (2)

where wi is the weight of attribute Ai.

1Attribute selection can be viewed as a special case of attribute weighting where the weights
are restricted to zero or one.

2



1. Repeat i times:

2. Randomly sample (with replacement) j% of the training data.

3. Learn an unpruned decision tree from the resampled data.

4. FOR each attribute in the training data DO:

5. IF the attribute is NOT tested in the tree THEN

6. Record a weight of 0.

7. ELSE

8. Let d be the minimum depth that the attribute is tested at.

9. Record a weight of 1/
√

d.

10. FOR each attribute in the training data DO:

11. Set the final weight equal to the average of the i weights.

12. Optionally remove from the data all attributes with zero weight.

13. Learn a naive Bayes model using the final attribute weights.

Figure 1: Attribute weighted Bayesian classifier algorithm

Our method for enhancing naive Bayes aims to weight predictive features
according to the degree to which they depend on the values of other attributes.
Since naive Bayes makes the independence assumption we want to assign lower
weights to those attributes that have many dependencies. To estimate the
degree to which an attribute depends on others, we first construct an unpruned
decision tree from the training data and then note the minimum depth2 at
which the attribute is tested in the tree. The weight for an attribute is set to
1/
√

d, where d is the minimum depth at which the attribute is tested in the
tree. Attributes that do not appear in the tree receive a weight of zero. Since
decision tree learners are inherently unstable, we stabilize the estimated weights
by building multiple decision trees using bagging and then average the weights
across the ensemble. The method has two parameters—i the number of bagging
iterations, and j the percentage of the training data to use for learning a tree
in each iteration. Our experimental results show that the method is relatively
insensitive to the value of j. Figure 1 shows the algorithm for the attribute
weighted Bayesian classifier.

3 Experimental results

This section evaluates the performance of attribute weighted naive Bayes (AWNB)
using our tree-based weighting scheme on a collection of 28 benchmark data sets
from UCI repository [2]. The properties of these data sets are shown in Table
1.

We ran two sets of experiments. The first compares attribute weighted naive
Bayes (using 10 bagging iterations and subsamples of the training data of size
50% for weight estimation) with standard naive Bayes. In this experiment we
also evaluate the effect of using weights versus feature selection (i.e. zero/one
weights) and the effect of varying the size of the random subsamples used to

2The root node of the tree has depth 1.

3



Table 1: Datasets used for the experiments

Dataset Instances % Missing Numeric Nominal Class
annl 898 0.0 6 32 5
aust 690 0.6 6 9 2
autos 205 1.1 15 10 6
bal-s 625 0.0 4 0 3
brst-c 286 0.3 0 9 2
brst-w 699 0.3 9 0 2
diab 768 0.0 8 0 2
ecoli 336 0.0 7 0 8
crd-g 1000 0.0 7 13 2
glass 214 0.0 9 0 6
hrt-c 303 0.2 6 7 2
hrt-h 294 20.4 6 7 2
hrt-s 270 0.0 13 0 2
hep 155 5.6 6 13 2
colic 368 23.8 7 15 2
hypo 3772 6.0 23 6 4
iono 351 0.0 34 0 2
iris 150 0.0 4 0 3
kr 3196 0.0 0 36 2
labor 57 3.9 8 8 2
lymph 148 0.0 3 15 4
sick 3772 6.0 23 6 2
sonar 208 0.0 60 0 2
splice 3190 0.0 0 61 3
vehic 846 0.0 18 0 4
vote 435 5.6 0 16 2
wave 5000 0.0 40 0 3
zoo 101 0.0 1 15 7

build the trees. Finally, we include results for bagged unpruned decision trees,
so that the reader can compare AWNB with the performance of just using the
source of our weight estimation procedure for prediction. The second experi-
ment compares our tree-based method for setting attribute weights to a simple
weighting scheme based on gain ratio, a weighting scheme based on the ReliefF
attribute ranking algorithm [14, 22], the CFS attribute selection algorithm [10],
a decision tree-based attribute selection scheme [21], the wrapper-based selec-
tive Bayes algorithm [18] and the NBTree decision tree/naive Bayes hybrid [15].
The latter is included as an example of an enhanced naive Bayes variant—with
a richer representational structure than naive Bayes with or without feature
selection/weighting—that still maintains a single interpretable model.

In our experiments we calibrated the probability estimates produced by each
learning algorithm by fitting a linear logistic regression function to the outputs
of the learner generated during an internal run of 10 fold cross-validation on
the training data. For each data set/classifier combination we performed five
separate runs of 10 fold cross-validation and computed the average root rela-
tive squared error (RRSE) of the probability estimates produced over all 50
folds. For a single train/test split the RRSE is given by the square root of the
quadratic loss [26] of the learning algorithm normalized by the quadratic loss of
simply predicting the most common class present in the training data. We also
computed the area under the ROC curve (AUC) for the 16 two-class datasets.

4



Throughout we speak of two results for a data set as being “significantly differ-
ent” if the difference is statistically significant at the 5% level according to the
corrected resampled t-test [19], which has acceptable Type I error.

Table 2: Experimental results for attribute weighted naive Bayes (AWNB) ver-
sus naive Bayes (NB), AWNB using zero/one weights (ASNB) and bagged un-
pruned decision trees: mean root relative squared error (RRSE) and standard
deviation.

Data AWNB NB AWNB AWNB AWNB AWNB ASNB Bagging
i = 10 i = 1 i = 10 i = 10 i = 10 i = 10 i = 10
j = 50 j = 100 j = 25 j = 75 j = 100 j = 50 j = 100

annl 50.38± 8.7 53.64± 7.3 54.43± 9.3 49.14±11.1 51.57± 9.0 51.52± 8.9 54.38± 6.5 ◦ 20.03±12.8 •
aust 70.03± 7.0 79.27± 5.8 ◦ 72.46± 7.0 67.43± 6.7 • 71.72± 6.9 ◦ 72.07± 7.0 ◦ 79.57± 5.9 ◦ 66.33± 8.2
autos 80.36± 9.3 85.73± 8.8 ◦ 81.39± 8.9 81.14± 9.5 80.71± 9.5 80.80± 9.2 85.57± 8.8 ◦ 54.59±14.9 •
bal-s 46.55± 6.1 41.18± 6.1 • 58.79± 6.0 ◦ 46.21± 5.6 47.82± 5.8 48.41± 6.5 41.18± 6.1 • 58.97± 6.2 ◦
brst-c 94.84± 6.2 94.40± 6.3 94.99± 6.0 95.20± 5.9 94.76± 6.2 94.72± 6.1 94.40± 6.3 97.61± 5.1
brst-w 37.60±11.5 39.29±10.4 37.39±12.0 38.43±11.6 38.14±11.4 38.35±11.0 39.11±10.6 37.54± 9.4
diab 84.72± 6.9 86.28± 6.3 ◦ 84.90± 6.9 84.63± 7.0 84.78± 6.9 84.86± 6.9 86.28± 6.3 ◦ 85.31± 5.6
ecoli 56.18±10.8 57.72±11.4 56.90±11.2 57.31±10.9 56.35±11.0 57.22±10.9 57.40±11.0 59.91±10.1
crd-g 89.54± 4.4 89.80± 4.3 89.73± 4.3 89.42± 4.5 89.70± 4.5 89.64± 4.4 89.80± 4.3 93.05± 3.4 ◦
glass 86.07± 5.5 85.98± 5.5 86.74± 5.5 85.90± 5.5 85.89± 5.5 85.93± 5.3 85.98± 5.5 73.91± 8.3 •
hrt-c 68.80±13.8 69.37±14.3 69.42±13.6 69.46±13.2 68.68±14.3 68.66±14.2 69.37±14.3 75.00± 9.5
hrt-h 72.91±13.7 71.16±13.2 72.63±13.9 73.83±13.0 72.38±13.9 72.16±13.8 71.20±13.2 75.56±11.5
hrt-s 70.76±10.1 69.86±10.7 71.08± 9.5 70.73±10.0 70.65±10.2 70.53±10.0 69.86±10.7 74.78± 9.7
hep 83.43±18.3 79.84±18.9 85.74±16.6 84.74±16.9 83.97±17.7 83.89±16.5 79.78±19.5 88.38±14.0
colic 71.35±10.8 79.58± 8.6 ◦ 72.31±10.2 70.60±11.1 71.79±10.4 72.09±10.3 79.35± 8.8 ◦ 70.62±11.2
hypo 76.45± 5.6 71.87± 5.4 • 75.79± 5.6 • 77.09± 5.6 ◦ 76.18± 5.6 • 76.01± 5.5 • 71.35± 5.5 • 18.57± 9.6 •
iono 57.17±14.8 72.63±10.8 ◦ 58.23±14.8 57.71±14.3 56.04±14.2 55.77±15.7 63.07±13.4 50.03±13.9
iris 26.23±20.5 27.77±20.1 26.23±20.7 25.69±20.8 26.23±20.4 26.32±20.4 26.34±20.0 31.67±20.3
kr 38.98± 3.7 59.53± 4.1 ◦ 40.72± 3.8 ◦ 38.79± 3.9 39.54± 3.5 ◦ 40.19± 3.6 ◦ 53.65± 3.9 ◦ 12.01± 5.9 •
labor 58.65±30.3 36.50±31.3 64.45±32.9 67.72±28.7 57.08±30.6 54.93±31.6 45.46±31.0 66.22±28.2
lymph 75.18±15.7 72.40±17.2 77.75±15.1 75.31±15.6 74.46±16.5 74.26±16.5 73.78±16.7 77.56±16.3
sick 64.88± 7.7 76.60± 5.4 ◦ 66.03± 7.5 65.06± 8.0 64.98± 7.5 65.14± 7.5 75.73± 5.6 ◦ 37.57±10.8 •
sonar 86.94±10.8 91.10± 7.9 ◦ 90.48± 9.5 86.73±10.5 87.16±11.6 86.99±11.1 91.82± 8.5 ◦ 75.40±11.9 •
splice 30.76± 3.5 34.66± 3.9 ◦ 31.21± 3.7 31.65± 3.4 ◦ 30.41± 3.4 30.26± 3.7 34.36± 3.8 ◦ 38.64± 4.1 ◦
vehic 88.00± 2.4 91.18± 1.8 ◦ 88.36± 2.3 87.45± 2.4 88.37± 2.3 ◦ 88.41± 2.2 ◦ 91.18± 1.8 ◦ 64.04± 4.5 •
vote 39.67±12.5 58.04±12.1 ◦ 42.00±12.4 38.23±12.8 40.73±12.3 41.46±12.3 54.90±12.5 ◦ 32.98±14.9 •
wave 59.72± 2.3 63.52± 2.3 ◦ 59.94± 2.2 59.50± 2.4 59.77± 2.2 59.79± 2.2 63.52± 2.3 ◦ 62.50± 2.6 ◦
zoo 39.32±29.7 25.15±25.2 56.19±25.7 51.33±28.9 40.99±29.7 33.87±29.2 34.97±26.3 38.62±23.6

•, ◦ statistically significant improvement or degradation over AWNB with i = 10, j = 50.

Table 2 shows the RRSE results for the first experiment. Compared to
standard naive Bayes, attribute weighted naive Bayes (i = 10, j = 50) has
significantly lower RRSE on 12 data sets and significantly higher RRSE on only
two data sets. In many cases our method improves the performance of naive
Bayes considerably. For example, on the kr data RRSE decreases from 59.5%
to 39%. Similar levels of improvement can be seen on vote, iono, aust and colic.
In order to determine whether the improvement over standard naive Bayes is
due to the attribute weights or just feature selection (recall that attributes that
do not appear in the tree(s) receive zero weight) we ran AWNB and set all
non-zero weights to 1. This scheme is referred to as ASNB in Table 2. From
the results it is clear that the attribute weights do help in improving the quality
of the probability estimates produced by naive Bayes. Using attribute weights,
as opposed to just eliminating those attributes that do not appear in the trees,
results in significant improvements on 12 data sets and significant degradation
on two. We also investigated the effect of varying the size of the samples used
to build the trees for AWNB. Setting j to 25, 75 and 100 resulted in similar
performance to using j = 50. j = 50 is significantly worse than the other two
settings of j on one data set, and significantly better on two data sets (j = 25)
and three data sets (j = 75, j = 100). Instead of using 10 bagging iterations
to construct 10 trees, we also tried building just one tree (i = 1) using all the

5



Table 3: Experimental results for attribute weighted naive Bayes (AWNB) ver-
sus naive Bayes (NB), AWNB using zero/one weights (ASNB) and bagged un-
pruned decision trees: area under the ROC curve and standard deviation.

Data AWNB NB AWNB AWNB AWNB AWNB ASNB Bagging
i = 10 i = 1 i = 10 i = 10 i = 10 i = 10 i = 10
j = 50 j = 100 j = 25 j = 75 j = 100 j = 50 j = 100

aust 90.67± 3.2 89.53± 3.4 ◦ 90.13± 3.4 91.21± 3.1 90.30± 3.3 90.25± 3.4 89.50± 3.4 ◦ 91.91± 3.3
brst-c 69.87±10.3 70.38±10.0 70.08±10.4 69.77±10.1 70.08±10.3 70.15±10.4 70.38±10.0 63.66±11.5
brst-w 98.67± 1.2 98.33± 1.2 98.78± 1.1 98.63± 1.2 98.62± 1.3 98.60± 1.2 98.35± 1.2 98.78± 1.0
diab 82.37± 5.6 81.42± 5.4 82.26± 5.4 82.31± 5.7 82.34± 5.5 82.27± 5.5 81.42± 5.4 81.25± 5.0
crd-g 78.84± 4.7 78.66± 4.6 78.66± 4.7 78.91± 4.9 78.74± 4.8 78.81± 4.8 78.66± 4.6 73.15± 4.8 ◦
hrt-c 90.60± 6.1 90.70± 6.4 90.49± 6.2 90.31± 6.1 90.57± 6.5 90.63± 6.3 90.70± 6.4 87.98± 5.7
hrt-h 90.50± 5.9 90.74± 5.5 90.24± 6.2 90.17± 5.5 90.61± 5.7 90.47± 5.8 90.70± 5.5 88.49± 6.7
hrt-s 89.19± 5.9 90.20± 5.5 89.83± 5.4 89.41± 5.9 89.58± 5.9 89.76± 5.8 90.20± 5.5 88.37± 5.9
hep 84.53±13.6 85.26±12.9 85.89±11.2 85.60±12.0 85.29±12.8 84.96±12.8 85.26±13.0 81.72±12.7
colic 88.16± 6.0 84.34± 6.2 ◦ 87.68± 6.1 88.67± 6.0 87.72± 6.0 87.70± 6.1 84.42± 6.2 ◦ 88.93± 5.2
iono 94.79± 4.1 93.81± 3.6 93.78± 4.7 94.60± 4.4 95.04± 3.8 94.99± 4.0 94.82± 3.6 96.48± 3.7
kr 98.93± 0.4 95.21± 1.2 ◦ 98.68± 0.5 ◦ 98.96± 0.4 98.85± 0.4 ◦ 98.76± 0.5 ◦ 96.76± 0.9 ◦ 99.95± 0.1 •
labor 95.08±11.4 97.38± 6.4 90.25±19.1 91.58±13.3 95.17±11.1 95.58±11.1 96.67± 8.8 92.08±15.8
sick 93.26± 4.4 92.59± 3.7 93.26± 4.4 93.26± 4.4 93.25± 4.3 93.24± 4.4 92.56± 3.8 99.28± 1.3 •
sonar 79.33±10.4 78.94±10.2 77.18±10.3 79.39±11.1 79.02±10.9 79.38±11.0 78.82±10.5 87.36± 7.4 •
vote 98.97± 1.0 97.39± 1.8 ◦ 98.66± 1.4 99.04± 1.0 98.93± 1.0 98.89± 0.9 97.75± 1.6 ◦ 98.33± 2.4

•, ◦ statistically significant improvement or degradation over AWNB with i = 10, j = 50.

training data. Although there are only three significant differences compared
to building 10 trees, it can be seen from Table 2 that on all but two data sets
this results in either a higher RRSE or larger standard deviation. Finally, we
compared AWNB to bagged unpruned decision trees using 10 bagging iterations
(i = 10) and randomly sampled training sets of the same size as the original
training data (j = 100). With nine significant wins and four significant losses in
favour of bagged trees it is clear that AWNB is inferior to this ensemble method.
However, AWNB’s single model has the advantage of being interpretable.

Table 3 shows the area under the curve results on the two class data sets for
the first experiment. Compared to standard naive Bayes, AWNB (i = 10, j =
50) is significantly better on four data sets and significantly worse on none.
Varying the percentage of data used to build the trees and the number of bagging
iterations has minimal effect. The other settings of i and j are significantly worse
on only one data set. Compared to simply eliminating those attributes that do
not appear in the trees (ASNB), AWNB is significantly better on four data sets
and significantly worse on none. Compared to bagged unpruned decision trees,
AWNB is significantly better on one data set and significantly worse on three.

Table 4 shows the RRSE results for the second experiment. In this exper-
iment we compared AWNB against two other attribute weighting schemes for
naive Bayes, three feature selection methods and naive Bayes trees. The first
of the weighting methods (GRW) assigns weights to attributes proportional to
their gain ratio score [27]:

wi =
GainRatio(Ai)×m∑m

i=1 GainRatio(Ai)
, (3)

where m is the number of attributes. For the purpose of computing these
weights, all numeric attributes are discretized in a copy of each train/test split
using the supervised discretization method of Fayyad and Irani [8]. Compared
to GRW, we can see from Table 4 that our tree-based method for determining

6



Table 4: Experimental results for attribute weighted naive Bayes (AWNB) ver-
sus naive Bayes with gain ratio based weighting (GRW), naive Bayes with Re-
liefF based weighting (RW), naive Bayes with correlation-based feature selec-
tion (CFS), Selective Bayes (SB), the Selective Bayesian classifier (SBC) and
NBTree: mean root relative squared error (RRSE) and standard deviation.

Data AWNB GRW RW CFS SB SBC NBTree
annl 50.38± 8.7 57.21± 7.0 ◦ 49.89± 6.5 60.58± 7.3 ◦ 60.46±12.3 69.12± 8.2 ◦ 26.18±11.8 •
aust 70.03± 7.0 72.89± 7.6 ◦ 68.62± 7.8 77.95± 7.8 ◦ 66.22± 7.6 76.58± 7.6 ◦ 68.69± 7.4
autos 80.36± 9.3 86.31± 8.1 ◦ 81.29± 8.9 84.82± 7.2 88.12±18.1 85.15± 8.2 ◦ 71.05±12.9 •
bal-s 46.55± 6.1 47.65± 5.8 48.62± 6.5 41.52± 5.9 • 41.18± 6.1 • 41.18± 6.1 • 78.03± 5.6 ◦
brst-c 94.84± 6.2 94.58± 5.6 94.91± 5.8 94.52± 6.2 95.61± 5.3 94.92± 6.2 95.21± 5.5
brst-w 37.60±11.5 39.50±10.5 37.91±10.1 39.29±10.4 39.48±11.2 39.38±12.1 34.85±11.5
diab 84.72± 6.9 86.09± 7.0 ◦ 85.35± 7.2 85.17± 6.3 85.41± 6.1 86.60± 6.5 ◦ 85.99± 6.4
ecoli 56.18±10.8 57.70±10.1 58.46±10.1 57.39±11.5 58.38±10.9 58.79±12.5 66.03±10.7 ◦
crd-g 89.54± 4.4 90.59± 4.2 90.85± 4.0 91.92± 3.7 ◦ 91.26± 3.5 90.61± 4.0 91.12± 4.1
glass 86.07± 5.5 86.06± 5.3 86.35± 5.3 85.96± 6.0 89.31± 6.2 87.64± 5.7 80.32±10.4
hrt-c 68.80±13.8 71.12±14.6 71.66±12.2 70.39±14.8 72.95±12.5 75.11±19.0 73.77±12.8
hrt-h 72.91±13.7 77.43±13.1 ◦ 80.77±10.4 72.24±13.1 74.91±13.0 79.41±19.0 73.80±12.8
hrt-s 70.76±10.1 71.21±10.1 72.09±11.0 71.39±10.4 72.85±10.3 72.03±11.5 76.72±11.0
hep 83.43±18.3 85.33±17.0 81.88±15.6 82.77±18.8 89.93±13.5 88.74±15.6 88.24±15.7
hrse-c 71.35±10.8 77.56± 9.5 ◦ 76.87±10.3 ◦ 74.97± 9.0 74.26±10.2 76.40±10.0 ◦ 76.52± 9.6
hypo 76.45± 5.6 70.20± 6.0 • 72.62± 4.7 • 78.64± 5.3 ◦ 71.89± 5.6 • 73.36± 6.1 • 20.16±12.2 •
iono 57.17±14.8 65.43±12.9 70.03±11.3 ◦ 59.70±15.6 57.01±13.2 59.40±14.4 60.84±12.1
iris 26.23±20.5 26.87±20.3 27.20±20.5 24.95±20.2 28.39±21.0 26.46±19.8 34.88±21.3
kr 38.98± 3.7 50.34± 4.4 ◦ 52.55± 5.0 ◦ 48.67± 4.0 ◦ 40.86± 5.0 54.91± 5.6 ◦ 23.27± 9.1 •
labor 58.65±30.3 62.77±33.0 54.80±33.1 58.95±32.8 51.87±34.0 79.46±28.0 ◦ 42.92±33.7
lymph 75.18±15.7 77.68±15.4 78.39±17.5 76.81±15.9 74.35±14.3 78.61±17.6 75.30±19.4
sick 64.88± 7.7 81.91± 3.4 ◦ 93.46± 1.8 ◦ 72.42± 6.6 ◦ 66.71± 7.1 72.34± 8.1 ◦ 56.45± 7.8 •
sonar 86.94±10.8 93.70± 7.7 ◦ 90.08±11.1 92.05± 8.7 ◦ 88.35± 9.5 89.73± 9.6 82.34±11.5
splice 30.76± 3.5 40.23± 3.7 ◦ 36.75± 3.9 ◦ 32.62± 3.6 ◦ 35.98± 3.8 ◦ 36.38± 4.4 ◦ 34.80± 3.9 ◦
vehic 88.00± 2.4 92.17± 1.6 ◦ 93.33± 1.5 ◦ 88.75± 2.4 89.86± 2.9 90.65± 3.0 ◦ 70.84± 4.1 •
vote 39.67±12.5 47.50±14.2 ◦ 41.12±14.3 40.81±13.0 39.19±12.8 40.17±14.7 39.87±14.3
wave 59.72± 2.3 67.15± 2.0 ◦ 63.73± 2.4 ◦ 62.86± 2.3 ◦ 62.53± 2.4 ◦ 63.38± 2.8 ◦ 67.84± 3.5 ◦
zoo 39.32±29.7 31.60±25.2 39.80±24.7 38.19±23.3 28.00±25.9 73.09±21.1 ◦ 29.58±27.6

•, ◦ statistically significant improvement or degradation over AWNB with i = 10, j = 50.

weights results in significantly lower RRSE on 13 data sets and significantly
higher RRSE error on only one. This suggests that information about attribute
dependencies captured in the tree structure is useful when setting weights for
naive Bayes. The second weighting scheme (RW) applies the ReliefF attribute
selection [14, 22] algorithm and uses the resulting attribute relevance scores
as weights. Any relevance scores less than zero are set to zero. Compared to
AWNB, RW is significantly worse on seven data sets and significantly better on
one. The ReliefF algorithm can identify relevant attributes that depend on the
values of other attributes. However, for the purposes of naive Bayes this can
result in scores that are too high for attributes with many dependencies.

Columns five through seven of Table 4 show the results for naive Bayes when
combined with the three feature selection algorithms. Correlation-based feature
selection (CFS) [10] is particularly well suited for use with naive Bayes as its
evaluation heuristic prefers subsets of attributes with low levels of redundancy.
From the results we can see that AWNB is significantly better than CFS on nine
data sets and significantly worse on one. Selective Bayes (SB) is a wrapper-
based feature selection method developed by Langley and Sage [18]. AWNB
achieves results comparable to SB—each significantly outperforms the other on
two data sets. The Selective Bayesian Classifier (SBC) is a bagged decision-tree
based attribute selection filter for naive Bayes [21]. From Table 4 we can see
that SBC is significantly better than AWNB on two data sets and significantly
worse on 12. The last column in the table shows the results for naive Bayes

7



Table 5: Experimental results for attribute weighted naive Bayes (AWNB) ver-
sus naive Bayes with gain ratio based weighting (GRW), naive Bayes with Re-
liefF based weighting (RW), naive Bayes with correlation-based feature selec-
tion (CFS), Selective Bayes (SB), the Selective Bayesian classifier (SBC) and
NBTree: area under the ROC curve and standard deviation.

Data AWNB GRW RW CFS SB SBC NBTree
aust 90.67± 3.2 90.51± 3.3 91.74± 2.9 90.12± 3.4 90.96± 3.3 89.88± 3.8 91.33± 3.5
brst-c 69.87±10.3 70.95±10.0 69.28±10.7 69.87±11.0 67.92±11.0 69.57±10.5 68.45±10.3
brst-w 98.67± 1.2 98.33± 1.2 98.42± 1.2 98.33± 1.2 98.94± 1.0 98.67± 1.3 98.75± 1.3
diab 82.37± 5.6 81.99± 5.7 82.53± 5.9 82.03± 5.6 82.14± 5.6 81.04± 5.4 80.89± 5.8
crd-g 78.84± 4.7 77.29± 5.1 ◦ 77.52± 4.8 75.27± 4.9 ◦ 78.39± 4.5 77.57± 4.7 76.23± 5.8
hrt-c 90.60± 6.1 89.99± 7.0 90.57± 5.5 89.32± 7.4 88.99± 5.4 87.16±12.2 88.21± 6.7
hrt-h 90.50± 5.9 89.11± 6.4 89.37± 5.7 90.76± 5.1 91.01± 5.8 87.22±10.4 89.22± 7.4
hrt-st 89.19± 5.9 89.47± 6.2 89.72± 5.7 88.78± 6.2 88.97± 5.7 88.78± 6.1 85.47± 7.7
hep 84.53±13.6 86.95±12.4 86.52±12.3 85.63±14.5 82.71±13.6 80.48±16.0 81.34±12.6
colic 88.16± 6.0 87.90± 6.3 88.45± 5.9 86.11± 6.2 87.20± 5.5 85.32± 6.2 ◦ 85.96± 6.2
iono 94.79± 4.1 94.64± 3.7 94.37± 3.6 94.32± 4.3 95.99± 3.8 93.21± 5.6 93.19± 4.3
kr 98.93± 0.4 98.11± 0.6 ◦ 98.50± 0.6 ◦ 96.86± 0.8 ◦ 98.62± 0.6 94.31± 1.4 ◦ 99.54± 0.5 •
labor 95.08±11.4 94.25± 9.4 94.87± 9.8 94.25±12.0 96.79± 6.4 81.21±22.2 95.92±10.6
sick 93.26± 4.4 93.55± 4.0 90.86± 3.0 ◦ 93.68± 3.3 94.41± 2.7 92.85± 4.3 93.74± 4.0
sonar 79.33±10.4 79.02±10.9 81.82±10.7 79.49±10.9 83.62± 9.7 76.81±11.4 83.11± 9.2
vote 98.97± 1.0 98.24± 1.4 ◦ 98.82± 1.1 98.88± 1.3 98.92± 1.4 98.36± 1.5 98.77± 1.5

•, ◦ statistically significant improvement or degradation over AWNB with i = 10, j = 50.

Trees (NBTree) [15]. NBTree builds a decision tree with local naive Bayes
models at each leaf. NBTree’s superior representational power is reflected in
six significant wins versus four significant losses against AWNB. However, these
gains in predictive performance come at the cost of increased running time over
our method.

Table 5 shows the area under the curve results on the two class data sets for
the second experiment. It is interesting to note that AWNB is significantly out-
performed in terms of AUC in only one case—on the kr-vs-kp data by NBTree.
Looking at the two weighting schemes (GR and RW), we can see that AWNB
is significantly better that GR on three data sets and significantly better than
RW on two data sets. AWNB has two significant wins against both CFS and
SBC. For this experiment we modified the wrapper-based SB to optimize AUC
rather than accuracy. From Table 5 we can see that AWNB is comparable to
SB in terms of AUC as there are no significant differences on any of the data
sets. However, AWNB is much faster than SB because it has running time that
is still linear in the number of attributes (log-linear in the number of instances)
while SB’s running time is at least quadratic in the number of attributes.

4 Related work

A fair amount of work has been done in investigating attribute weighting schemes
in the context of nearest neighbor learning. The primary goal of these meth-
ods is to mitigate the “curse of dimensionality”, where the number of training
cases needed to maintain a given error rate grows rapidly with the number of at-
tributes. Methods can be roughly divided into two groups: wrapper approaches,
i.e. those that use performance feedback from the nearest neighbor method to
adjust the values of the weights, and filter methods, i.e. those that incorporate
another model’s fixed bias in a preprocessing step to set the weights. Examples

8



of the former include Salzberg’s EACH system [23], Aha’s IB4 [1], The Relief
system and its extensions [14, 22] and the DIET scheme [16] (which, unlike
the other methods, restricts the weight space to a small user-selectable set of
discrete values). Examples of the latter include using information theoretic-
based measures such as mutual information and gain ratio to assign feature
weights [25], setting weights based on class conditional probabilities [5] and
Stanfill and Waltz’s value-difference metric [24]. Weighting schemes for near-
est neighbor can also be separated into those methods that find one globally
applicable set of weights (all the previously mentioned methods fall into this
category) and those that find locally applicable weights—either local to train-
ing instances or specifically tailored to the test instance. Examples of local
weighting schemes include those by Cardie and Howe [4, 11] and the RC algo-
rithm of Domingos [6]. For a good survey of attribute weighting methods for
nearest neighbor algorithms see Wettschereck et al. [25].

There is comparatively less work on using attribute weights in conjunction
with naive Bayes. Zhang and Sheng [27] investigate a gain ratio-based weighting
scheme and several wrapper-based methods for finding attribute weights in or-
der to improve AUC performance for naive Bayes. In a text classification setting
Kim et al. [13] explore information gain and chi-square statistics to set attribute
weights for a Poisson naive Bayes model. Ferreira et al. [9] discretize numeric
attributes and then compute a weight for each attribute that is proportional to
how predictive of the class it is. Classification accuracy for a weighted version
of naive Bayes is compared to standard naive Bayes and C4.5 on a small selec-
tion of UCI data sets. Unfortunately, comparison based on accuracy is unfair
if calibration or threshold selection is not used (which would be necessary to
maximize the accuracy of each classifier).

Using information captured in decision trees to improve the performance of
other learning algorithms was first explored by Cardie [3] and Kubat et al. [17].
Cardie used only those features appearing in a C4.5 [20] tree as input to a
nearest neighbor learner, while Kubat et al. did the same for naive Bayes. In
an approach very similar to these two, Ratanamahatana and Gunopulos’ [21]
Selective Bayesian classifier (SBC) uses attributes that appear in only the top
three levels of a decision tree to improve the performance of naive Bayes. Similar
to our method, SBC uses a bagging procedure to generate multiple trees; unlike
our method bagging is used primarily to speed up the tree growing process and so
only a small percentage (10%) of the training data is sampled in each iteration.
In an approach related to the one presented in this paper, Cardie [4] used an
information gain metric based on the position of an attribute in a decision tree
to derive feature weights for a nearest neighbor algorithm. This method differs
from ours in that it is a local weighting scheme (i.e. weights are derived for each
test instance according to the path it takes through the tree), it derives weights
directly from information gain scores, it uses a single pruned decision tree and
it is aimed at improving the prediction of minority classes.

The literature on feature selection in machine learning is too extensive to
review in detail here, so we will mention just a few articles relevant to the in-
vestigation reported in this paper. John et al. [12] are credited with coining the

9



terms “wrapper” and “filter” to describe those methods that use performance
feedback from a learning algorithm to guide the search for good features versus
those that incorporate another model’s fixed bias to select features. An exam-
ple of the wrapper approach specifically tailored to naive Bayes is Langley and
Sage’s selective Bayesian classifier [18]. This method uses the accuracy of naive
Bayes on the training data to evaluate feature subsets and a conservative for-
ward selection search that continues to add attributes as long as the predictive
performance does not decrease. CFS (correlation-based feature selection) [10]
is an example of a filter approach that is well suited to naive Bayes. CFS uses
a heuristic that is biased towards subsets of features that are highly correlated
with the class attribute and have low levels of redundancy.

5 Conclusions

This paper has investigated a decision tree-based filter method for setting at-
tribute weights for use with naive Bayes. Empirically, our attribute weighting
method for naive Bayes outperforms both standard naive Bayes and weighting
methods based on information gain and the ReliefF algorithm. Furthermore,
it has performance that is comparable with a more computationally intensive
wrapper-based feature subset selection for naive Bayes.

In terms of computational complexity, our weighting method increases naive
Bayes’ runtime from linear in the number of attributes and examples to linear
in the number of attributes and log-linear in the number of instances. This
compares favourably with other enhanced versions of naive Bayes that maintain
a single interpretable model such as naive Bayes trees [15] and selective Bayes,
both of which are quadratic in the number of attributes.

References

[1] D. W. Aha. Tolerating noisy, irrelevant, and novel attributes in instance-
based learning algorithms. Int. Journal of Man-Machine Studies, 36:267–
287, 1992.

[2] C.L. Blake and C.J. Merz. UCI repository of machine learning databases.
University of California, Irvine, Dept. of Information and Computer Sci-
ence, 1998. [www.ics.uci.edu/∼mlearn/MLRepository.html].

[3] C. Cardie. Using decision trees to improve case-based learning. In Proc. of
the 10th Int. Conf. on Machine Learning, pages 25–32. Morgan Kaufmann,
1993.

[4] C. Cardie and N. Howe. Improving minority class prediction using case-
specific feature weights. In Proc. of the 14th Int. Conf. on Machine Learn-
ing, pages 57–65. Morgan Kaufmann, 1997.

10



[5] R. H. Creecy, B. M. Masand, S. J. Smith, and D. L. Waltz. Trading MIPS
and memory for knowledge engineering. Communications of the ACM,
35:48–64, 1992.

[6] P. Domingos. Context-sensitive feature selection for lazy learners. Artificial
Intelligence Review, 11(227–253), 1997.

[7] P. Domingos and M. J. Pazzani. On the optimality of the simple Bayesian
classifier under zero-one loss. Mach. Learning, 29(2-3):103–130, 1997.

[8] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-
valued attributes for classification learning. In Proc. of the 13th Int. Joint
Conf. on AI, pages 1022–1027. Morgan Kaufmann, 1993.

[9] J. T. A. S. Ferreira, D. G. T Denison, and D. J. Hand. Data mining with
products of trees. In Proc. of the 4th Int. Conf. on Advances in Intelligent
Data Analysis, pages 167–176. Springer, 2001.

[10] M. Hall. Correlation-based feature selection for discrete and numeric c lass
machine learning. In Proc. of the 17th Int. Conf. on Machine Learning,
pages 359–366, 2000.

[11] N. Howe and C. Cardie. Examining locally varying weights for nearest
neighbor algorithms. In Case-Based Reasoning Research and Development:
2nd Int. Conf. on Case-Based Reasoning, pages 455–466. Springer, 1997.

[12] G. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset
selection problem. In Proc. of the 11th Int. Conf. on Machine Learning,
pages 121–129. Morgan Kaufmann, 1994.

[13] S. Kim, H. Seo, and H. Rim. Poisson naive Bayes for text classification
with feature weighting. In Proc. of the 6th Int. Workshop on Information
Retrieval with Asian Languages, pages 33–40, 2003.

[14] K. Kira and L. Rendell. A practical approach to feature selection. In Proc.
of the Ninth Int. Conf. on Machine L earning, pages 249–256. Morgan
Kaufmann, 1992.

[15] R. Kohavi. Scaling up the accuracy of naive-Bayes classifiers: a decision
tree hybrid. In Proc. of the 2nd Int. Conf. on Knowledge Discovery and
Data Mining, pages 202–207, 1996.

[16] R. Kohavi, P. Langley, and Y. Yun. The utility of feature weighting in
nearest-neighbor algorithms. In M. van Someren and G. Widmer, editors,
Poster Papers: Ninth European Conf. on Machine Learning, Prague, Czech
Republic, 1997. Unpublished.

[17] M. Kubat, D. Flotzinger, and G. Pfurtscheller. Discovering patterns in
EEG signals: Comparative study of a few methods. In Proc. of the 1993
Europ. Conf. on Mach. Learn., pages 367–371. Springer-Verlag, 1993.

11



[18] P. Langley and S. Sage. Induction of selective Bayesian classifiers. In Proc..
of the 10th Conf. on Uncertainty in Artificial Intelligence, pages 399–406.
Morgan Kaufmann, 1994.

[19] C. Nadeau and Yoshua Bengio. Inference for the generalization error. In
Advances in Neural Information Processing Systems 12, pages 307–313.
MIT Press, 1999.

[20] R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[21] C. A. Ratanamahatana and D. Gunopulos. Feature selection for the naive
Bayesian classifier using decision trees. Applied Artificial Intelligence, 17(5-
6):475–487, 2003.

[22] M. Robnik-Sikonja and I. Kononenko. Theoretical and empirical analysis
of Relieff and RRelieff. Mach. Learning, 53(1-2):23–69, 2003.

[23] S. L. Salzberg. A nearest hyperrectangle learning method. Machine Learn-
ing, 6:251–276, 1991.

[24] C. Stanfill and D. Waltz. Toward memory-based reasoning. Communica-
tions of the Assoc. for Computing Machinery, 29:1213–1228, 1986.

[25] D. Wettschereck, D. W. Aha, and T. Mohri. A review and empirical com-
parison of feature weighting methods for a class of lazy learning algorithms.
Artificial Intelligence Review, 11:273–314, 1997.

[26] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learn-
ing Tools and Techniques with Java Implementations. Morgan Kaufmann,
2000.

[27] H. Zhang and S. Sheng. Learning weighted naive Bayes with accurate
ranking. In Proc. of the 4th IEEE Int. Conf. on Data Mining, pages 567–
570, 2004.

[28] Zijian Zheng and Geoffrey I. Webb. Lazy learning of Bayesian rules. Ma-
chine Learning, 41(1):53–84, 2000.

12


