12,727 research outputs found

    Non-parametric Estimation of Stochastic Differential Equations with Sparse Gaussian Processes

    Get PDF
    The application of Stochastic Differential Equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a non-parametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudo-samples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behaviour of complex systems

    Sparse Identification and Estimation of Large-Scale Vector AutoRegressive Moving Averages

    Full text link
    The Vector AutoRegressive Moving Average (VARMA) model is fundamental to the theory of multivariate time series; however, in practice, identifiability issues have led many authors to abandon VARMA modeling in favor of the simpler Vector AutoRegressive (VAR) model. Such a practice is unfortunate since even very simple VARMA models can have quite complicated VAR representations. We narrow this gap with a new optimization-based approach to VARMA identification that is built upon the principle of parsimony. Among all equivalent data-generating models, we seek the parameterization that is "simplest" in a certain sense. A user-specified strongly convex penalty is used to measure model simplicity, and that same penalty is then used to define an estimator that can be efficiently computed. We show that our estimator converges to a parsimonious element in the set of all equivalent data-generating models, in a double asymptotic regime where the number of component time series is allowed to grow with sample size. Further, we derive non-asymptotic upper bounds on the estimation error of our method relative to our specially identified target. Novel theoretical machinery includes non-asymptotic analysis of infinite-order VAR, elastic net estimation under a singular covariance structure of regressors, and new concentration inequalities for quadratic forms of random variables from Gaussian time series. We illustrate the competitive performance of our methods in simulation and several application domains, including macro-economic forecasting, demand forecasting, and volatility forecasting

    The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise Interactions in High Dimensions

    Full text link
    Discovering interaction effects on a response of interest is a fundamental problem faced in biology, medicine, economics, and many other scientific disciplines. In theory, Bayesian methods for discovering pairwise interactions enjoy many benefits such as coherent uncertainty quantification, the ability to incorporate background knowledge, and desirable shrinkage properties. In practice, however, Bayesian methods are often computationally intractable for even moderate-dimensional problems. Our key insight is that many hierarchical models of practical interest admit a particular Gaussian process (GP) representation; the GP allows us to capture the posterior with a vector of O(p) kernel hyper-parameters rather than O(p^2) interactions and main effects. With the implicit representation, we can run Markov chain Monte Carlo (MCMC) over model hyper-parameters in time and memory linear in p per iteration. We focus on sparsity-inducing models and show on datasets with a variety of covariate behaviors that our method: (1) reduces runtime by orders of magnitude over naive applications of MCMC, (2) provides lower Type I and Type II error relative to state-of-the-art LASSO-based approaches, and (3) offers improved computational scaling in high dimensions relative to existing Bayesian and LASSO-based approaches.Comment: Accepted at ICML 2019. 20 pages, 4 figures, 3 table
    corecore