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Nonparametric estimation of stochastic differential equations with sparse Gaussian processes
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The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted
increasing attention, due to their ability to describe complex dynamics with physically interpretable equations.
In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from
a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a
function-space view and thus the inference takes place directly in this space. To cope with the computational
complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided.
This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a
distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated
data and real data from economy and paleoclimatology. The application of the method to real data demonstrates
its ability to capture the behavior of complex systems.
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I. INTRODUCTION

Stochastic differential equations (SDEs), also referred to
as Langevin equations, provide an effective framework for
modeling complex systems comprising a large number of
subsystems, which show irregular fast dynamics that can
be treated as fluctuations or noise. Intuitively, SDEs couple
a deterministic equation of motion with noisy fluctuations
interfering in its dynamical evolution. They have demonstrated
their usefulness in a wide range of applications: diffusion
of grains in a liquid [1], drift of particles without flux [2],
turbulence [3,4], fluctuations in plasma [5], variations in
quasar’s optical flux [6], chemical reactions [7], the motion
of vehicles in a traffic flow [8], quantitative finance [9],
gene expression [10], electroencephalography analysis [11],
etc. (see Ref. [12] for a complete review with applications).
The only specific requirements that modeling through SDEs
imposes are stationarity and Markovianity.

In this paper, we consider a system that may be represented
by a continuous-time univariate Markov process x(t) described
by the SDE:

dx(t) = f (x(t))dt +
√

g(x(t))dW (t), (1)

where W (t) denotes a Wiener process. The Wiener process
has independent Gaussian increments W (t + τ ) − W (t) with
zero mean and variance τ . Thus, we may intuitively think of
dW (t) as white noise, which is the source of randomness of
the system. The function f defines a deterministic drift, and g

modulates the strength of the noise term. The functions f and
g are usually referred to as the drift and diffusion coefficients,
respectively.

When studying complex dynamical systems, the large
number of degrees of freedom and the nonlinear interactions
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between the subsystems involved in the dynamics usually
hinders obtaining an exact knowledge of the functional forms
of both the drift and diffusion coefficients. This leads to the
problem of its nonparametric estimation from the observation
of an experimental time series x, which is usually a sampled
version of the underlying continuous process x(t): x = {xi =
x[(i − 1) · �t]}i=1,2,...,N+1 (the reason for using N + 1 as the
number of samples will be apparent at the beginning of Sec. II).

The most widely used nonparametric estimation methods
exploit the theoretical expressions for both the drift and
diffusion terms [12]:

f (ξ ) = lim
τ→0

1

τ
Ex(t+τ )[x(t + τ ) − x(t)|x(t) = ξ ],

g(ξ ) = lim
τ→0

1

τ
Ex(t+τ ){[x(t + τ ) − x(t)]2|x(t) = ξ},

(2)

where E denotes the expectation operator. Equation (2)
suggests the possibility of estimating the dynamical coef-
ficients f (ξ ) and g(ξ ) by computing “local” means in a
small neighborhood of ξ [12]. Typically, the local means are
computed after binning the domain of x using bins of size ε:

f̂ (ξ ) = 1

Nξ

∑
xi∈B(ξ,ε)

[xi+1 − xi],

ĝ(ξ ) = 1

Nξ

∑
xi∈B(ξ,ε)

[xi+1 − xi]
2,

where f̂ and ĝ represent the estimates, B(ξ,ε) denotes the bin
in which ξ falls, and Nξ is the number of points from x falling
in that bin.

The most obvious limitation of the histogram based
approach is that the estimations highly depend on the choice of
ε. Furthermore, it is not obvious how we should select the size
of the bin. More sophisticated approaches rely on replacing
the mean of the bins with the mean of the k-nearest neighbors
[13]. However, the free parameter of this approach, k, must
still be heuristically selected.
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Another refinement of those methods grounded in Eq. (2)
is achieved by Ref. [14], which introduces a kernel-based
(instead of an histogram based) regression for the coefficients.
Furthermore, they propose a method for the selection of the
bandwidth of the kernel.

Recently, the use of orthogonal Legendre polynomials
for approximating the functional form of the dynamical
coefficients [15] was proposed. The weights of the polynomials
are learnt by minimizing the squared regression error that
results after discretizing the SDE with the Euler-Maruyama
scheme. Although this method is proposed as nonparametric,
we actually find that it is closer to a parametric method than
to a nonparametric one, since the use of a small subset of any
polynomial basis restricts the possible functional shapes of the
estimates.

An alternative way for performing nonparametric regres-
sion that has become very popular among the machine-learning
community is based on the concept of Gaussian process (GP)
[16]. Instead of working in the weight-space that arises when
using a set of basis functions (e.g., when using the Legendre
polynomials), GPs permit working directly in the function
space by placing a distribution over the functions. This enables
a Bayesian treatment of the estimation process. The main
advantage of this approach is that it yields probabilistic
estimates, which permits the computation of robust confidence
intervals. Furthermore, prior distributions modeling our prior
beliefs about functions could also be included in the model. In
this paper, a GP-based method to reconstruct the SDE terms
is proposed, with a focus on the computational challenges
that common dataset sizes, N ≈ 103–105, impose. A brief
overview of the theory of GPs, as well as how they could be
used for SDEs estimation is given in Sec. II.

GPs have already been considered in the context of SDEs
in the pioneering work of Ruttor et al. [17]. There are two
main differences between Ref. [17] and our proposal: (1) we
attempt to provide estimations in the case where we have a
densely sampled time series (resulting in large series), whereas
Ref. [17] focuses on the case of sparsely observed time series;
and (2) we apply the GP approach to the estimation of both
the drift and diffusion functions, whereas Ref. [17] only deals
with the drift coefficient.

The use of densely observed time series poses a challenge
related with the demanding computations that GPs usually
require. This is the main drawback that prevents GPs to be
more widely utilized as nonparametric regression tool. In
our proposal, we tackle the problem by providing a sparse
Gaussian process approximation (SGP; see Ref. [18] for
an excellent overview of the subject), which is one of the
main contributions of the paper. The sparse approximation is
developed in Sec. III.

Section IV details how to handle the mathematical difficul-
ties that arise in the SGP approximation due to the inclusion
of the diffusion in the inference procedure. The estimation of
nonconstant diffusions has indeed become a major concern.
In this sense, nonconstant diffusions can be found in many
physical systems (see, for example, Refs. [2–5,8,9,11]).
Furthermore, it is well established that multiplicative noise can
have surprising effects in the dynamics of the system. Some
well-known examples of these effects are stochastic resonance

[19], coherence resonance [20], and noise-induced transitions
[21].

Section V discusses how to select the free parameters of
the SGP and how to tune them for a better performance of the
estimates.

The resulting SGP method is validated in Secs. VI and VII
on simulated data and real data, respectively. In the case of the
simulated data, we compare our method with the kernel-based
regression [14] and the polynomial-based method of Ref. [15].
In the case of the real data, we apply our method to the study
of financial data and climate transitions during the last glacial
age. Finally, some conclusions are given in Sec. VIII.

We shall use the following notation conventions. Vectors
will be denoted with a lower-case bold letter (e.g., a), whereas
that upper-case bold letters will be reserved for matrices (A).
The superscript T will be used to denote the transpose of
a vector or a matrix (aT or AT ). We have already used
the expectation operator E. If there is some ambiguity, we
shall also write Eφ to indicate that the expectation should be
computed using the φ(·) distribution. Finally, we shall denote
a Gaussian distribution with mean μ and covariance matrix �

with N (μ,�).

II. GAUSSIAN PROCESSES FOR SDE ESTIMATION

We consider the discrete-time signal x obtained from sam-
pling the continuous Markov process x(t). If the coefficients of
the SDE are approximately constant over small time intervals
[t,t + �t), the Euler-Maruyama discretization scheme yields
[22, Chapter 2]

x(t + �t) − x(t)

≈ f (x(t))�t +
√

g(x(t))[W (t + �t) − W (t)],

which in discrete notation can be written as

�xi = fi�t + √
gi(Wi+1 − Wi), (3)

where we have denoted �xi = xi+1 − xi , fi = f (xi) and gi =
g(xi). Since the increments of the Wiener process Wi+1 − Wi

follow a Gaussian distribution N (0,�t), Eq. (3) can be used
to approximate the discrete transition probabilities as

p(xi+1|xi,fi,gi) = 1√
2πgi�t

exp

[
− 1

2

(�xi − fi�t)2

gi�t

]
.

Thus, when the stochastic process takes a value close to xi ,
it changes by an amount that is normally distributed, with
expectation f (xi)�t and variance g(xi)�t . Since the Wiener
increments are independent between them, the log-likelihood
of the path can be written as [22, Chapter 3]

log p(x|f,g) = −1

2

N∑
i=1

[
(�xi − fi�t)2

gi�t
+ log

(
gi

)]

− N

2
log(2π�t) + log p(x1). (4)

It must be noted that this approximation is only valid if �t

is small. Concretely, since the Euler-Maruyama scheme has a
strong order of convergence of 1/2, the expected error between
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a real continuous path and the numerical approximation scales
as �t1/2 [23]. Furthermore, we may only expect very accurate
estimations for both f and g if the number of samples N is
large. The time series’ length used for SDE estimation depends
on the study, but usual length requirements range from N ≈
103 [15,17,24] to N ≈ 105 [13,25,26].

We would like to obtain estimates of f and g given a
realization of the process x(t) without any assumption on
their form (nonparametric regression). GPs provide a powerful
method for nonparametric regression and other machine
learning tasks [16].

A GP is a collection of random variables indexed by some
continuous set (e.g., time or space), which can be used to
define a prior over a function y(ξ ), where ξ denotes a generic
vector-variable belonging to some multidimensional real space
RD . A GP assumes that any finite number of function points
[y(ξ 1),y(ξ 2), . . . ,y(ξn)] have a joint Gaussian distribution.
Thus, y(ξ ) ∼ GP(m(ξ ),k(ξ ,ξ ′)) is fully specified by a mean
function m(ξ ) and a covariance function k(ξ ,ξ ′), defined as

m(ξ ) = E[y(ξ )],

k(ξ ,ξ ′) = E{[y(ξ ) − m(ξ )][y(ξ ′) − m(ξ ′)]}.

By selecting a smooth covariance function k(ξ ,ξ ′) we can
model smooth functions. Furthermore, the kernel determines
almost all the properties of the resulting GP. For example,
we can produce periodic processes by using a periodic
kernel. Since we are interested in nonparametric regression,
we shall avoid those kernels that impose any predetermined
form on the final predictor, e.g., linear kernels or polynomial
kernels. When using flexible kernels, GPs do not make strong
assumptions about the nature of the function and, hence, they
build their estimates from information derived from the data.
Furthermore, even when lots of observations are used, there
may still be some flexibility in the estimates. Thus, GPs are
regarded as nonparametric methods [16, Chapter 1]. Also, it
should be noted that the number of parameters of a GP model
grows with the amount of training data, which is another
feature of nonparametric methods [27, Section 1.4.1].

In the SDE estimation problem, we shall use two different
GPs for modeling our prior beliefs about the properties of the
drift and diffusion terms. After observing the data x, we shall
update our knowledge about them. This updated knowledge is
represented by the posterior distributions p( f ∗|x) and p(s∗|x),
where f ∗ and s∗ represent the sets that result from evaluating
f (x) and g(x) over a set of inputs; i.e., f ∗ = {f (x) : x ∈ x∗}
[a similar expression applies to g(x)].

For the drift function f , we shall use a GP with zero mean.
The zero mean arises from symmetry considerations and our
lack of prior knowledge about f (there is no reason to assume
positive values instead of negative ones, and viceversa). On the
other hand, we must ensure that g > 0 [since it plays the role of
a variance in Eq. (4)]. Thus, we assume that g(x) = exp [s(x)],
where s(x) is a Gaussian process with a constant mean function
m(x) = v. The v parameter is useful to control the scale of the
noise process and possible numerical issues arising from the
explosiveness of the exponential transformation. We shall use
general covariance functions Kf and Ks for both processes,
parametrized with the hyperparameters θf and θ s , respectively.

Hence, our complete model is

log p(x|f,s,v) ≈ −1

2

N∑
i=1

i

[
(�xi − fi�t)2

exp(si)�t
+ si

]

− N

2
log(2π�t), (5a)

f (x)|θf ∼ GP(0,Kf (x,x ′,θf )), (5b)

s(x)|θ s ∼ GP(v,Ks(x,x ′,θ s)), (5c)

where we have ignored the distribution of p(x1) from Eq. (4)
(this is reasonable when N 	 1). Since f (x) and g(x)
are GPs, the discrete vectors f = (f1,f2, . . . ,fN ) and s =
(s1,s2, . . . ,sN ) must follow multivariate Gaussian distribu-
tions:

f |θf ∼ N (0N,KNN ) s|θ s ∼ N (vN,JNN ), (6)

where the entries of the covariance matrices are defined using

[KNN ]ij = Kf (xi,xj ,θf ), [ JNN ]ij = Ks(xi,xj ,θ s), (7)

and where 0N and vN denote vectors of length N with all their
entries set to 0 and v, respectively.

Although in Eqs. (5)–(7) we have explicitly written the
dependencies on the hyperparameters (v,θf and θ s) for the
sake of completeness, we shall assume, for the moment, that
they are known and fixed. Hence, we shall remove them
from the equations in the next sections to keep the notation
uncluttered.

As stated before, our aim is to compute the posteriors of
any new set of new function points f ∗ [from f (x)] and s∗
[from s(x)]: p( f ∗|x) and p(s∗|x). However, computing the
posterior distribution of a model that involves GPs requires
the calculation of inverse matrices, which usually scales as
O(N3) operations [16]. For large N , such as those used in
the SDEs’ literature, this approach is prohibitive. In the next
section, we discuss how to approximate the GP problem using
only m points (m 
 N ), which yields the so-called sparse
Gaussian processes (SGP) [16,18].

III. APPROXIMATION WITH SPARSE
GAUSSIAN PROCESSES

To overcome the intractable computations that a large
dataset requires, many sparse methods construct an approx-
imation to the GP using a small set of m inducing variables
(m 
 N ). Our inducing variables shall be the function points
that result from evaluating f (x) and s(x) at some pseudoinputs
xm ∈ Rm, i.e., f m = {f (x) : x ∈ xm} and sm = {s(x) : x ∈
xm}. Note that, although we could have used a set of
pseudoinputs for f (x) and another one for s(x), we have opted
for a single set for the sake of simplicity. The key idea is
that, instead of using the N -dimensional posterior distribution
p( f |x) to compute the predictions of the new function points
f ∗, we could “summarize” the information that we may learn
from the data about f (x) in an m-dimensional distribution
φfm

( f m), and then use it to make the predictions [a similar
reasoning also applies to s(x)]. Since f m and sm represent the
“reference points” that we shall use to make new predictions,
it seems reasonable that xm should be spread across the range
of values of x. Hence, in our problem, we shall require any
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pseudoinput to be contained in [min x, max x]. It must be noted
that the pseudoinputs xm may be seen as hyperparameters
of the complete model subject to optimization. However,
for the moment we shall assume that they are known and
fixed. To determine how the pseudoinputs can be used to
make predictions, we shall follow a similar approach to that
introduced in Ref. [28], which used a variational formulation
for learning the inducing variables of the SGP. The advantage
of this approach is that variational inference naturally arises
in our problem when trying to approximate the posterior
distributions p( f |x) and p(s|x), as it will be discussed later.

Since f m (or sm) and the N points that result from
evaluating f (x) [or s(x)] at {xi}i=1,2,...N both sample the same
GP, we assume

[
f

f m

]
∼ N

([
0
0

]
,

[
KNN KNm

KmN Kmm

])
,

[
s

sm

]
∼ N

([
vN

vm

]
,

[
JNN JNm

JmN Jmm

])
,

where all the submatrices are computed analogously as done
in Eq. (7).

Since they will be used throughout the document, it is useful
to write the expressions for the conditional distributions as

f | f m ∼ N (A f m,P),

s|sm ∼ N (vN + B(sm − vm), Q),

with

A = KNm K−1
mm, P = KNN − KNm K−1

mm KmN,

B = JNm J−1
mm, Q = JNN − JNm J−1

mm JmN.
(8)

Using this augmented model, the posterior distribution of
the new function points f ∗, from f (x), and s∗, from s(x),
would be

p( f ∗,s∗|x) =
∫

p( f ∗,s∗| f , f m,s,sm)

×p( f , f m,s,sm|x)d f d f mdsdsm

=
∫

p( f ∗| f , f m)p(s∗|s,sm)

×p( f , f m,s,sm|x)d f d f mdsdsm. (9)

Following Ref. [28], we assume that f m provides complete
information for f ∗ in the sense that p( f ∗| f m,f) = p( f ∗| f m).
Similarly, we assume p(s∗|sm,s) = p(s∗|sm). However, these
assumptions do not prevent the computation of the GPs’ pos-
terior p( f , f m,s,sm|x). To make the model computationally
efficient we shall approximate this distribution by factorizing
it in groups of ( f , f m) and (s,sm), as it is usually done in the
variational inference approach [28,29]:

p( f , f ms,sm|x) ≈ φ( f , f m,s,sm)

= p( f | f m)φfm
( f m)p(s|sm)φsm

(sm), (10)

where φfm
( f m) and φsm

(sm) denote unconstrained variational
distributions over f m and sm. Under this assumption, Eq. (9)

becomes

p( f ∗|x) ≈
∫

p( f ∗| f m)φfm
( f m)d f m,

p(s∗|x) ≈
∫

p(s∗|sm)φsm
(sm)dsm.

Given Eq. (10), we may try to minimize the following
Kullback-Leibler divergence to calculate the φ( f , f m,s,sm)
distribution:

KL(φ | p) =
∫

φ( f , f m,s,sm) log
φ( f , f m,s,sm)

p( f , f m,s,sm|x)

× d f d f mdsdsm. (11)

Taking into account the identity

log p(x) = L(φ) + KL(φ | p),

where we have defined

L(φ) =
∫

φ( f , f m,s,sm) log
p(x, f , f m,s,sm)

φ( f , f m,s,sm)
d f

× d f mdsdsm,

we notice that minimizing the Kullback-Leibler divergence
with respect to φ is equivalent to maximize the lower bound of
the marginal log-likelihood L(φ). Setting ∂L(φ)/∂φ = 0, we
obtain the optimal solutions [29]:

log φfm
( f m) = Eφ-fm

[log (p(x| f ,s)p(sm)p( f m))], (12a)

log φsm
(sm) = Eφ-sm

[log (p(x| f ,s)p(sm)p( f m))], (12b)

where we have denoted

φ-fm
( f ,s,sm) = p( f | f m)p(s|sm)φsm

(sm),

φ-sm
( f , f m,s) = p( f | f m)φfm

( f m)p(s|sm),

to the density functions that result from ignoring the distribu-
tions φfm

( f m) and φsm
(sm) from φ( f , f m,s,sm) [see Eq. (10)],

respectively.
Note that Eq. (12) are not a closed-form solution of the vari-

ational inference problem, since both equations are coupled.
However, they naturally suggest the use of a coordinate ascent
algorithm to find a solution. The coordinate ascent method
iterates between holding φfm

( f m) to update φsm
(sm) using

Eq. (12a) and holding φsm
(sm) to update φfm

( f m) through
Eq. (12b).

In our problem, Eq. (12a) becomes (see Appendix A)

log φfm
( f m) = − 1

2 f T
m

[
K−1

mm + �t AT diag(ζ )A
]

f m

+ [ζ � �x]T A f m + constant, (13)

where � denotes the element-by-element multiplication of two
vectors, diag(ζ ) is the diagonal matrix constructed using the
values of the vector ζ as main diagonal and

ζi = Eφsm

(
exp

{
−[vN + B(sm − vm)]i + Qii

2

})
, (14)

where Q was defined in Eq. (8).
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Equation (13) implies that φfm
( f m) follows a Gaussian

distribution, that we shall write as
φfm

( f m) = N (μf ,F), where

F = [
K−1

mm + �t AT diag(ζ )A
]−1

,

μf = F AT (ζ � �x).

(15)

On the other hand, Eq. (12b) becomes (see Appendix B)

log φsm
(sm) = − 1

2�t

N∑
i=1

ψi exp

(
−[vN + B(sm − vm)]i

+ Qii

2

)
− 1

2
(sm − vm)T J−1

mm(sm − vm)

− 1

2

N∑
i=1

[B(sm − vm)]i + constant, (16)

where

ψi = Eφfm

[
�x2

i − 2�t�xi[A f m]i + (�t)2
(
[A f m]2

i + Pii

)]
.

(17)

Unlike the distribution for φfm
( f m), we cannot identify the

distribution that appears in Eq. (16). This is not surprising,
since the updates in a variational inference problem are only
available in closed-form when using conditionally conjugate
distributions. As a consequence, we are forced to use approx-
imate variational inference.

IV. LAPLACE VARIATIONAL INFERENCE FOR THE
ESTIMATION OF THE DIFFUSION

Laplace approximations use a Gaussian to approximate
intractable density functions. In the context of variational
inference, it has already been considered in Ref. [30], to handle
nonconjugate models. We shall use this approach to handle
Eq. (16). Let ŝm be the maximum of the right-hand side from

Eq. (16), which may be found using numerical optimization
techniques. In our implementation of the method, we have
used the L-BFGS-B algorithm [31], although any other method
could have been used. A Taylor expansion around ŝm gives

log φsm
(sm) ≈ 1

2 (sm − ŝm)T H log φ(ŝm)(sm − ŝm)

+ constant,

where H log φ(ŝm) is the Hessian matrix of log φsm
(sm) evaluated

at ŝm. In our case,

[H log φ(ŝm)]kq = − 1

2�t

N∑
i=1

ψi exp

(
−v + Qii

2

)
BikBiq

× exp (−[B(ŝm − vm)]i) − [
J−1

mm

]
kq

.

Thus, the approximate update for φsm
(sm) to be used in the

coordinate ascent algorithm is a Gaussian distribution:

φsm
(sm) ≈ N (μs ,S), where

μs = ŝm, S = −[H log φ(ŝm)]−1. (18)

Taking into account that both the distributions of f m and
sm are Gaussians, we can write ψi and ζi as

ζi = exp
[−[v + B(μs − vm)]i + 1

2

(
Qii + BT

i,.SBi,.

)]
,

ψi = (�xi)
2 − 2�t�xi[Aμf ]i

+ (�t)2
[

P + A
(
μf μT

f + F
)

AT
]
ii
, (19)

where Bi,. denotes the ith row of the B matrix. It must be
noted that the values of ψ and ζ should be updated with each
step of the coordinate ascent algorithm. After each step, the
convergence of the algorithm must be assessed by computing
the lower bound L(φ):

L(φ) = Eφ[log p(x|f,s)] + Eφfm
[log p( f m)] + Eφsm

[log p(sm)] − Eφfm
[log φfm

( f m)] − Eφsm
[log φsm

(sm)]

= −1

2

N∑
i=1

Eφ

[
(�xi − �tfi)2

�t exp (si)
− si

]
− N

2
log(2π�t) − 1

2
log |Kmm| − m

2
log 2π − 1

2
Eφfm

[
f T

m K−1
mm f m

]

− 1

2
log |Jmm| − m

2
log 2π − 1

2
Eφsm

[
(sm − vm)T J−1

mm(sm − vm)
] + Hφfm

[ f m] + Hφsm
[sm], (20)

where H is the entropy of a distribution. Taking the expectations in Eq. (20) yields

L(φ) = − 1

2�t

N∑
i=1

ψiζi − 1

2

N∑
i=1

[vN + B(μs − vm)]i − N

2
log(2π�t) − 1

2
log |Kmm| − m

2
log 2π − 1

2

[
tr
(
K−1

mm F
)

+μT
f K−1

mmμf

] − 1

2
log |Jmm| − m

2
log 2π − 1

2

[
tr
(

J−1
mmS

) + (μs − vm)T J−1
mm(μs − vm)

]

+ 1

2
log ((2πe)m|F|) + 1

2
log ((2πe)m|S|) + constant, (21)

where tr(·) denotes the trace of a matrix. In addition to checking
the convergence, computing the lower bound permits checking
the correctness of the implementation, since it should always
increase monotonically; and since it is an approximation to

the marginal likelihood, it can be used for Bayesian model
selection. For example, we can use the lower bound to select
the best kernel among a set of possible ones or to select the
number of inducing points m. However, there is a subtle detail
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that must be addressed. Although the variational inference
framework approximates the posterior distribution, it only does
it around one of the local modes. With m pseudo-inputs, there
are m! equivalent modes due to the lack of identifiability of
the pseudoinputs (the different modes only differ through a
relabelling of the xm vector). A simple approximate solution
that takes into account the multimodality is using:

L′ ≈ L + log(m!), (22)

for model selection [29].

V. HYPERPARAMETER OPTIMIZATION

So far, we have assumed that the “variance” parameter
v, the hyperparameters of the covariance functions, θf

and θ s , and the pseudoinputs xm were known and fixed.
However, Eq. (21) does depend on all these hyperparameters,
i.e., L(φ) ≡ L(φ,v,θf ,θ s ,xm) = L(φ,θ all), and hence, further
maximization of the lower bound could be achieved. Note
that this optimization permits the automatic selection of the
inducing-inputs xm and the kernel hyperparameters starting
from some reasonable initial values. In our implementation,
we have interleaved the updates of the variational distributions
with the numerical optimization of the lower bound with
respect to the hyperparameters (since the analytical optimiza-
tion is intractable). This permits the slow adaptation of the
hyperparameters to the variational distributions. The resulting
algorithm may be compared with a generalized expectation
maximization algorithm (GEM) [32]. In what we may identify
as the E step, the variational distributions are updated. First, the
distribution parameters μf and F are modified according to
Eq. (15) using the last values obtained for μs and S to compute
any expectation involving the random variable sm. These new
values are then used to compute the expectations involving
f m and updating μs and S through Eq. (18). In the M step,
the lower bound given by Eq. (21) is further optimized with
respect to the hyperparameters while keeping the distribution
parameters (μf ,F,μs ,S) fixed. Given that finding a maximum
may have a slow convergence, instead of aiming to maximize
the lower bound we sought to change the hyperparameters in
such a way as to increase it: L(φ,θn+1

all ) > L(φ,θn
all). This may

be interpreted as a “partial” M step. In our implementation, we
just limited the number of iterations of a L-BFGS-B algorithm
[31], although any other numerical method could have been
used. Changing from the maximization of the objective to
simply searching for an increase of it is what makes our
method similar to the GEM algorithm instead of the standard
EM algorithm. The E and M steps are then repeated until the
convergence of the lower bound L.

Hyperparameter initialization and kernel selection

The lower bound in a variational problem is usually
a nonconvex function and, hence, the proposed GEM-like
algorithm is only guaranteed to converge to a local maximum,
which can be sensitive to initialization [33]. Thus, several trials
with randomly selected initial values of the hyperparameters
should be run. The final estimate can be selected using
Eq. (22). However, it should be noted that, experimentally,

solutions stacked in a clearly suboptimal local maxima happen
infrequently.

Given that SGPs provide a Bayesian framework, the kernels
and the initial values for their hyperparameters should be
selected to model the prior beliefs about the behavior of the
drift and diffusion functions. Choosing a proper kernel requires
some knowledge about the properties of covariance functions
[16, Chapter 4] and experience to combine them to model
functions with different kinds of structure [34, Chapter 2].
Reasonable choices commonly used in the GP literature when
no prior information is available are the squared exponential
kernel (or Gaussian kernel) and the rational quadratic kernel
[16], although any kernel could be used within our method.
The squared exponential kernel is one of the most widely
used covariance functions in the field of GP regression
since it is infinitely differentiable and hence it yields very
smooth processes [16, Chapter 2]. Its main hyperparameter
is the length-scale l, i.e., the variation necessary in the input
variable for the function values to appreciably change. On
the other hand, the rational quadratic kernel can be seen as
an infinite sum of squared exponential covariance functions
with different length-scales. It has two main hyperparameters,
a mean length-scale l and a parameter controlling the mixing
of the different squared exponential kernels (derived from a γ

distribution) [16, Chapter 4].
The amplitude of a kernel function can be interpreted as the

prior belief about the variance of the drift and diffusion terms.
Hence, large amplitudes can be used when no prior information
is available. The selection of the amplitude hyperparameter
for the diffusion requires further discussion since we have
to link the amplitude of the kernel modeling s(x), As , with
our prior belief about the variance of g(x) = exp (s(x)), Ag .
Furthermore, it also requires selecting an initial value for v.
Since a lognormal random variable Z ∼ logN (μ = v,σ 2 =
As) fulfills

E[Z] = ev+ As
2 , Var[Z] = (eAs − 1)e(2v+As ), (23)

we find the proper parameters v and As from the prior belief
Ag and the data itself, x, using

As = log

(
1 + Ag

(Var[�x]/�t)2

)
,

v = log

(
Var[�x]

�t

)
− As

2
.

(24)

As argued in Sec. III, f m and sm may be interpreted as
“reference points” used to infer the shape of f (x) and s(x).
Hence, we may expect xm to be spread across the range of
values of x so that the function shapes can be properly modeled
in the whole range of x. It is also reasonable to assume that
the inducing points should be more concentrated in those
regions where f (x) or s(x) change their curvature. However,
in our nonparametric approach, we cannot presume any prior
knowledge about these regions. Thus, a simple strategy for
selecting the initial values of the pseudoinputs would be to
uniformly spread xm between min x and max x. It is possible
to design another approach based on the inducing points
tending to regions with low uncertainty about the function
shape. This is due to the fact that the inducing points permit
reducing the variance around their “region of influence,” which
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enables accurately modeling the low-uncertainty true posterior
and hence reducing the Kullback-Leibler divergence. Further
evidence about this will given in Sec. VI. Thus, we propose
to initialize the inducing points to the result of applying the
quantile function to the values {0/(m − 1),1/(m − 1),...,(m −
1)/(m − 1)}, since this approach concentrates the inducing
points in the region where more evidence for inferring
confident estimates is available. We will later refer to this
approach as the “percentile initialization.” It must be noted
that, when performing several runs of the estimation algorithm,
random noise can be added to each value of xm to obtain
slightly different starting points. In practical applications, we
also add the restriction that, after adding the noise, the xm

vector should remain ordered and that min xm � min x and
max xm � max x.

The selection of the number of inducing points m is the most
challenging one since SGP usually get better approximations
to the full GP posterior when using more points (larger L′), at
the cost of greater computational time [16]. When taking into
account both factors, there is not an unique way of defining
which is the optimum value of m and hence, the final choice
can be subjective. Rasmussen et al. suggest to perform runs
with small values of m and compare the resulting estimates
between them while getting a feeling on how the running time
scales [16]. Since most kernels use a length-scale parameter l,
we suggest using

m = (max x − min x)/l� (25)

as a rule of thumb for getting an estimate of a proper number
of inducing points. This rule uses only a few inducing points
when the function varies very smoothly (large l) and a large
number of them when the function wiggles quickly (small l).

VI. VALIDATION ON SYNTHETIC DATA

To assess the validity of the SGP method, we compare its
performance with the kernel-based method [14] and with a
version of the orthonormal polynomials method [15] using
a set of simulated SDEs. From now on, we shall refer to
these methods as the KBR (kernel-based regression) and the
POLY method (since it is based on orthonormal polynomials),
respectively. We have included the POLY method since it is
described as nonparametric in Ref. [15], although we find it
closer to a parametric one (see Sec. I). We have also used
these tests to further investigate the impact of the number of
pseudo-inputs m on the estimates.

For the validation, we consider the generic SDE described
by Eq. (1) parametrized with the drift and diffusion functions
summarized in Table I. It must be noted that some of these
tests have been inspired by some well-known models. M1 is
the celebrated Ornstein-Uhlenbeck model, which describes the
motion of a Brownian particle in velocity space [1]. M4 is the
Jacobi diffusion process, which has an invariant distribution
that is uniform on (0,1) [22]. A Jacobi-based model was used
in Ref. [35] to model exchange rates in target zone. M5 is
the Cox-Ingersoll-Ross model. Despite that it was introduced
to model population growth, it has become popular after its
proposal for studying short-term interest rates in finance [36].
Although M2 and M6 do not receive any particular name, they
are interesting models, since they are able to generate time

TABLE I. Models used for the validation with synthetic data.

Model f (x)
√

g(x)

M1 −(x − 3)
√

2
M2 −(x3 − x) 1
M3 −x3 0.2 + x2

M4 −0.7(x − 0.5)
√

0.7x(1 − x)
M5 −(x − 0.225) 0.5

√
x

M6 −x + sin(3.5 ∗ x) exp(−x2) 0.431

series with a bimodal density. Finally, M3 was used to test
dynamical systems with nonlinear drift and diffusion functions
and just a single stable point.

For each of these models, 100 time series with a length
of 104 samples were generated. The Euler-Maruyama scheme
with an integration step �t = 0.001 was used for the sim-
ulations. The quality of the estimations obtained for the
ith simulation of model Mj was assessed by the weighted
integrated absolute error:

E(Mj,i) =
∫ ∞

−∞
|F (x) − F̂ (x)|pi(x)dx, (26)

where F can be either f or g, F̂ denotes its estimate, and pi(x)
is the probability density function of the ith simulation of the
Mj model. In practice, pi(x) is approximated using a kernel
density estimate with a Gaussian kernel. The bandwidth of the
kernel is selected using Silverman’s “rule of thumb” [37, Page
48, Eq. (3.31)].

To select a proper bandwidth for the KBR method, the
selection algorithm described in Ref. [14] was implemented.
Regarding the POLY method, the parameter estimation was
performed with polynomials of orders R = 1,2, . . . ,5 and L =
0,1, . . . ,3 for the drift and the diffusion terms, respectively.
Instead of using the Legendre polynomials as in Ref. [15],
the orthonormal polynomials described in Ref. [38] were
employed for easiness of implementation. Our tests indicate
that the use of these polynomials instead of the Legendre
polynomials do not undermine the expressive power of the
method. Three different model selection methods were tested
within the POLY framework: the simulation-based method
proposed in Ref. [15], a cross-validation method, and a
stepwise regression method. Since the latter yielded the best
results, we shall focus on it. The stepwise regression method
that we have implemented uses a bidirectional elimination
approach. It starts with no predictors for the drift function.
Then, at each step until convergence, it adds or removes
an orthonormal polynomial term by comparing the AIC
(Akaike information criterion) improvement that results from
each possible decision. The procedure stops when no more
predictors can be added or removed from the model. The
method is then repeated for the diffusion term.

Regarding the SGP method, the same kernel was selected
for estimating both the drift and diffusion terms:

K(ξ ,ξ ′,A,θ ) = θ0 exp

[
−θ1

2
‖ξ − ξ ′‖2

]
+ (A − θ0). (27)

The kernel K is a linear combination of a squared exponential
kernel (first term in the right-hand side) and a constant
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kernel (second term in the right-hand side). Note that the
hyperparameter θ1 determines the characteristic length-scale
of the GP (l2 = 1/θ1). The constant covariance function was
included since a constant diffusion term is often used in
the literature. It must be noted that we have not treated the
parameter A as an hyperparameter subject to optimization (we
have not included it into the hyperparameter vector θ ). We
prefer to keep it fixed so that the total amplitude of the diagonal
of the covariance matrices that result from K always sum up
to A. In this way, A can be interpreted as the prior belief about
the variance of the drift and diffusion terms. This eases the
comparison between several optimization runs using Eq. (22),
since all the estimates share the same prior belief about the
range in which the dynamic terms may lie. Note that to fulfill
K(ξ ,ξ ′,A,θ ) ∈ [0,A], we must perform a box-constrained
optimization of θ0 (θ0 ∈ [0,A]), which originally motivated the
use of the L-BFGS-B method as the optimization algorithm.

Since it is usual to get ill-conditioned covariance matrices
when working with GPs, we slightly modified Eq. (27).
To regularize the covariance matrices, a small value on the
principal diagonals was added. In general, any type of kernel
Q can be modified to improve stability as

Q′(x,x′,θ ,ε) = Q(x,x′,θ ) + εδ(x − x′), (28)

where we did not state the dependencies of Q that are
not treated as hyperparameters [e.g., A in Eq. (27)]. When
using the modified squared exponential kernel K′, we did
not optimize on the ε parameter to avoid creating large
discontinuities in the covariance function.

Since all the models used for testing have very smooth
functions and they generate time series with a range of the
order of 1, we may expect good estimates with only a few
inducing points. For example, the drift function of M2 has three
roots at −1, 0, and 1 and, therefore, a reasonable estimate for
its length-scale would belong to [0.5,1]. A typical trajectory
of M2 would probably lie in the interval x(t) ∈ [−2,2] and,
hence, an estimate of the m based on Eq. (27) would yield
m = 4/0.5 = 8. To verify our intuitions, we have followed
Rasmussen’s approach [16] (see Sec. V). We have calculated
the integrated error of the drift function for M6 on a small
subset of simulations while testing how the computation time
scales with m. The drift function for M6 was selected for the
test since it is probably the most complex one. Figure 1 shows
that there are not big differences in the integrated errors for
m � 10, whereas the time per iteration quickly scales.

Based on these results, we run our SGP method using
m = 2, 5, 10, and 15. It should be noted that m 
 N and
hence, we could have used larger m without compromising
the computational tractability of the problem. Also, note that
although Fig. 1 suggests that we could stop searching at
m = 10, we have also included m = 15. This was done to
compare both estimates and further investigate the impact of
m in the lower bound. Furthermore, Fig. 1 was obtained using
a small subset of the data from a single model and, therefore,
there may be simulations for which the use of m = 15 may
yield better estimates.

For each value of m, several trials with randomly selected
initial values of the hyperparameters were run. The length
scales of both drift and diffusion kernels were restricted to
the interval l ∈ [0.25,2], based again on the fact that all the
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FIG. 1. Drift’s integrated error and computational time per
iteration depending on m for a small subset of M6 simulations.

time series have a range of the order of 1. The value Af was
set to 25 (equivalent to a standard deviation of 5) and the
initial value of θf,0 was randomly initialized into the interval
[0,Af ]. The selection of v and the amplitude hyperparameter
for the diffusion process was made using Eq. (24) and Ag = 25
for all the models present in the simulated set. The starting
values for the pseudoinputs were selected using the percentile
initialization. The final model for each of the time series was
selected by using the modified lower bound [Eq. (22)].

Table II summarizes the mean values of the integrated
errors for all the models from Table I. The best result for each
model is marked in bold (smaller is better) [39]. Additionally,
a star (*) points those best results with statistically significant
differences with respect to the other two methods. The
differences between methods were tested using the Nemenyi
post hoc test [40]. The results in Table II show that our proposal
has a good performance, especially in the drift estimates, where
it performs better than KBR and POLY in the majority of the
models. The results for the diffusion are also good, but the SGP
method has the largest mean error for the M5 model. The reason
for this is discussed below.

Figure 2 illustrates the kind of estimates that the SGP
method yields for the drift and diffusion terms from a single
realization of the simulated models. Note that the confidence
intervals (gray regions) usually increase when x takes extreme
values. This is due to the fact that the regions where x

takes extreme values are only visited a few times during any
simulated trajectory, and hence only a few points are available
for the estimation. Since there is little data at these regions, the
priors have strong influence and the estimates tend to curve
toward the prior means. This effect is particularly remarkable
for the drift estimates, which curve toward zero, and the
diffusion for M5. This is probably the reason why the SGP
method does not perform as well as expected for the diffusion
for M5 and the drift for M2.

Concerning the selected number of pseudoinputs m, the
general trend is that L′ [see Eq. (22)] increases with m,
as we might have expected (see Sec. V). Hence, all the
selected models use m = 15 inducing points. However, it is
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TABLE II. Integrated absolute errors of the methods KBR and POLY and our proposal (denoted as SGP), using different test models with
length N = 104.

Drift estimates Diffusion Estimates

Model KBR POLY SGP KBR POLY SGP

M1 0.6863 0.7896 0.4992* 0.03963 0.03426 0.02684*
M2 0.5073* 0.6267 0.5760 0.01915 0.01878 0.01511*
M3 0.1501 0.2731 0.1232* 0.05293 0.02711 0.007465*
M4 0.1244 0.1519 0.1128* 0.02585 0.002054* 0.0045
M5 0.09035 0.1613 0.08256* 0.001338* 0.001771 0.002667
M6 0.2289 0.2618 0.2256 0.002751 0.002972 0.002323*

not always worth it to increase m in terms of the integrated
error versus the running time, which scales as O(2m) due to
the use of the L-BFGS-B algorithm (see Fig. 1). This can
be understood by looking at Fig. 3. The figure shows two
estimates of the M5’s diffusion term obtained using a different
number of inducing points, which are also represented in

the plot. As noted with Fig. 2, the width of the confidence
intervals (gray regions), depends on the number of points
available for the estimation, illustrated with the point cloud.
The similarity between both estimates over the high-density
region results in an almost identical weighted integrated error.
However, the L′ is larger for m = 15 than for m = 10, mostly
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because the confidence interval significantly increases in the
low-density region for m = 10. The use of additional inducing
points in the case m = 15 permits a better control of the
estimates and the confidence interval, which results in a larger
L′, although the weighted integrated error is very similar.
Hence, the L′ based selection criteria is not optimal for the
purpose of minimizing the weighted integrated error without
wasting computational resources. From these experimental
results about the impact of m in L′, we conclude the selection
of m should not be based solely on the lower bound, since it
monotically increases with m at a cost of greater computation
times. Therefore, we suggest adopting Rasmussen’s heuristic
(Sec. V) in combination with L′, using Eq. (25) as an initial
guess for the value of m.

VII. APPLICATION TO REAL DATA

A. Financial data

In this section, we apply our method to a real time
series from econophysics with the aim of illustrating the
applicability of SDEs to nonstationary problems and the role
that nonconstant diffusions play in complex dynamics. We
study the daily fluctuations in the oil price in the period
1982/01/02–2017/05/30, which results in a time series p of
length N ≈ 104 [41]. Following Ref. [9], we constructed the
daily logarithmic increments of the oil price xn = log pn+1/pn

to obtain a stationary time series. The SGP method was
then applied using m = 10 inducing points (randomly started
using the percentile initialization) and two squared exponential
kernels. The numerical stability of the kernels was improved
using Eq. (28). The amplitudes of the kernels were selected to
match a standard deviation of 5 for both the drift and diffusion
functions. The algorithm was run several times with random
initial values for the length-scales. The final estimates selected
using the lower bound are shown in Fig. 4. These estimates are
in good agreement with those reported in Ref. [9] (although
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FIG. 4. Drift and diffusion estimates obtained with the SGP
method on the oil price log-returns.

this work focused in a smaller period). Similar estimates are
also obtained using the KBR and POLY methods.

The drift and diffusion functions shown in Fig. 4 can be ap-
proximated by f̂ (x) ≈ −x and ĝ(x) ≈ D + γ x2, which yields
the SDE of a quadratic-noise Ornstein-Uhlenbeck process [42,
Chapter 3]. This process is an illustrative example of the effects
that multiplicative noise may have in the dynamics of a system.
The stationary distribution of a quadratic-noise Ornstein-
Uhlenbeck process is a nonstandardized Student’s distribution,
which is a heavy-tailed distribution that permits the occurrence
of large values in the log-returns series. Furthermore, this
stationary distribution is more closely confined to the origin
in comparison with the standard Ornstein-Uhlenbeck noise,
which implies that the stable state is narrower in the quadratic
case. This is an example of noise-enhanced stability [42, Chap-
ter 3] and illustrates the importance that the nonparametric
estimation of the diffusion may have in the study of complex
dynamics.

B. Paleoclimatology data

In this section, we apply our estimation algorithm to a
real data problem related to paleoclimatology. Climate records
from the Greenland ice cores have played a central role in the
study of the Earth’s past climate in the Northern hemisphere.
Among other interesting phenomena, these records show
abrupt rapid climate fluctuations that occurred during the
last glacial period, which ranges from approximately 110 Ky
(1 Ky = 1000 years) to 12 Ky before present. These abrupt
climate changes are usually referred to as Dansgaard-Oeschger
(DO) events. Although there seems to be a general agreement
that DO events are transitions between two quasistationary
states (the glacial or stadial and the interstadial states), the
nature of the phenomena triggering the transitions is still
actively debated. It has been argued that the DO events occur
quasiperiodically with a recurrence time of approximately
1.47 Ky [43]. However, recent studies support that the DO
events are probably noise induced [44–46].

We apply our method to the δ18O record during the last
glacial period obtained from the North Greenland Ice Core
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FIG. 5. DO transitions during the last glacial period.

Project (NGRIP) [47]. The δ18O is a measure of the ratio of the
stable isotopes oxygen-18 and oxygen-16, which is commonly
used to estimate the temperature at the time that each small
section of the ice core was formed. It is measured in “permil”
(‰, parts per thousand) and its formula is

δ18O =
⎛
⎝

[ 18O
16O

]
sample[ 18O

16O

]
reference

− 1

⎞
⎠1000 �,

where reference defines a well-known isotopic composition.
Figure 5 shows the oxygen isotopic composition from the

NGRIP ice core. We consider the period ranging from 70 Ky
to 20 Ky before present as in Ref. [46], since it is dominated
by the DO events, as can be clearly observed.

We applied our method using different kernels to illustrate
that different covariance functions can be used and combined
to create different models and that Eq. (22) can be used
to select the best among them. Within our method, testing
different kernels is important, because we usually do not
have enough information about the drift and diffusion terms
to decide among them. Furthermore, the performance of
GPs depends almost exclusively on the suitability of the
chosen kernel to capture the features of the modeled function.
Consider the following illustrative example: a function with
fast quasiperiodic oscillations superimposed on a linear trend.
A squared exponential kernel with a large length-scale can
capture the behavior of the linear slope and make reasonable
predictions of the trend for unobserved values, but it won’t
be able to model the quick wiggles. On the other hand, a
squared exponential kernel with a small length scale will be
able to accurately fit all the data but, since the distance from
the training points rapidly increases, it won’t be able to make
good predictions for unobserved values, not even for the trend.
Furthermore, the uncertainty of the unobserved values will
also scale fast. A better covariance choice could make use
of a sum of exponential kernels with different length scales,
which would permit us to accurately fit the data and make
good predictions for the trend. More complex kernel choices
are also possible. For a complete example on the impact of
the kernel in the modeling capabilities of a GP, see Ref. [16,

Chapter 5]. For our illustrative example on the paleoclimate
data, we used the kernel specified in Eq. (27), a sum of two
exponential kernels with different length-scales and a rational
quadratic kernel. All these kernels were modified adding a
small value to their main diagonals as in Eq. (28).

For each possible kernel, the method was started with
random values for the hyperparameters. The number of the
pseudoinputs was set to m = 15, based on the good results
that it achieved at Sec. VI. The amplitudes of the kernels
were selected so that they were compatible with a standard
deviation of 30 for both the drift and diffusion functions. The
estimates selected based on the value of the modified lower
bound [Eq. (22)] are illustrated in Fig. 6(b). The drift term
was obtained using a rational squared kernel, whereas the
diffusion term was estimated using the kernel from Eq. (27).
Note that, as expected, the drift function presents two stable
points: one corresponding to the stadial state and the other
corresponding to the interstadial state. Integrating the drift
function yields the potential function, which indicates that the
stadial state corresponds to a stable state of the system since it
has the lowest energy. On the other hand, the interstadial state
corresponds to a metastable state.

The SGP estimate supports the use of a state-dependent
diffusion rather than the widely used constant term. The use
of a state-dependent diffusion for the DO events was first
proposed in Ref. [46], which suggested

f (x,θ ) =
3∑

i=0

θjx
j ; g(x,θ ) =

{
θ4 if x < θ6

θ5 if x � θ6
. (29)

Krumscheid et al. suggested the model from Eq. (29) while
testing their framework for parametric inference and model
selection for SDEs [46]. The authors discussed the model from
Eq. (29) since it is able to accurately predict the histogram of
the DO events, although the final parametrization that results
from their model selection criteria proposes a constant diffu-
sion term. However, our nonparametric methodology suggests
that the state-dependent diffusion is indeed preferable. Despite
it being possible to approximate the SGP diffusion’s estimate
using a step function (as can be appreciated in Fig. 6), there
exists a linear increasing region for x > −40 that does not
match Krumscheid’s model. To compare the diffusion model in
Ref. [46] with the SGP’s diffusion model, a Lasso estimate [48]
was applied to the diffusion term while keeping the drift term
fixed. Lasso penalties are very useful in regression analysis
since they are able to set coefficients to zero, eliminating
unnecessary variables. Hence, by using the diffusion term,

g(x,θ ) =
⎧⎨
⎩

θ1 if x < −42
θ2 if − 42 � x < −40
θ2 + θ3(x + 40) if x � −40

, (30)

we can compare the model proposed in Ref. [46] (which
corresponds with setting θ3 = 0) and our estimate. The Lasso
estimate provides evidence in favor of the model obtained
through our method, since the θ3 is not eliminated. Note,
however, that this evidence is not conclusive since the time
series used for the estimates is quite short (N ≈ 103) and there
is a lack of points for x > −39.
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FIG. 6. Best drift and diffusion estimates using the (a) KBR, (b) SGP, and (c) POLY methods with the paleoclimate data.

We have also used the SGP estimates to compute the
distribution of the time between DO events. One thousand new
time series were generated using the Euler-Maruyama scheme.
The initial points were sampled with replacement from the real
paleoclimate series. To robustly identify the DO states, we
fitted a hidden Markov model (HMM) with three states and
Gaussian response to the real data. The aim of the three states
is to clearly identify the stadial state, the interstadial state,
and a “transition state.” We identified the states of each of the
simulated time series using this HMM by means of the Viterbi
algorithm [49]. The resulting mean time between DO events
was 1.50 Ky, in good agreement with the generally accepted
value of 1.47 Ky [43]. However, it must be noted that this value
was obtained on the basis of a quasiperiodical model, whereas
our value is based on a stochastic model.

Using the KBR [Fig. 6(a)] and POLY [Fig. 6(c)] methods
result in similar drift estimates, compared with the SGP one.
Furthermore, both diffusion estimates also support the use
of a the state-dependent model. However, the SGP estimate
provides confidence intervals based on a Bayesian setting
while the others methods do not. Also, the KBR method
presents an unlikely increment in the diffusion for x < −44.
The POLY method approximates the shape of the state-
dependent diffusion using a high-order polynomial, which
cannot properly capture the plateau for x < −44. Additionally,
the polynomial fit results in negative values for x < −45,
which have no sense for a diffusion term.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a nonparametric estimation
method for SDEs from densely observed time series based on
GPs. The only assumptions made on the data are that they
fulfill the Markovian condition and that the sampling period
is small enough so that the Euler-Maruyama discretization
holds. From the point of view of the adoption of GPs to the
estimation of SDEs, the main contributions of this paper are:
(1) providing estimates for any type of diffusion function and
(2) proposing a sparse approximation to the true GP posterior
that permits to efficiently handle the typical experimental time

series size of N ≈ 103–105. To cope with the computational
complexity of calculating the posterior distribution of the GPs
[which scales as O(N3)], we approximate the GPs using the
evidence provided by the data in only a small set of function
points, the inducing variables. The inducing variables are
learnt by minimizing the Kullback-Leibler divergence between
the true posterior GP distribution and the approximated one.
The minimization problem is approached using the standard
techniques from the variational inference framework, which
usually yields a coordinate-ascent optimization to approximate
the posterior. However, our approach makes use of a non
conjugate model due to the inclusion of the diffusion function,
which prevents the direct use of variational inference methods.
To tackle the problem, a Laplace approximation was used
to compute the distribution modeling the diffusion. It must
be noted that, although we have developed our estimation
approach bearing in mind the computational challenges that a
large N imposes, our proposal can also handle small time
series without any further adjustment. Also, although the
SGP approximation permits handling large experimental time
series, N cannot increase without limit. Variational inference
algorithms require a full pass through the whole dataset at
each iteration and, hence, they become inefficient for massive
datasets, even when using sparse techniques like the proposed
one. For example, in a computer with an Intel Xeon E5-2650L
at 2.05 GHz and using m = 10, the computation time increases
from 8 min per iteration with N = 105 to 1.4 h per iteration
with N = 106. Scaling up variational inference can be done
using stochastic gradient optimization, which yields stochastic
variational inference [50]. Since large datasets are increasingly
common, the use of this kind of technique should be considered
in future work.

The performance of the SGP estimates was evaluated using
simulated data from different SDE models and compared
with the kernel-based method [14] and the polynomial-based
method [15]. The results show that the SGP approach is
able to provide very accurate estimates, especially for the
drift term. The main advantage of the SGP method with
respect to Refs. [14] and [15] is that it permits a Bayesian
treatment of the estimation problem; this enables obtaining
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probabilistic predictions and computing robust confidence
intervals. Furthermore, the prior information about the drift
and diffusion is expressed in a function-space view; i.e.,
the SGP method permits specifying the prior directly over
functions instead of working with weights of some basis
expansion. In our view, this is a more natural way of working
with functions. Another major advantage of the proposed
method is its versatility. Although we have focused on very
flexible kernels, any type of kernel (or even combinations
of them) can be used, which may completely change the
properties of the posterior estimates. For example, using
polynomial kernels would yield similar estimates to those
of Ref. [15], but with the aforementioned advantages of the
Bayesian framework and without the possibility of obtaining
negative values for the diffusion (see Sec. VII).

We applied the SGP method to a real problem in
econophysics with the aim of illustrating the importance of
nonconstant diffusions in the behavior of a system and, hence,
the importance of its nonparametric estimation. This example
also emphasizes the applicability of the SDE framework to
nonstationary time series.

The proposed method was also applied to a real paleo-
climate time series: the NGRIP core data showing the DO
events occurring during the last glacial period. The SGP
method accurately captures the relevant physical states of the
time series (the stadial and interstadial states) and yields a
mean transition time between DO events that it is close to
the accepted value in the literature under the assumption of
a deterministic periodic model. This demonstrates its ability
to capture the behavior of real data with complex dynamics.
Furthermore, the SGP estimates provide evidence supporting a
novel state-dependent diffusion model for the DO events. This
diffusion model is similar to the steplike function proposed
in Ref. [46] for a wide range of the diffusion’s support, but
it also adds a linear term for the region corresponding to the
most extreme values of the DO events. These results should
be viewed with caution, since the estimates were made using
small amounts of data. Further research to assess the physical
meaning of the model should be made.

In future work, we would like to design some criteria to
automatically estimate an appropriate number of pseudoinputs
m taking into account both the modified lower bound [Eq. (22)]
and the additional computational time required when m

increases. The substitution of the exponential transformation
used to ensure the positiveness of g in favor of another
less-explosive transformation should also be considered in
future improvements. The numerical stability of the method
would certainly improve with the use of smoother transforma-
tions, but the formal expressions required for the variational
inference problem would be more complicated. An alternative
to avoid the complicated mathematical expressions would
be to use black-box variational inference frameworks [51].
Since black-box methods are based in stochastic variational
inference, its application would also permit to scale the
exposed methodology to datasets much bigger than those
studied in this article. Hence, The application of black-box
methods to the reconstruction of SDEs looks promising and
should be explored in future work.

We believe that the presented method could help to further
comprehend the dynamics underlying a wide variety of

complex systems. To that end, we provide an open-source
implementation of our method, which is freely available at
github (https://github.com/citiususc/voila).
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APPENDIX A: VARIATIONAL DISTRIBUTION
FOR THE DRIFT

We start expanding the expression inside the expectation
operator from Eq. (12a):

log φfm
( f m) = Eφ-fm

[log (p(x| f ,s)p(sm)p( f m))]

= Eφ-fm
[log p(x| f ,s)] + Eφ-fm

[log p(sm)]

+ Eφ-fm
[log p( f m)].

Given that the expectation operator does not affect log p( f m)
and that when applied to log p(sm) results in an expression
that does not depend on f m, we may write

log φfm
( f m) = Eφ-fm

[log p(x| f ,s)] − 1
2 f T

m K−1
mm f m

+ constant, (A1)

where we have denoted all terms that do not depend on sm as
constant. It is convenient to work with the term constant, given
that we can infer its value after identifying the distribution of
φfm

. In that case, constant corresponds to the normalizing
constant required by the distribution φfm

.
Expanding the expression inside the expectation operator

from Eq. (A1) and joining new constants yields

log φfm
( f m) = − 1

2�t

N∑
i=1

Eφsm (sm)p(s|sm)[exp(−si)]Ep( f | f m)

× [(�xi − �tfi)
2] − 1

2
f T

m K−1
mm f m

+ constant. (A2)

Using Fubini’s rule of integration, we may write the first
expectation from Eq. (A2) as

Eφsm (sm)p(s|sm)[exp(−si)] = Eφsm
[Ep(s|sm)[exp(−si)]]. (A3)

It is possible to demonstrate that if X ∼ N (μ,σ 2),
E[exp(−X)] = exp(−μ + σ 2/2). Hence, Eq. (A3) becomes

Eφsm

[
Ep(s|sm)[exp(−si)]

]

= Eφsm
[−[vN + B(sm − vm)]i] + Qii

2
= ζi, (A4)
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where we have used the definition of ζi from Eq. (14) and the definitions of B and Q from Eq. (8). Introducing back Eqs. (A3)
and (A4) into Eq. (A2), we finally arrive to

log φfm
( f m) = − 1

2�t

N∑
i=1

ζiEp( f | f m)
[
(�xi)

2 − 2�t�xifi − (�t)2f 2
i

] − 1

2
f T

m K−1
mm f m + constant

= − 1

2�t

N∑
i=1

ζi

[
(�xi)

2 − 2�t�xi[A f m]i − (�t)2([A f m]2
i + Pii)

] − 1

2
f T

m K−1
mm f m + constant. (A5)

Reordering Eq. (A5) and expressing it in vectorial form, we recover Eq. (13).

APPENDIX B: VARIATIONAL DISTRIBUTION FOR THE DIFFUSION

Starting from Eq. (12b) and proceeding similarly to Appendix A, it is possible to arrive to

log φsm
(sm) = −1

2
(sm − vm)T J−1

mm(sm − vm) − 1

2�t

N∑
i=1

Ep(s|sm)[exp(−si)]

×Eφfm ( f m)p( f | f m)[(�xi − �tfi)
2] − 1

2

N∑
i=1

Ep(s|sm)[si] + constant. (B1)

The expectation of exp(−si) can be computed as in Appendix A [see Eq. (A3)], which results in

log φsm
(sm) = −1

2
(sm − vm)T J−1

mm(sm − vm) − 1

2�t

N∑
i=1

exp

(
− [vN + B(sm − vm)]i + Qii

2

)

×Eφfm ( f m)p( f | f m)[(�xi − �tfi)
2] − 1

2

N∑
i=1

[B(sm − vm)]i + constant. (B2)

Using again Fubini’s law, we may write

Eφfm ( f m)p( f | f m)[(�xi − �tfi)
2] = Eφfm

[Ep( f | f m)[(�xi − �tfi)
2]]

= Eφfm

[
�x2

i − 2�t�xi[A f m]i + (�t)2
(
[A f m]2

i + Pii

)] = ψi,

where we have used the definition of ψi from Eq. (17). Introducing ψi into Eq. (B2), we finally arrive to Eq. (16).
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