710 research outputs found

    Indoor radio channel of bluetooth technology

    Get PDF
    This thesis discusses the findings of the final year project involving the characterisation of indoor radio channel specified by Bluetooth technology through theoretical analysis, simulations and actual measurements through field experiments. The concepts of indoor radio propagation effects and its statistical models arc explored. In addition, Bluetooth specifications are also studied and presented in Section 1. These provided a clear understanding of the radio propagation behaviour inside a building and the radio performance of Bluetooth specifications. Profound understanding of the propagation characteristics of the indoor radio channel is a major requirement for successful design of any indoor wireless communication systems. The knowledge is used here to investigate Bluetooth radio performance. Detailed characterisation of indoor radio channel is studied and presented in section 2. Path loss model and amplitude fading model are used in the theoretical analysis, simulations and field experiments have been done to characterise the indoor channel. Field experiments and its measurements were performed and recorded to verify against the simulated results. Attenuation factor of various materials were measured since it is a critical component effecting the path loss calculation. These are presented in section 3

    Indoor radio channel characterization and modeling for a 5.2-GHz bodyworn receiver

    Get PDF
    [Abstract]: Wireless local area network applications may include the use of bodyworn or handportable terminals. For the first time, this paper compares measurements and simulations of a narrowband 5.2-GHz radio channel incorporating a fixed transmitter and a mobile bodyworn receiver. Two indoor environments were considered, an 18-m long corridor and a 42-m2 office. The modeling technique was a site-specific ray-tracing simulator incorporating the radiation pattern of the bodyworn receiver. In the corridor, the measured body-shadowing effect was 5.4 dB, while it was 15.7 dB in the office. First- and second-order small-scale fading statistics for the measured and simulated results are presented and compared with theoretical Rayleigh and lognormal distributions. The root mean square error in the cumulative distributions for the simulated results was less than 0.74% for line-of-sight conditions and less than 1.4% for nonline-of-sight conditions

    Indoor radio channel propagation modelling by ray tracing techniques

    Get PDF

    Frequency-domain measurement of the millimeter wave indoor radio channel

    Get PDF
    Coherent wideband frequency-domain measurements of the complex frequency response of millimeter wave indoor radio channels are discussed. In addition, results of measurements performed in a 2 GHz band centered around 58 GHz will be presented. It is shown that a 40 dB dynamic range and a 400 ns aliasing-free range are sufficient for a correct estimation of the rms delay spread from the measurement dat

    Measurement-based analysis of delay-Doppler characteristics in an indoor environment

    Get PDF
    An analysis of delay-Doppler characteristics in the presence of moving people is presented for short-range communication in an indoor environment. Channel-sounding measurements have been carried out at 3.6 GHz in a crowded university hall during several short and long breaks in-between courses. During three consecutive days, the measurements were repeated with different positions for the transmit and receive antennas. In this study, the behavior of the maximum Doppler shift and the Doppler spread was analyzed in the time-delay domain as a function of the occupation of the hall, the polarizations of the 2 x 2 MIMO antennas, and their positions in the hall. The measurements reveal a clear distinction between the Doppler spread of the short and long breaks in the campaign, indicating a distinctive power distribution of their Doppler spectra. In addition, there is a significant contrast between the Doppler characteristics of the co- and cross-polarizations. Measurements at several positions reveal the importance of characterizing multipaths and show that the Doppler effect depends on the position of the antennas in the environment. In addition, this work also shows that the Doppler spectrum can be accurately modeled by a Cauchy distribution, allowing for the generation of parameters to describe Doppler characteristics

    Effect of Metal Door On Indoor Radio Channel

    Get PDF
    This paper reports the variation of indoor radio channel caused by metal door. The simulation results using the Finite Difference Time Domain (FDTD) method and measurement results using the vector network analyzer in frequency domain are used for the characterization of received signal strength variation by metal door. Target frequency bands are three - sensor band, 802.11b ISM band, and 802.11a UNII band. From the simulation and measurement results, the effect of door angle to the received signal strength in three frequency bands and effect of radio frequency to variation are investigated. And, FDTD simulation parameters for different environments are suggested

    FDTD channel modelling with time domain huygens' technique

    Get PDF
    corecore