23,245 research outputs found

    Spreading in Social Systems: Reflections

    Full text link
    In this final chapter, we consider the state-of-the-art for spreading in social systems and discuss the future of the field. As part of this reflection, we identify a set of key challenges ahead. The challenges include the following questions: how can we improve the quality, quantity, extent, and accessibility of datasets? How can we extract more information from limited datasets? How can we take individual cognition and decision making processes into account? How can we incorporate other complexity of the real contagion processes? Finally, how can we translate research into positive real-world impact? In the following, we provide more context for each of these open questions.Comment: 7 pages, chapter to appear in "Spreading Dynamics in Social Systems"; Eds. Sune Lehmann and Yong-Yeol Ahn, Springer Natur

    Strategic Investment in Protection in Networked Systems

    Get PDF
    We study the incentives that agents have to invest in costly protection against cascading failures in networked systems. Applications include vaccination, computer security and airport security. Agents are connected through a network and can fail either intrinsically or as a result of the failure of a subset of their neighbors. We characterize the equilibrium based on an agent's failure probability and derive conditions under which equilibrium strategies are monotone in degree (i.e. in how connected an agent is on the network). We show that different kinds of applications (e.g. vaccination, malware, airport/EU security) lead to very different equilibrium patterns of investments in protection, with important welfare and risk implications. Our equilibrium concept is flexible enough to allow for comparative statics in terms of network properties and we show that it is also robust to the introduction of global externalities (e.g. price feedback, congestion).Comment: 32 pages, 3 figure

    Statistically validated network of portfolio overlaps and systemic risk

    Get PDF
    Common asset holding by financial institutions, namely portfolio overlap, is nowadays regarded as an important channel for financial contagion with the potential to trigger fire sales and thus severe losses at the systemic level. In this paper we propose a method to assess the statistical significance of the overlap between pairs of heterogeneously diversified portfolios, which then allows us to build a validated network of financial institutions where links indicate potential contagion channels due to realized portfolio overlaps. The method is implemented on a historical database of institutional holdings ranging from 1999 to the end of 2013, but can be in general applied to any bipartite network where the presence of similar sets of neighbors is of interest. We find that the proportion of validated network links (i.e., of statistically significant overlaps) increased steadily before the 2007-2008 global financial crisis and reached a maximum when the crisis occurred. We argue that the nature of this measure implies that systemic risk from fire sales liquidation was maximal at that time. After a sharp drop in 2008, systemic risk resumed its growth in 2009, with a notable acceleration in 2013, reaching levels not seen since 2007. We finally show that market trends tend to be amplified in the portfolios identified by the algorithm, such that it is possible to have an informative signal about financial institutions that are about to suffer (enjoy) the most significant losses (gains)

    Scalable Byzantine Reliable Broadcast

    Get PDF
    Byzantine reliable broadcast is a powerful primitive that allows a set of processes to agree on a message from a designated sender, even if some processes (including the sender) are Byzantine. Existing broadcast protocols for this setting scale poorly, as they typically build on quorum systems with strong intersection guarantees, which results in linear per-process communication and computation complexity. We generalize the Byzantine reliable broadcast abstraction to the probabilistic setting, allowing each of its properties to be violated with a fixed, arbitrarily small probability. We leverage these relaxed guarantees in a protocol where we replace quorums with stochastic samples. Compared to quorums, samples are significantly smaller in size, leading to a more scalable design. We obtain the first Byzantine reliable broadcast protocol with logarithmic per-process communication and computation complexity. We conduct a complete and thorough analysis of our protocol, deriving bounds on the probability of each of its properties being compromised. During our analysis, we introduce a novel general technique that we call adversary decorators. Adversary decorators allow us to make claims about the optimal strategy of the Byzantine adversary without imposing any additional assumptions. We also introduce Threshold Contagion, a model of message propagation through a system with Byzantine processes. To the best of our knowledge, this is the first formal analysis of a probabilistic broadcast protocol in the Byzantine fault model. We show numerically that practically negligible failure probabilities can be achieved with realistic security parameters
    • …
    corecore