34,025 research outputs found

    Online Single Window Group Action System

    Get PDF
    The project title is “online single window group action system” The authentic users are wise to of this just one occasion positive identification on his signed. Though security researchers have created nice strides in fighting these threats by protective systems, individual users and digital assets, sadly the threats still cause issues. The principle space of attack is authentication that is after all the method of crucial the accessibility of a user to a specific resource or system. Today, passive or active users are the key thought of security mechanisms. The passive user is simply fascinated by understanding the system. The active user, on the opposite hand, can think about and mirror on easy use, efficiency, note ability, effectiveness and satisfaction of the system. The banking resolution for the users United Nations agency has multiple bank accounts in multiple banks. This interface integrates all existing banks and provides business solutions for each retail and company. The most focus of the applying is maintaining multiple bank accounts a user has. An individual will have checking account in any variety of banks. However it’s exhausting to recollect each bank logins. Thus we've developed an online application wherever an individual will handle all his bank accounts in an exceedingly secure manner

    Revocable, Interoperable and User-Centric (Active) Authentication Across Cyberspace

    Get PDF
    This work addresses fundamental and challenging user authentication and universal identity issues and solves the problems of system usability, authentication data security, user privacy, irrevocability, interoperability, cross-matching attacks, and post-login authentication breaches associated with existing authentication systems. It developed a solid user-centric biometrics based authentication model, called Bio-Capsule (BC), and implemented an (active) authentication system. BC is the template derived from the (secure) fusion of a user’s biometrics and that of a Reference Subject (RS). RS is simply a physical object such as a doll or an artificial one, such as an image. It is users’ BCs, rather than original biometric templates, that are utilized for user authentication and identification. The implemented (active) authentication system will facilitate and safely protect individuals’ diffused cyber activities, which is particularly important nowadays, when people are immersed in cyberspace. User authentication is the first guard of any trustworthy computing system. Along with people’s immersion in the penetrated cyber space integrated with information, networked systems, applications and mobility, universal identity security& management and active authentication become of paramount importance for cyber security and user privacy. Each of three typical existing authentication methods, what you KNOW (Password/PIN), HAVE (SmartCard), and ARE (Fingerprint/Face/Iris) and their combinations, suffer from their own inherent problems. For example, biometrics is becoming a promising authentication/identification method because it binds an individual with his identity, is resistant to losses, and does not need to memorize/carry. However, biometrics introduces its own challenges. One serious problem with biometrics is that biometric templates are hard to be replaced once compromised. In addition, biometrics may disclose user’s sensitive information (such as race, gender, even health condition), thus creating user privacy concerns. In the recent years, there has been intensive research addressing biometric template security and replaceability, such as cancelable biometrics and Biometric Cryptosystems. Unfortunately, these approaches do not fully exploit biometric advantages (e.g., requiring a PIN), reduce authentication accuracy, and/or suffer from possible attacks. The proposed approach is the first elegant solution to effectively address irreplaceability, privacy-preserving, and interoperability of both login and after-login authentication. Our methodology preserves biometrics’ robustness and accuracy, without sacrificing system acceptability for the same user, and distinguishability between different users. Biometric features cannot be recovered from the user’s Biometric Capsule or Reference Subject, even when both are stolen. The proposed model can be applied at the signal, feature, or template levels, and facilitates integration with new biometric identification methods to further enhance authentication performance. Moreover, the proposed active, non-intrusive authentication is not only scalable, but also particularly suitable to emerging portable, mobile computing devices. In summary, the proposed approach is (i) usercentric, i.e., highly user friendly without additional burden on users, (ii) provably secure and resistant to attacks including cross-matching attacks, (iii) identity-bearing and privacy-preserving, (iv) replaceable, once Biometric Capsule is compromised, (v) scalable and highly adaptable, (vi) interoperable and single signing on across systems, and (vii) cost-effective and easy to use

    Conceivable security risks and authentication techniques for smart devices

    Get PDF
    With the rapidly escalating use of smart devices and fraudulent transaction of users’ data from their devices, efficient and reliable techniques for authentication of the smart devices have become an obligatory issue. This paper reviews the security risks for mobile devices and studies several authentication techniques available for smart devices. The results from field studies enable a comparative evaluation of user-preferred authentication mechanisms and their opinions about reliability, biometric authentication and visual authentication techniques

    A Formal Study of the Privacy Concerns in Biometric-Based Remote Authentication Schemes

    Get PDF
    With their increasing popularity in cryptosystems, biometrics have attracted more and more attention from the information security community. However, how to handle the relevant privacy concerns remains to be troublesome. In this paper, we propose a novel security model to formalize the privacy concerns in biometric-based remote authentication schemes. Our security model covers a number of practical privacy concerns such as identity privacy and transaction anonymity, which have not been formally considered in the literature. In addition, we propose a general biometric-based remote authentication scheme and prove its security in our security model

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future
    • 

    corecore