4 research outputs found

    Indium Tin Oxide Film Characterization at 0.1–20 GHz Using Coaxial Probe Method

    No full text

    ALUMINUM ZINC OXIDE (AZO) OPTIMIZATION PROCESS FOR USE IN OPTICALLY TRANSPARENT ANTENNAS

    Get PDF
    The importance of having an optimal material for fabricating Optically Transparent Antennas (OTAs) is crucial for designing highly efficient antennas that can be integrated with photovoltaics. Transparent Conductor Oxides (TCOs) are promising for OTA fabrication due to their capability of being simultaneously transparent at optical frequencies and conductive within the radio frequency (RF) range. In this work, a new material was developed and optimized to be used for fabricating an optically transparent antenna on a solar cell. Aluminum and Zinc Oxide were co-sputtered onto Si and onto a polycrystalline photovoltaic cell and then annealed between 350°C and 450°C for 24 and 48 h in N2 ambient. The annealing process ensured the formation of the Aluminum Zinc Oxide (AZO) with a DC conductivity of 3.48×〖10〗^5 S⁄cm and a transparency of 86% for a thickness between 350 and 750 nm. This new AZO material was shown to be capable of yielding high levels of conductivity at RF frequencies and excellent transmittance at optical frequencies. The material was tested and validated by performing RF characterization, and by fabricating and testing different optically transparent antennas. The details of the fabrication process, its optimization process, the design of the optical antennas are presented in details and discussed. The material was tested and validated by performing RF characterization, and by fabricating and testing different OTA designs

    Optically Transparent Antennas and Filters for Smart City Communication

    Get PDF
    Incremental usage of mobile devices demand a new generation of wireless networks (5G) to provide faster data rates, more reliable coverage, monitor city infrastructure usage, and increase network capacity. The frequencies proposed for the upcoming 5G network would result in shorter broadcast distances and network dead zones, countered by incorporating transparent antennas into glass high rises. Transparent antennas possess, however a major challenge: low gain. This lower gain can be countered by means of employing antennas in an antenna array, boosting the gain and even giving the array the ability to beam form for the upcoming 5G network. The 5G dead zones can be countered with strategically placed transparent reflectors embedded into the glass surfaces of city high-rises. This dissertation shows there are significant effects due to the transparent antennas’ carrier concentration and film thickness. Changes in film conductivity and thicknesses results in shifts for filter and antenna resonances. A 4x1 GZO antenna array was constructed to operate at 5.8 GHz, and the results show approximately 10dBi of lower aperture gain between a copper version of the array and the GZO version of the array. However, the 4x1 GZO array shows an approximate 12dBi increase in gain over a single GZO antenna element. The technology developed in this dissertation has a broader impact other than for smart cities and the upcoming 5G network. Transparent antenna arrays offer sight insensitive military communication systems and eye-worn medical and commercial devices to monitor eye health and other various health signs

    Spin Manipulation of the Nitrogen Vacancy Center and its Applications

    Get PDF
    Das Stickstoff-Fehlstellen-Zentrum (NV-Zentrum) in Diamant ist eines der vielver- sprechendsten Spinsysteme fĂŒr Anwendungen im Bereich Quanten-Computing, -Information und -Sensorik. Die AbhĂ€ngigkeit der FluoreszenzintensitĂ€t vom Spinzu- stand ermöglicht dabei das rein optische Auslesen des Spinzustandes. FĂŒr alle Anwendungen, die auf aktive Spinmanipulation angewiesen sind, ist Mikrowellen- strahlung unverzichtbar. Die FĂ€higkeit, den Spinzustand von NV-Zentren vollstĂ€ndig zu kontrollieren, wird durch die Richtung, IntensitĂ€t und Polarisation der Mikrow- ellenstrahlung deïŹniert. Es gibt verschiedene AnsĂ€tze, um geeignete Mikrowellen- strahlung zu erzeugen, aber oft ist die FeldintensitĂ€t zu gering oder es gibt andere EinschrĂ€nkungen, z.B. eine geringe Frequenzbandbreite. Im ersten Teil meiner Arbeit untersuche ich transparente Leiter auf Basis von Indium- Zinn-Oxid (ITO), um die Mikrowellenansteuerung von NV-Zentren zu optimieren. Dabei wird eine detaillierte Analyse von ITO auf Diamant bezĂŒglich einzelner NV-Zentren vorgestellt. Ein mathematisches Modell wurde entwickelt, um die Feldverteilung vorherzusagen. ZusĂ€tzlich wird eine Methode zur Kontrolle der Mikrowellenpolarisation mit einer transparenten ITO-Struktur vorgestellt, die zu einer vollstĂ€ndigen Kontrolle des Spinzustands des NV-Zentrums fĂŒhrt. Weiterhin werden Simulationen in Kombination mit einem analytischen Modell verwendet, um optimale Mikrowellenparameter fĂŒr die Spinkontrolle vorherzusagen. FĂŒr eine kommerzielle Anwendung von NV-Zentren als Magnetfeldsensor sind Pro- duktionskosten und BauteilkomplexitĂ€t wichtige Faktoren, die in der Forschung oft vernachlĂ€ssigt werden. Der zweite Teil meiner Arbeit konzentriert sich da- her auf einen mikrowellenfreien Ansatz zur Magnetometrie mit NV-Zentren. Der EinïŹ‚uss der Laseranregung auf den magnetischen Kontrast wird an einzelnen NV- Zentren, Ensembles von NV-Zentren und Nano-Diamantpulver mit einer hohen NV- Zentrenkonzentration dargestellt und nachfolgend zur Demonstration von isotropen Magnetfeldmessung verwendet. Abschließend wird die Anwendbarkeit durch die Konstruktion eines Magnetfeldsensors aus Komponenten der Automobilbranche gezeigt.The nitrogen vacancy center (NV center) in diamond is one of the most promising spin systems for applications in quantum computing, information and sensing. The dependency of the ïŹ‚uorescence intensity on the spin state allows a purely optical readout of the spin state. A green laser can be used to pump the NV center in the spin ground state while microwave radiation can manipulate the spin state of the NV center. For all applications depending on active spin manipulation, microwave radiation is indispensable. The ability to fully control the spin state of NV centers is deïŹned by direction, strength and polarization of the microwave radiation. Different approaches exist to deliver the microwave radiation, but they often lack in strength or have other restrictions, e.g. a small frequency band width. In the ïŹrst part of my thesis, I investigate transparent conductors based on indium tin oxide (ITO) to optimize microwave delivery. In this process a detailed analysis of ITO on diamond concerning confocal microscopy through this transparent ïŹlm is presented. A mathematical model was developed and tested to predict the ïŹeld distribution in possible applications. Additionally a method to control microwave polarization with a transparent ITO structure is shown which results in full spin state control of the NV center. Furthermore simulations combined with a analytical model are used to predict optimal microwave parameters for spin control. For a commercial application of NV centers as a magnetic ïŹeld sensor, important factors are production cost and device complexity which are often neglected in research. The second part of my thesis therefore focuses on a microwave free approach of NV center magnetometry for industry applications. The inïŹ‚uence of laser excitation on magnetic contrast was studied on single NV centers, ensembles of NV centers and nano diamond powder with a high NV center concentration. The ïŹndings were used to demonstrate isotropic magnetic ïŹeld sensing. Finally, the applicability was shown by constructing a magnetic ïŹeld sensor from automotive grade components
    corecore