141 research outputs found

    On the independent subsets of powers of paths and cycles

    Full text link
    In the first part of this work we provide a formula for the number of edges of the Hasse diagram of the independent subsets of the h-th power of a path ordered by inclusion. For h=1 such a value is the number of edges of a Fibonacci cube. We show that, in general, the number of edges of the diagram is obtained by convolution of a Fibonacci-like sequence with itself. In the second part we consider the case of cycles. We evaluate the number of edges of the Hasse diagram of the independent subsets of the h-th power of a cycle ordered by inclusion. For h=1, and n>1, such a value is the number of edges of a Lucas cube.Comment: 9 pages, 4 figure

    On the noncommutative geometry of tilings

    Get PDF
    This is a chapter in an incoming book on aperiodic order. We review results about the topology, the dynamics, and the combinatorics of aperiodically ordered tilings obtained with the tools of noncommutative geometry

    A Problem-based Curriculum for Algorithmic Programming

    Get PDF

    Combinatorial and Additive Number Theory Problem Sessions: '09--'19

    Full text link
    These notes are a summary of the problem session discussions at various CANT (Combinatorial and Additive Number Theory Conferences). Currently they include all years from 2009 through 2019 (inclusive); the goal is to supplement this file each year. These additions will include the problem session notes from that year, and occasionally discussions on progress on previous problems. If you are interested in pursuing any of these problems and want additional information as to progress, please email the author. See http://www.theoryofnumbers.com/ for the conference homepage.Comment: Version 3.4, 58 pages, 2 figures added 2019 problems on 5/31/2019, fixed a few issues from some presenters 6/29/201

    Deciding Properties of Automatic Sequences

    Get PDF
    In this thesis, we show that several natural questions about automatic sequences can be expressed as logical predicates and then decided mechanically. We extend known results in this area to broader classes of sequences (e.g., paperfolding words), introduce new operations that extend the space of possible queries, and show how to process the results. We begin with the fundamental concepts and problems related to automatic sequences, and the corresponding numeration systems. Building on that foundation, we discuss the general logical framework that formalizes the questions we can mechanically answer. We start with a first-order logical theory, and then extend it with additional predicates and operations. Then we explain a slightly different technique that works on a monadic second- order theory, but show that it is ultimately subsumed by an extension of the first-order theory. Next, we give two applications: critical exponent and paperfolding words. In the critical exponent example, we mechanically construct an automaton that describes a set of rational numbers related to a given automatic sequence. Then we give a polynomial-time algorithm to compute the supremum of this rational set, allowing us to compute the critical exponent and many similar quantities. In the paperfolding example, we extend our mechanical procedure to the paperfolding words, an uncountably infinite collection of infinite words. In the following chapter, we address abelian and additive problems on automatic sequences. We give an example of a natural predicate which is provably inexpressible in our first-order theory, and discuss alternate methods for solving abelian and additive problems on automatic sequences. We close with a chapter of open problems, drawn from the earlier chapters

    Discrete Mathematics : Elementary and Beyond

    Get PDF
    corecore