49,249 research outputs found

    Independent Sets near the Lower Bound in Bounded Degree Graphs

    Get PDF
    By Brook\u27s Theorem, every n-vertex graph of maximum degree at most Delta >= 3 and clique number at most Delta is Delta-colorable, and thus it has an independent set of size at least n/Delta. We give an approximate characterization of graphs with independence number close to this bound, and use it to show that the problem of deciding whether such a graph has an independent set of size at least n/Delta+k has a kernel of size O(k)

    An Improved Distributed Algorithm for Maximal Independent Set

    Full text link
    The Maximal Independent Set (MIS) problem is one of the basics in the study of locality in distributed graph algorithms. This paper presents an extremely simple randomized algorithm providing a near-optimal local complexity for this problem, which incidentally, when combined with some recent techniques, also leads to a near-optimal global complexity. Classical algorithms of Luby [STOC'85] and Alon, Babai and Itai [JALG'86] provide the global complexity guarantee that, with high probability, all nodes terminate after O(log⁥n)O(\log n) rounds. In contrast, our initial focus is on the local complexity, and our main contribution is to provide a very simple algorithm guaranteeing that each particular node vv terminates after O(log⁥deg(v)+log⁥1/Ï”)O(\log \mathsf{deg}(v)+\log 1/\epsilon) rounds, with probability at least 1−ϔ1-\epsilon. The guarantee holds even if the randomness outside 22-hops neighborhood of vv is determined adversarially. This degree-dependency is optimal, due to a lower bound of Kuhn, Moscibroda, and Wattenhofer [PODC'04]. Interestingly, this local complexity smoothly transitions to a global complexity: by adding techniques of Barenboim, Elkin, Pettie, and Schneider [FOCS'12, arXiv: 1202.1983v3], we get a randomized MIS algorithm with a high probability global complexity of O(log⁡Δ)+2O(log⁥log⁥n)O(\log \Delta) + 2^{O(\sqrt{\log \log n})}, where Δ\Delta denotes the maximum degree. This improves over the O(log⁥2Δ)+2O(log⁥log⁥n)O(\log^2 \Delta) + 2^{O(\sqrt{\log \log n})} result of Barenboim et al., and gets close to the Ω(min⁥{log⁡Δ,log⁥n})\Omega(\min\{\log \Delta, \sqrt{\log n}\}) lower bound of Kuhn et al. Corollaries include improved algorithms for MIS in graphs of upper-bounded arboricity, or lower-bounded girth, for Ruling Sets, for MIS in the Local Computation Algorithms (LCA) model, and a faster distributed algorithm for the Lov\'asz Local Lemma

    On the Chromatic Thresholds of Hypergraphs

    Full text link
    Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum of all non-negative reals c such that the subfamily of F comprising hypergraphs H with minimum degree at least c(∣V(H)∣r−1)c \binom{|V(H)|}{r-1} has bounded chromatic number. This parameter has a long history for graphs (r=2), and in this paper we begin its systematic study for hypergraphs. {\L}uczak and Thomass\'e recently proved that the chromatic threshold of the so-called near bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this class of hypergraphs, we also show that the exact Tur\'an number is achieved uniquely by the complete (r+1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite families of nondegenerate hypergraphs whose Tur\'an number is determined exactly. In an attempt to generalize Thomassen's result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized triangle. In order to prove upper bounds we introduce the concept of fiber bundles, which can be thought of as a hypergraph analogue of directed graphs. This leads to the notion of fiber bundle dimension, a structural property of fiber bundles that is based on the idea of Vapnik-Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions, many of which use a hypergraph analogue of the Kneser graph. Using methods from extremal set theory, we prove that these Kneser hypergraphs have unbounded chromatic number. This generalizes a result of Szemer\'edi for graphs and might be of independent interest. Many open problems remain.Comment: 37 pages, 4 figure

    Round Compression for Parallel Matching Algorithms

    Get PDF
    For over a decade now we have been witnessing the success of {\em massive parallel computation} (MPC) frameworks, such as MapReduce, Hadoop, Dryad, or Spark. One of the reasons for their success is the fact that these frameworks are able to accurately capture the nature of large-scale computation. In particular, compared to the classic distributed algorithms or PRAM models, these frameworks allow for much more local computation. The fundamental question that arises in this context is though: can we leverage this additional power to obtain even faster parallel algorithms? A prominent example here is the {\em maximum matching} problem---one of the most classic graph problems. It is well known that in the PRAM model one can compute a 2-approximate maximum matching in O(log⁥n)O(\log{n}) rounds. However, the exact complexity of this problem in the MPC framework is still far from understood. Lattanzi et al. showed that if each machine has n1+Ω(1)n^{1+\Omega(1)} memory, this problem can also be solved 22-approximately in a constant number of rounds. These techniques, as well as the approaches developed in the follow up work, seem though to get stuck in a fundamental way at roughly O(log⁥n)O(\log{n}) rounds once we enter the near-linear memory regime. It is thus entirely possible that in this regime, which captures in particular the case of sparse graph computations, the best MPC round complexity matches what one can already get in the PRAM model, without the need to take advantage of the extra local computation power. In this paper, we finally refute that perplexing possibility. That is, we break the above O(log⁥n)O(\log n) round complexity bound even in the case of {\em slightly sublinear} memory per machine. In fact, our improvement here is {\em almost exponential}: we are able to deliver a (2+Ï”)(2+\epsilon)-approximation to maximum matching, for any fixed constant Ï”>0\epsilon>0, in O((log⁥log⁥n)2)O((\log \log n)^2) rounds

    Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs

    Full text link
    For a graph GG, let Z(G,λ)Z(G,\lambda) be the partition function of the monomer-dimer system defined by ∑kmk(G)λk\sum_k m_k(G)\lambda^k, where mk(G)m_k(G) is the number of matchings of size kk in GG. We consider graphs of bounded degree and develop a sublinear-time algorithm for estimating log⁥Z(G,λ)\log Z(G,\lambda) at an arbitrary value λ>0\lambda>0 within additive error Ï”n\epsilon n with high probability. The query complexity of our algorithm does not depend on the size of GG and is polynomial in 1/Ï”1/\epsilon, and we also provide a lower bound quadratic in 1/Ï”1/\epsilon for this problem. This is the first analysis of a sublinear-time approximation algorithm for a # P-complete problem. Our approach is based on the correlation decay of the Gibbs distribution associated with Z(G,λ)Z(G,\lambda). We show that our algorithm approximates the probability for a vertex to be covered by a matching, sampled according to this Gibbs distribution, in a near-optimal sublinear time. We extend our results to approximate the average size and the entropy of such a matching within an additive error with high probability, where again the query complexity is polynomial in 1/Ï”1/\epsilon and the lower bound is quadratic in 1/Ï”1/\epsilon. Our algorithms are simple to implement and of practical use when dealing with massive datasets. Our results extend to other systems where the correlation decay is known to hold as for the independent set problem up to the critical activity

    Graph cluster randomization: network exposure to multiple universes

    Full text link
    A/B testing is a standard approach for evaluating the effect of online experiments; the goal is to estimate the `average treatment effect' of a new feature or condition by exposing a sample of the overall population to it. A drawback with A/B testing is that it is poorly suited for experiments involving social interference, when the treatment of individuals spills over to neighboring individuals along an underlying social network. In this work, we propose a novel methodology using graph clustering to analyze average treatment effects under social interference. To begin, we characterize graph-theoretic conditions under which individuals can be considered to be `network exposed' to an experiment. We then show how graph cluster randomization admits an efficient exact algorithm to compute the probabilities for each vertex being network exposed under several of these exposure conditions. Using these probabilities as inverse weights, a Horvitz-Thompson estimator can then provide an effect estimate that is unbiased, provided that the exposure model has been properly specified. Given an estimator that is unbiased, we focus on minimizing the variance. First, we develop simple sufficient conditions for the variance of the estimator to be asymptotically small in n, the size of the graph. However, for general randomization schemes, this variance can be lower bounded by an exponential function of the degrees of a graph. In contrast, we show that if a graph satisfies a restricted-growth condition on the growth rate of neighborhoods, then there exists a natural clustering algorithm, based on vertex neighborhoods, for which the variance of the estimator can be upper bounded by a linear function of the degrees. Thus we show that proper cluster randomization can lead to exponentially lower estimator variance when experimentally measuring average treatment effects under interference.Comment: 9 pages, 2 figure
    • 

    corecore