13 research outputs found

    Characterizations of Decomposable Dependency Models

    Full text link
    Decomposable dependency models possess a number of interesting and useful properties. This paper presents new characterizations of decomposable models in terms of independence relationships, which are obtained by adding a single axiom to the well-known set characterizing dependency models that are isomorphic to undirected graphs. We also briefly discuss a potential application of our results to the problem of learning graphical models from data.Comment: See http://www.jair.org/ for any accompanying file

    Genetic algorithms and Gaussian Bayesian networks to uncover the predictive core set of bibliometric indices

    Get PDF
    The diversity of bibliometric indices today poses the challenge of exploiting the relationships among them. Our research uncovers the best core set of relevant indices for predicting other bibliometric indices. An added difficulty is to select the role of each variable, that is, which bibliometric indices are predictive variables and which are response variables. This results in a novel multioutput regression problem where the role of each variable (predictor or response) is unknown beforehand. We use Gaussian Bayesian networks to solve the this problem and discover multivariate relationships among bibliometric indices. These networks are learnt by a genetic algorithm that looks for the optimal models that best predict bibliometric data. Results show that the optimal induced Gaussian Bayesian networks corroborate previous relationships between several indices, but also suggest new, previously unreported interactions. An extended analysis of the best model illustrates that a set of 12 bibliometric indices can be accurately predicted using only a smaller predictive core subset composed of citations, g-index, q2-index, and hr-index. This research is performed using bibliometric data on Spanish full professors associated with the computer science area

    From 'tree' based Bayesian networks to mutual information classifiers : deriving a singly connected network classifier using an information theory based technique

    Get PDF
    For reasoning under uncertainty the Bayesian network has become the representation of choice. However, except where models are considered 'simple' the task of construction and inference are provably NP-hard. For modelling larger 'real' world problems this computational complexity has been addressed by methods that approximate the model. The Naive Bayes classifier, which has strong assumptions of independence among features, is a common approach, whilst the class of trees is another less extreme example. In this thesis we propose the use of an information theory based technique as a mechanism for inference in Singly Connected Networks. We call this a Mutual Information Measure classifier, as it corresponds to the restricted class of trees built from mutual information. We show that the new approach provides for both an efficient and localised method of classification, with performance accuracies comparable with the less restricted general Bayesian networks. To improve the performance of the classifier, we additionally investigate the possibility of expanding the class Markov blanket by use of a Wrapper approach and further show that the performance can be improved by focusing on the class Markov blanket and that the improvement is not at the expense of increased complexity. Finally, the two methods are applied to the task of diagnosing the 'real' world medical domain, Acute Abdominal Pain. Known to be both a different and challenging domain to classify, the objective was to investigate the optiniality claims, in respect of the Naive Bayes classifier, that some researchers have argued, for classifying in this domain. Despite some loss of representation capabilities we show that the Mutual Information Measure classifier can be effectively applied to the domain and also provides a recognisable qualitative structure without violating 'real' world assertions. In respect of its 'selective' variant we further show that the improvement achieves a comparable predictive accuracy to the Naive Bayes classifier and that the Naive Bayes classifier's 'overall' performance is largely due the contribution of the majority group Non-Specific Abdominal Pain, a group of exclusion

    Temporospatial Context-Aware Vehicular Crash Risk Prediction

    Get PDF
    With the demand for more vehicles increasing, road safety is becoming a growing concern. Traffic collisions take many lives and cost billions of dollars in losses. This explains the growing interest of governments, academic institutions and companies in road safety. The vastness and availability of road accident data has provided new opportunities for gaining a better understanding of accident risk factors and for developing more effective accident prediction and prevention regimes. Much of the empirical research on road safety and accident analysis utilizes statistical models which capture limited aspects of crashes. On the other hand, data mining has recently gained interest as a reliable approach for investigating road-accident data and for providing predictive insights. While some risk factors contribute more frequently in the occurrence of a road accident, the importance of driver behavior, temporospatial factors, and real-time traffic dynamics have been underestimated. This study proposes a framework for predicting crash risk based on historical accident data. The proposed framework incorporates machine learning and data analytics techniques to identify driving patterns and other risk factors associated with potential vehicle crashes. These techniques include clustering, association rule mining, information fusion, and Bayesian networks. Swarm intelligence based association rule mining is employed to uncover the underlying relationships and dependencies in collision databases. Data segmentation methods are employed to eliminate the effect of dependent variables. Extracted rules can be used along with real-time mobility to predict crashes and their severity in real-time. The national collision database of Canada (NCDB) is used in this research to generate association rules with crash risk oriented subsequents, and to compare the performance of the swarm intelligence based approach with that of other association rule miners. Many industry-demanding datasets, including road-accident datasets, are deficient in descriptive factors. This is a significant barrier for uncovering meaningful risk factor relationships. To resolve this issue, this study proposes a knwoledgebase approximation framework to enhance the crash risk analysis by integrating pieces of evidence discovered from disparate datasets capturing different aspects of mobility. Dempster-Shafer theory is utilized as a key element of this knowledgebase approximation. This method can integrate association rules with acceptable accuracy under certain circumstances that are discussed in this thesis. The proposed framework is tested on the lymphography dataset and the road-accident database of the Great Britain. The derived insights are then used as the basis for constructing a Bayesian network that can estimate crash likelihood and risk levels so as to warn drivers and prevent accidents in real-time. This Bayesian network approach offers a way to implement a naturalistic driving analysis process for predicting traffic collision risk based on the findings from the data-driven model. A traffic incident detection and localization method is also proposed as a component of the risk analysis model. Detecting and localizing traffic incidents enables timely response to accidents and facilitates effective and efficient traffic flow management. The results obtained from the experimental work conducted on this component is indicative of the capability of our Dempster-Shafer data-fusion-based incident detection method in overcoming the challenges arising from erroneous and noisy sensor readings
    corecore