
On the Use of Independence Relationships
for Learning Simplified Belief Networks
Luis M. de Campos*
Dpto. Ciencias de la Computacio

´
n e Inteligencia Artificial, E.T.S.I.

Informa
´
tica, Universidad de Granada, 18071, Granada, Spain

Juan F. Huete
Dpto. Ciencias de la Computacio

´
n e Inteligencia Artificial, E.T.S.I.

Informa
´
tica, Universidad de Granada, 18071, Granada, Spain

Belief networks are graphic structures capable of representing dependence and indepen-
dence relationships among variables in a given domain of knowledge. We focus on the
problem of automatic learning of these structures from data, and restrict our study to a
specific type of belief network: simple graphs, i.e., directed acyclic graphs where every
pair of nodes with a common direct child has no common ancestor nor is one an ancestor
of the other. Our study is based on an analysis of the independence relationships that
may be represented by means of simple graphs. This theoretical study, which includes
new characterizations of simple graphs in terms of independence relationships, is the
basis of an efficient algorithm that recovers simple graphs using only zero and first-order
conditional independence tests, thereby overcoming some of the practical difficulties of
existing algorithms. 1997 John Wiley & Sons, Inc.

I. INTRODUCTION

Belief Networks (also called Bayesian networks, causal networks or influence
diagrams) are knowledge-based systems that represent uncertain knowledge by
means of both graphical structures, namely directed acyclic graphs (dags), and
numerical parameters associated to these graphs. In a belief network, the qualita-
tive component (the graph) represents dependence/independence relationships:
the absence of some arcs means the existence of certain conditional independence
relationships between variables, and the presence of arcs may represent the
existence of direct dependence relationships (if a causal interpretation is given,
then the arcs signify the existence of direct causal influences between the linked
variables). The quantitative component is a collection of uncertainty measures,
which give idea of the strength of the dependencies. In the literature, we can find

*Author to whom correspondence should be addressed. e-mail: lci@decsai.ugr.es

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 12, 495–522 (1997)
 1997 John Wiley & Sons, Inc. CCC 0884-8173/97/070495-28

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192040532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

496 DE CAMPOS AND HUETE

different formalisms to manage the uncertainty in belief networks, for example
probability1 (which is the dominant approach), possibility2 or probability in-
tervals.3

Once a complete belief network has been built, it constitutes an efficient
device to perform inferences.1,4 However, there still remains the previous problem
of building such a network, i.e., to provide the graph structure and the numerical
parameters necessary for characterizing the network. So, an interesting task is
then to develop automatic methods capable of learning the network directly
from raw data, as an alternative or a complement5 to the (difficult and time-
consuming) method of eliciting opinions from experts.

A usual assumption is to consider the data as being a good representation
of the problem, and then any learning algorithm tries to find the network that
fits the data better, according to some specified criterion. We can find methods
that recover the network by means of scoring metrics,6–9 and methods based on
independence tests.1,10–13 The former compute a numerical scoring (which may be
based on different principles, such as entropy, bayesian or minimum description
length) reflecting the goodness-of-fit of the structure to the data, whereas the
latter attempt to recover the network that represents most of the independences
observed in the data. Anyway, general algorithms for learning belief networks
involve a great computational cost: it has been reported that this problem is
NP-Hard.14

In this article our interest is focused on studying the methods based on
independence criteria. The main reason for selecting these methods is that we
can obtain general procedures for learning belief networks, regardless of the
formalism used for managing the uncertainty. In other words, we consider inde-
pendence statements as abstract concepts, reflecting qualitative instead of quanti-
tative properties of the problem, and therefore less dependent on the numerical
parameters represented in the network. So, these methods could also be used
for learning belief networks in cases where the underlying uncertainty model is
different from probability theory (provided that we have an appropriate concept
of independence within this formalism, see Refs. 3, 15, 16, and 17). However,
learning methods based on independence criteria present two main drawbacks:
(1) they usually need an exponential number of conditional independence tests,
and (2) these tests involve a great number of variables. Note that testing a
conditional independence statement between two variables requires a time which
is exponential with the number of variables used in the conditioning set.

Considering that the problem of learning general belief networks belongs
to the class of NP-Hard problems, and that any attempt for reducing the complex-
ity is welcome, we focus on the following question: suppose that we have previous
knowledge about the kind of model to be recovered. Then, is it possible to obtain
an efficient learning algorithm using this information? To be more specific, if
the given information limits the type of graph structure to be recovered, may
this be used in order to design faster learning algorithms? This approach has
been successfully used for singly connected networks (trees and polytrees), where
efficient learning algorithms have been found.18–20 Furthermore, since for singly
connected networks we can find efficient inference algorithms (using purely local

SIMPLIFIED BELIEF NETWORKS 497

propagation techniques), these structures have been extensively used in order
to approximate general models; the price we have to pay is less expressive power,
since the type of independence relationships that may be represented is much
more restricted for singly connected networks than for general multiply con-
nected networks. This idea of a priori limiting of the kind of graph to be used
has also been applied for more general structures in different contexts: for
example, in classification problems, automatic classifiers can be built by learning
restricted networks,21 and for healthcare problems we may find specific learning
algorithms, too.10

In this article, our interest is focused on a specific class of directed acyclic
graphs, those called simple graphs.10 Simple graphs can represent a richer set of
independence relationships than singly connected graphs; particularly, condi-
tional independence statements of high order [even O(n 2 2)] can be represented.
Moreover, there are algorithms that, using the independence relationships repre-
sented in a simple graph, give rise to fast inference procedures.22 These properties
make simple graphs appealing. Our main reasons for carrying out this study are
the following: firstly, to show how specific independence properties for simple
graphs can be used to obtain efficient learning algorithms; moreover, the method-
ology presented probably might be generalized for learning other kinds of simpli-
fied graphical structures. Secondly, since the problem of learning is computation-
ally expensive, we consider that any attempt to obtain fast learning procedures
is worth striving for. Additionally, considering that testing independence in differ-
ent frameworks to represent the uncertainty may be quite expensive,1,15,16,17 it
would be interesting to obtain learning algorithms in which the use of high order
independence tests is not necessary. These algorithms would allow us to efficiently
learn more reliable belief networks.

The rest of the article is organized as follows: in the next section we briefly
recall how independence statements can be represented in belief networks. Then,
in Section III, a review of simple graphs, together with some basic concepts and
results used throughout the article, are presented. Section IV studies specific
independence properties that hold in simple graphs. These properties permit us
to develop, in Section V, a learning algorithm that, whenever the model can be
represented by a simple graph, recovers the correct structure using only zero-
and first-order conditional independence tests. In Section VI, we discuss how to
use the algorithm when we do not know in advance whether the model can really
be represented by means of a simple graph. Section VII contains the concluding
remarks and some proposals for future work. Finally, as the proof of the stated
results is mainly technical, and somewhat long and/or cumbersome, we have
preferred to group all of the proofs together into an Appendix, aiming to ease
the reading of the article, but without sacrificing mathematical soundness.

II. PRELIMINARIES

Belief networks1 allow us to represent our knowledge about a given domain
of knowledge by means of directed acyclic graphs. In an abstract way, a belief
network can be considered as a representation of a Dependency Model, i.e., a

498 DE CAMPOS AND HUETE

pair M 5 (U, I), where U is a set of variables and I is a rule which assigns truth
values to the predicates I(XuZuY), (read ‘‘X is independent of Y, given Z’’), where
X, Y, and Z are disjoint subsets of variables in U. The intended interpretation of
I(XuZuY) is that having observed Z, no additional information about X could
be obtained by also observing Y. A criterion for testing independence statements
is an essential component of any dependency model. For example, a probability
distribution can be considered as a dependency model, where the predicate I is
defined through the concept of stochastic independence, i.e., I(XuZuY) holds if
and only if P(xuy, z) 5 P(xuz), whenever P(y, z) . 0, for every instantiation x,
y, z of the subsets of variables X, Y, Z respectively. Throughout the article,
subsets of variables will be denoted by capital letters, whereas single variables
will be represented by lower case letters. The connection between belief networks
and dependency models may be stated by means of the so-called d-separation
criterion,1,23 which may be considered as a graphical definition of conditional
independence (which turns a belief network into a dependency model itself).

DEFINITION 1. Given a directed acyclic graph G, a trial c (a trail in a directed
graph is a sequence of adjacent nodes, the direction of the arrows does not matter)
from node x to node y is said to be blocked by the set of nodes Z, if there is a
node z [c such that, either

● z [Z and arrows of c do not meet head to head at z, or
● z Ó Z, nor has z any descendants in Z, and the arrows of c do not meet head to

head at z.

A trail that is not blocked by Z is said to be opened by Z.

DEFINITION 2 (d-separation). Let X, Y, and Z be three disjoint subsets of nodes
in a dag G. Then, X and Y are said to be d-separated (or graphically independent)
by Z if all trails between the nodes in X and the nodes in Y are blocked by Z.
Otherwise, X and Y are graphically dependent, given Z.

The skeleton of a dag G is the undirected graph obtained from G by replacing
the arrows by edges. When we speak about cycles in a dag, we always refer to
undirected cycles in the skeleton of G (a dag cannot contain directed cycles).
Note that in a dag every cycle must contain at least one head to head connection,
i.e., a subgraph of the form x R z r y; the middle node in a head to head
connection is called a head to head node.

We say that I(XuZuY) is a conditional independence statement of order k
if the cardinality of the conditioning set Z is equal to k. If it is also ¬I(XuWuY)
for any set W , Z of cardinality less than k, then we say that I(XuZuY) is an
essential conditional independence statement of order k.

A belief network may also represent quantitative knowledge. Let us suppose
that this knowledge is probabilistic. In that case, for each variable, xi, we need
conditional probability distributions P(xiuP(xi)), where xi represents any assign-
ment of values to the variable xi, P(xi) is the parent set of xi in the network,

SIMPLIFIED BELIEF NETWORKS 499

and P(xi) denotes any assignment of values to the variables in the set P(xi).
Then, the joint probability distribution, P, can be obtained by means of the
following expression:

P(x1, x2, . . . , xn) 5 p
n

i51

P(xiuP(xi)).

If we start out from a joint probability distribution P (a dependency model), we
can look for a belief network G that is a ‘‘good’’ graphical representation of P.
In that case, we may find different situations:1 If every d-separation condition
in G corresponds to a valid conditional independence relationship in P, then G
is said to be an I-map of P; if every conditional independence relationship in P
corresponds to a d-separation condition in G, then G is a D-map of P; finally,
if G is both an I-map and a D-map of P, then we say that G is a perfect map of
P and that P is dag-isomorphic. Throughout this article, we shall always consider
dag-isomorphic dependency models.

III. SIMPLE GRAPHS: DEFINITIONS AND BASIC RESULTS

We consider a particular case of dependency models, those dag-isomorphic
models that can be represented by means of Simple Graphs.10 Formally, a simple
graph is defined as follows:

DEFINITION 3 (Simple Graph). A dag G is said to be simple if, and only if, every
pair of nodes with a common direct child have no common ancestor nor is one
an ancestor of the other.

Graphically, in simple graphs, only a special kind of (undirected) cycles can
appear, those containing at least two head to head connections. Considering the
d-separation criterion, simple graphs are the class of dags where the common
parents of any variable are always marginally independent (i.e., d-separated by
the empty set) between each other. So, the following characterization of simple
graphs is immediate:

THEOREM 1. Let G be a dag. The following statements are equivalent:

1. G is a simple graph.
2. All the cycles in G contain at least two head to head connections.
3. Every pair of nodes in G with a common direct child are d-separated by

the empty set.

Singly connected graphs (trees and polytrees) are specific cases of simple graphs.
Directed bipartite graphs are also examples of simple graphs. It is interesting to
note that, in a simple graph, essential conditional independence statements of
any order can be represented (observe that in the case of singly connected

500 DE CAMPOS AND HUETE

Figure 1. Simple graph representing diseases and findings.

graphs, only essential conditional independence assertions of order zero and one
are permitted).

In daily life, we can find models that may be represented by means of simple
graphs. In general, and considering the definition above, any model where there
are no correlated sources of evidence can be represented by a simple graph. For
example, simple graphs have been used to represent the relationships between
diseases and findings22 in clinical models. In that case, we represent the fact that
diseases are marginally independent, and after knowing the diseases, the findings
become conditionally independent (see Fig. 1). Simple graphs have also been
used to represent independence relationships in genetics models.24

As our interest lies in studying learning algorithms, first we consider the
algorithm proposed by Geiger et al.10 for learning simple graphs. Their algorithm
takes as the input a dependency model M, and gives as the output a simple graph
that represents the model well.† If such a graph does not exist, the algorithm
gives an error code as the output.

Geiger, Paz, and Pearl (GPP) Algorithm
1. Start with a complete undirected graph G.
2. Remove from G every edge x 2 y such that I(xuU \hx, yjuy) holds.
3. Remove from G every edge x 2 y such that I(xuBuy) holds.
4. For every pair of adjacent edges x 2 y and y 2 z in G, if I(xuBuz) holds,

then direct the edges as x R y r z.
5. Direct the remaining edges without introducing new head-to-head con-

nections. If the resultant graph is not simple, then give an error code as
the output.

6. If the resultant graph does not represent the model well, then give an
error code as the output. Otherwise, give the resultant graph as the output.

The GPP algorithm uses a polynomial number of conditional independence
tests, but for each pair of variables, it needs a conditional independence test of
order n 2 2, with n being the number of variables in the model. Thus, the main

†A graph is said to represent a dependency model well if whenever two nodes x and
y are connected by a trail without head to head connections, then x and y are marginally
dependent, i.e., ¬I(xuBuy). This concept could be called marginal D-mapness.

SIMPLIFIED BELIEF NETWORKS 501

drawback of the algorithm is that if we have to learn the graph from statistical
data, each conditional independence test of order n 2 2 requires a time which
is exponential with n. Therefore, although the algorithm is polynomial [order
O(n2)] in the number of independence tests, the overall complexity is still expo-
nential. Moreover, to realiably test high order conditional independence state-
ments we would need an enormous amount of data. Therefore, this algorithm
would be appropriate only if the conditional independence tests were inexpensive;
for example, this is the case if we can obtain the answer by asking an expert for
the results of the tests.

Our purpose is to study specific independence properties of simple graphs,
in order to avoid some of the practical problems presented in the algorithm
above. Some preliminary concepts will be necessary. The following theorem10,25

characterizes equivalent (or isomorphic) simple graphs:

THEOREM 2. Two simple graphs G1 and G2 are isomorphic if, and only if, they
share the same skeleton and the same head-to-head connections.

Thus, isomorphism represents a theoretical limitation on the ability to iden-
tify the directionality of some links, using information about independences; for
example, the following structures reflect the same independence assertion, i.e.,
x and z are marginally dependent, but given y they become conditionally inde-
pendent:

x r y r z; x R y R z; x r y R z

Once the head-to-head connections play an important role in simple graphs, the
following definition will be used.

DEFINITION 4 (Active Trail). A trail c linking two nodes x and y in a graph G is
said to be active if there is no head-to-head connection in c. Any trail with head-
to-head connections is said to be nonactive.

Using the d-separation criterion, it is clear that any active trail linking two
variables x and y is open by the empty set, i.e., x and y are not d-separated by
B. We can establish the following classification of the active trails linking any
two nodes x and y:

HT(x, y): Those active trails linking x and y with a head connection at x and a tail
connection at y, i.e., directed paths from y to x, such as x r . . . r y.

TH(x, y): Those active trails linking x and y with a tail connection at x and a head
connection at y, i.e., directed paths from x to y, such as x R . . . R y.

HH(x, y): Those active trails linking x and y with a head connection at x and a head
connection at y, such as x r . . . R y. In these trails we can always find a node, z,
such that we have directed subpaths from z to x and from z y (x r . . . r z R
. . . R y).

502 DE CAMPOS AND HUETE

Figure 2. Active and nonactive cycles in a simple graph.

As interesting and useful property of simple graphs is that the existence of an
active trail linking two nodes affects to the existence of other active trails connect-
ing these nodes:

PROPOSITION 1. Let G be a simple graph, and x, y two nodes in G. If there is an
active trail c that belongs to either HT(x, y) or TH(x, y), then c is the only active
trail linking x and y in G.

Using the previous result, we immediately obtain the following corollary:

COROLLARY 1. Let G be a simple graph, and x, y two nodes in G. If there is more
than one active trail in G linking x and y, then all these trails necessarily are of
the HH(x, y) type.

Note that when we have more than one active trail of the HH(x, y) type,
each pair of these trails forms a cycle. This kind of cycle will play an important
role in the subsequent development (moreover, they also constitute the only
way in which simple graphs can represent essential independence relationships
of any order). Therefore, to distinguish them from the other cycles that may be
present in a simple graph (see Fig. 2), we shall say that a cycle in a simple graph
is an active cycle if it contains exactly two head-to-head connections. Any other
cycle in a simple graph (which necessarily contains at least three head-to-head
connections) is said to be a nonactive cycle. We say that there is an active cycle
between two nodes x and y, if x and y are the only head-to-head nodes in the cycle.

IV. INDEPENDENCE RELATIONSHIPS IN SIMPLE GRAPHS

The aim of this section is to study specific independence properties that hold
in simple graphs, which will allow us to develop an efficient learning algorithm in
the next section. Remember that we are only considering dag-isomorphic models,
so that we can talk about independence and d-separation statements inter-
changeably.

Pearl1 identified a set of properties or axioms which have to be verified
by any dag-isomorphic dependency model (although they do not constitute a

SIMPLIFIED BELIEF NETWORKS 503

characterization of these models). These properties are the following (their se-
mantic interpretation is to be found in Ref. 1):

Trivial Independence: Contraction:
I(XuZuB) I(XuZuY) and I(XuZ < YuW) ⇒

I(XuZuY < W)
Symmetry: Intersection:
I(XuZuY) ⇒ I(YuZuX) I(XuZ < WuY) and I(XuZ < YuW) ⇒

I(XuZuY < W)
Decomposition/Composition: Weak Transitivity:
I(XuZu Y < W) ⇔ I(XuZuY) and I(XuZuW) I(XuZuY) and I(XuZ < cuY) ⇒

I(XuZuc) or I(cuZuY)
Weak Union: Chordality:
I(XuZuY <W) ⇒ I(XuZ < YuW) I(auc < dub) and I(cua < bud) ⇒

I(aucub) or I(audub)

Obviously, these properties, which hold for dags, must also hold for simple
graphs. However, due to graphical restrictions imposed, we can find additional
independence properties, specific for simple graphs, like for example Weak Semi-
strong Union and Weak Atringularity,18 defined by means of

Weak Semi-strong Union:
I(auZub) and ¬I(auBub) ⇒ I(auU \ha, bjub)
Weak Atringularity:
¬I(auZuc), ;Z # U \ha, cj and ¬I(cuZub), ;Z # U \hc, bj ⇒

I(auBub) or 'Z0 s.t. I(auZ0 < cub)
being Z0 # U \ha, b, cj

It is interesting to note that these properties have been implicitly used by the
GPP recovery algorithm. For example, using Weak Semi-strong Union, we can
be sure that, after step 3, the GPP algorithm will have correctly identified the
skeleton of the simple graph, and using Weak Atringularity, the head-to-head
connections may be detected through marginal independence tests.

Because of our assumption of dag-isomorphy, it is clear that the existence
of a conditional independence relationship between two variables x and y,
I(xuZuy), is closely related with the presence or absence of active trails in the
graph. Thus, in order to obtain independence statements, studying how an active
trail can be blocked becomes an important question. For simple graphs, as
happens in general dags, we know that whenever there is an active trail c linking
two variables, then they are marginally dependent i.e., ¬I(xuBuy). Moreover,
using d-separation, we find that this trail is blocked after instantiating any node
z in c. But, in contrast to what happens for general dags, the following proposition
proves that there is no nonactive trail linking x and y which becomes open after
instantiating z.

PROPOSITION 2. Let G be a simple graph and let c be an active trail linking two
nodes x and y in G. Then, c is blocked by any node z in this trail and there is no
nonactive trail linking x and y which is opened by z.

504 DE CAMPOS AND HUETE

An important consequence of this proposition is that, in order to establish
an independence (d-separation) relationship between two nodes, x and y, in a
simple graph, it is sufficient to instantiate a node for each active trail connecting
x and y:

PROPOSITION 3. Let G be a simple graph, and let x, y be two nonadjacent nodes
in G, such that there exists at least one active trail linking x and y. Let rx(y) be
the set of nodes connected directly to x in any active trail linking x and y. Then
I(xurx(y)uy) holds in G.

From Propositions 1 and 3 we can deduce an interesting property that relates
independence statements with local topological relationships between nodes in
the graph: given a simple graph, if node x is known, then we find that its parents
are conditionally independent of its children. Moreover, the fulfilment of this
property is sufficient to guarantee that a given structure is a simple graph.
Therefore, this property characterizes simple graphs.

PROPOSITION 4. Let G be a directed acyclic graph. Then G is a simple graph if,
and only if, for every node x in G, and for every pair of nodes px, hx, with px [
Parentsx and hx [Childrenx, I(pxuxuhx) holds.

This property allows us to test whether a given dag is a simple graph or
not, using only independence tests among triplets of variables, i.e., independence
tests of order one. A result similar to that of proposition 4, but using the ancestors
and descendants of a node, instead of its parents and children, can also be
established (the proof is similar, so we omit it from the appendix):

PROPOSITION 5. Let G be a directed acyclic graph. Then G is a simple graph if,
and only if, for every node x in G, I(AncestorsxuxuDescendantx) holds.

The fact that only one variable is necessary to establish a conditional inde-
pendence relationship between the set of ancestors and the set of descendants
of this variable, raises the question of the possibility of recovering a simple graph
using only conditional independence relationships of order zero and one (as
happens for singly connected graphs18,20). In the next section we show that this
question has a positive answer.

V. THE LEARNING ALGORITHM

In this section, we consider models isomorphic to simple graphs, and develop
an efficient recovery algorithm. From Theorem 2, we know that every simple
graph isomorphic to the model must share the same skeleton and the same head-
to-head connections. Using this property, a simple graph representing the model
can be obtained by first recovering the skeleton and next detecting the head-to-
head connections, using the fact that in a simple graph any two variables with
a common direct descendant must be marginally independent.

SIMPLIFIED BELIEF NETWORKS 505

A natural approach for recovering the skeleton would be to locally look for
the set of nodes directly connected with each variable x in the model (its parents
and its children) and then build the structure by fusing all these components.
Thus, our first task is to detect whether there is a direct connection (or not)
between any two variables x and y. A general rule, used by a number of algorithms
for learning belief networks based on independence relationships, is the follow-
ing: whenever given any two variables, x and y, we can find a set of variables Z
such that the independence relationship I(xuZuy) holds, then x and y cannot be
adjacent in any graph representing the model.12,13 This gives rise to learning
algorithms that, starting from a complete graph, look for independence relation-
ships between variables which, if found, make it possible to remove the corre-
sponding edge from the graph. The GPP algorithm uses this methodology, in
combination with specific properties of simple graphs that allow us to identify
the candidate conditioning (d-separating) sets Z (in this case either B or
U \hx, yj) directly, without any search. Our approach for recovering the network
will be slightly different: we shall not blindly search for d-separating sets, nor
will we use the ‘‘obvious’’ (and computationally expensive) set U \hx, yj. Instead,
we shall determine a set of rules that allows us to identify that a set Z #
U \hx, yj verifying that I(xuZuy), exists, i.e., that there is no direct connection
between x and y in the simple graph.

From the discussion in the previous section, it is clear that zero- and first-
order conditional independence statements play an important role in simple
graphs, and then, in order to find the skeleton, the following approach will be used:

(i) For each node x, select from U \hxj the subset of variables, I021
x , such that there

are neither zero- nor first-order conditional independence relationships between
x and each variable in I021

x , i.e.,

I021
x 5 hy [U \hxj u ¬I(xuBuy) and ¬I(xuzuy);z [U \hx, yjj

(ii) Then, remove from I021
x those variables y such that there is a conditional indepen-

dence relationship between x and y of an order greater than or equal to two.

Considering Weak Semi-strong Union, an immediate approach to perform
the second step could be to test, for each variable y in I021

x , whether I(xuU \hx, yjuy)
holds (as the GPP algorithm does), but in this case we have to pay the high
computational cost necessary to perform these tests. We shall use an alternative
method that permits us to find these nodes more efficiently. The next proposition,
which characterizes which nodes may belong to I021

x , is useful for our purposes:

PROPOSITION 6. Let G be a simple graph, and let x, y be any two nodes in G.
Then, y belongs to I021

x if, and only if, there is either an active cycle between x and
y, or a direct connection between x and y in G.

According to the proposed scheme for identifying the set of nodes adjacent
to x, after performing the first step, we know that the set I021

x contains only nodes
adjacent to x and nodes that are conditionally independent from x given a set

506 DE CAMPOS AND HUETE

of cardinality greater than or equal to two. Now, we have to exclude this second
type of nodes from I021

x , thus obtaining the correct set of nodes adjacent to x.
So, for each node y in I021

x we have to look for a separator set, Fx(y), uFx(y)u $
2, with minimal cardinality (and therefore requiring less computational cost),
such that I(xuFx(y)uy) holds. If we can find such a set, we can remove y from
I021

x , otherwise, y would really be a node adjacent to x. The result in Proposition
6 allows us to characterize the nodes that we want to exclude from I021

x as those
nodes y such that there is an active cycle between x and y. This property will
make it possible to determine whether Fx(y) exists or not, without the need for
effectively performing any test I(xuFx(y)uy). The process is as follows: for each
y [I021

x , we shall start from an initial set of nodes which are candidates to form
part of the separator set Fx(y); next we shall refine this set in successive steps
(by removing nodes from it). If some of these refined sets becomes empty, this
will mean that there is no set of nodes capable of separating x and y [i.e., the
separator set Fx(y) does not exist], hence the edge linking x and y is a true edge
in the skeleton. However, if, at the end of this refining process, the final set is
not empty, this will mean that we can find a set of nodes separating x and y,
hence the edge between x and y will be eliminated. Now, let us describe this
process more formally:

DEFINITION 5. Let G be a simple graph, and let x, y be nodes in G such that
y [I021

x .

1. The initial set Kx(y) is:

Kx(y) 5 hw [I021
x \hyj u ¬I(wuxuy)j.

2. The set of candidate nodes (to separate x and y), denoted by V*x (y), is:

V*x (y) 5 hwi [Kx(y) u 'wj [Kx(y) verifying I(wiuBuwj) and ¬I(wiuyuwj)j.

3. The final set of candidate nodes, denoted Vx(y), is:

Vx(y) 5 V*x (y) \hwi such that 'a [I021
x with ¬I(auBuwi) verifying either

a) I(auBux) and ¬I(auyux), or
b) ¬I(auBux) and I(auyux) and ¬I(auyuwi)j

Observe that all these sets, Kx(y), V*x (y) and Vx(y) are defined using only
independence statements of order zero and one, so that they can be calculated
efficiently and reliably from data.

The intuition behind Definition 5 is the following: the initial set Kx(y)
excludes from consideration those nodes w which clearly cannot be part of any
minimal set d-separating x from y: if I(wuxuy) were true and w were in a set d-
separating x and y, i.e., if I(xuZ < wuy) were true, then I(xuZ9uy), for some Z9
Z, would also be true, and therefore w does not need to be considered. On
the other hand, taking into account the independence relationships defining the
set V*x (y), it may be easily found (see Lemma 1 in the appendix) that whenever
an active cycle exists between x and y, the candidate set V*x (y) is not empty [in

SIMPLIFIED BELIEF NETWORKS 507

fact the parents of x in the cycle always belong to V*x (y)]. However, it is also
possible to obtain a nonempty set V*x (y) even if there is a direct connection
between x and y. So, if V*x (y) [or Kx(y)] becomes empty, we can be sure that x
and y are adjacent, although we do not know what happens if V*x (y) is not
empty. But in that case, the independence relationships considered and the fact
that the model can be represented by a simple graph, limit the structures that
might be considered [see Lemmas 2 and 3 in the appendix]. The more refined
set Vx(y) allows us to discriminate unambiguously between nodes adjacent to
x and nodes forming an active cycle with x, as the following proposition
shows:

PROPOSITION 7. Let G be a simple graph, and let x, y be nodes in G such that
y [I021

x . Then, there exists an active cycle between x and y in G if, and only if,
Vx(y) ? B.

Now, we have the tools necessary to recover the skeleton of the model: for
each node we can determine the set of nodes directly connected to it, i.e., its
Neighbors, and then fuse these components. The proposed algorithm is given
below.

Recovery Algorithm: CH1
1. For each node x:

(a) Calculate I021
x .

(b) Neighbor(x) 5 B.
(c) For each y [I021

x :
i. Calculate Kx(y). If Kx(y) 5 B go to step 1.c.iv.

ii. Calculate V*x (y). If V*x (y) 5 B go to step 1.c.iv.
iii. Calculate Vx(y). If Vx(y) 5 B go to step 1.c.iv. Else go

to step 1.c.
iv. Neighbor(x) 5 Neighbor(x) < hyj.

2. Fuse every Neighbor(x), to obtain G.
3. For each node x:

(a) For each pair y, z [Neighbor(x), If I(yuBuz) holds, put the nodes
y, z as parents of x.

4. Direct the remaining edges without introducing new head-to-head con-
nections.

Taking into account the previous results, it is easy to show that the algorithm
gives as the output a simple graph isomorphic to the dependency model:

PROPOSITION 8. Let M be a dependency model isomorphic to a simple graph, and
let L be a list of marginal and first-order conditional independence relationships
obtained from M. Let G be the graph obtained by the Algorithm CH1. Then M
is isomorphic to G.

508 DE CAMPOS AND HUETE

Figure 3. Simple graph.

The following example shows how the recovery algorithm works. We use
the simple graph in Figure 3 as a hidden model, where the set of variables is
U 5 h1, . . . , 18j and we study how the algorithm constructs the set of neighbors
for nodes 12 and 16. For note 16, we find that I021

16 5 h1, 3, 12, 14, 15, 17, 18j.
We can construct K16(1) 5 h3, 12, 14, 15j and then, by considering that
3 [K16(1), I(3uBu15) and ¬I(3u1u15), we conclude that 3 [V*16(1). Using analogous
reasoning, we obtain the set V*16(1) 5 h3, 12, 14, 15j. Similarly, V*16(3) 5 h12, 14j.
The other sets V*16(.) are equal to the empty set. The next step is to construct
the sets V16(1) and V16(3); in this case, we find that there is no element that may
be excluded from V16(1) and V16(3) and then, nodes 1, 3 are eliminated, so
Neighbor(16) 5 h12, 14, 15, 17, 18j.

To conclude the example, we now consider node 12. We find that I021
12 5 h4,

5, 6, 9, 10, 11, 16j and obtain the sets V*12(4) 5 h5, 6, 9, 10, 11j, V*12(5) 5 h9, 10j,
V*12(6) 5 h9, 11j and V*12(9) 5 h5, 6j, with the other sets V*12(.) being empty. Again,
we find that the sets V12(.) are all nonempty, except for V12(9), in which nodes
7 and 8 verify the conditions that exclude nodes 5 and 6, respectively. Finally,
we find that neighbor(12) 5 h9, 10, 11 16j.

As a direct consequence of Proposition 8, we can deduce the following
theoretical result, which gives a new condition of isomorphy for simple graphs.

THEOREM 3. Let G1, G2 be two simple graphs. Then, the following conditions
are equivalent:

1. G1 and G2 are isomorphic.
2. G1 and G2 have the same marginal and first-order conditional independence relation-

ships.

SIMPLIFIED BELIEF NETWORKS 509

We conclude this section with some comments about the efficiency of the
recovery algorithm:

● The algorithm can be implemented locally in part, the calculations are independent
for each variable: only the transition from V*x (y) to Vx(y) cannot be made in a
purely local way. This would make it possible to use distributed computation.

● The algorithm needs a polynomial number of independence tests, O(n3).
● The independence tests needed are marginal independence test and first-order

conditional independence tests. Therefore, we can calculate the tests in polyno-
mial time.

● Knowing the results of the tests, the algorithm obtains a simple graph in polynomial
time, O(n4).

VI. DETECTING SIMPLE GRAPH ISOMORPHISMS

In this section we study the following problem: ‘‘Given a dependency model
isomorphic to a general directed acyclic graph, but not necessarily isomorphic
to a simple graph, can we efficiently detect whether a simple graph that fits
the model exists?’’ We propose an algorithm that, by reducing the number of
conditional independence tests of order greater than one to the minimum (which
may be zero), answers this question. If the model may be represented by a simple
graph, the algorithm gives its graphical structure as the output, otherwise the
output is an error code. Moreover, the algorithm is still polynomial in the number
of independence tests needed.

If we know in advance that the model can be represented by a simple graph,
the previous algorithm CH1 recovers the structure (and does so efficiently). The
problem arises when we do not know whether or not the underlying model is
isomorphic to a simple graph, although we assume that it is dag-isomorphic. In
that case, we have to check (1) whether the output of the algorithm is a simple
graph and also (2) whether this graph is isomorphic to the model.

We propose the following modified recovery algorithm, CH2:

Recovery Algorithm: CH2
1. For each x:

(a) Calculate I021
x .

(b) Neighbor(x) 5 B.
(c) For each y [I021

x :
i. Calculate Kx(y). If Kx(y) 5 B go to step 1.c.iv.

ii. Calculate V*x (y). If V*x (y) 5 B go to step 1.c.iv.
iii. Calculate Vx(y). If Vx(y) 5 B go to step 1.c.iv. Else go

to step 1.c.
iv. Neighbor(x) 5 Neighbor(x) < hyj.

2. Fuse every Neighbor(x), to obtain G.
3. For each x:

(a) For each pair y, z [Neighbor(x), If I(yuBuz) holds, put the nodes
y, z as parents of x.

510 DE CAMPOS AND HUETE

4. Checking 0-1 Independence Statements:
(a) For each x, y, z in G such that the edges x—y and y—z belong

to G:
i. If (x R y r z) [G and ¬I(xuBuz) in the model,

then give as the output an error code.
ii. If (x r y R z), (x R y r z) Ó G and ¬I(xuyuz) in the

model, then give as the output an error code.
5. Direct the remaining links without introducing new head-to-head connec-

tions. If the orientation is not feasible, then give as the output an er-
ror code.

6. For each Vx(y) ? B:
If ¬I(xuVx(y) > Parentsxuy) in the model, then give an error code
as the output.

Observe that the first three steps in CH2 are the same as in the algorithm
CH1, i.e., we are using the same methodology, but now we need additional steps,
because we do not have the additional information to ensure us that the model
may be represented by a simple graph. In that case, after executing steps 1, 2,
and 3 in the algorithm CH2, we cannot be sure that the resultant graph is simple,
so we have to check it. Step 4 does this implicitly: note that if the model can be
represented by a simple graph, then all the head-to-head connections in the
output structure must represent true marginal independence statements in the
model, and any conditional independence relationship between parents and chil-
dren for a node x, i.e., I(pxuxuhx), must also be a valid independence relationship
in the model. These are the reasons for including steps 4(a.i) and 4(a.ii). Proposi-
tion 9 states that we can guarantee that the output structure, obtained after
executing step 5 in the algorithm CH2, is a simple graph (and we can check this
by using only independence tests of order zero and one).

PROPOSITION 9. Let M be a dag-isomorphic dependency model. If after executing
step 5 of the algorithm CH2 we do not obtain an error code, then the output
structure, G, is a simple graph.

Let us suppose that, after executing step 5, the algorithm does not fail, i.e.,
we get a simple graph G. This fact still does not guarantee that the model is
isomorphic to a simple graph. For example, for the dag GM displayed in Figure
4, the graph, G, obtained by the algorithm after step 5 (also displayed in the
same Figure) is simple, but obviously GM and G are not isomorphic. In order to
guarantee that G represents the model, we need an additional check. If the
model cannot be represented by a simple graph, then, in the nonsimple dag
isomorphic to the model M, GM, there has to exist a cycle cM having only one
head-to-head node; so, every pair of nodes x, y [cM are marginally dependent,
i.e., ¬I(xuBuy). If all the direct connections in GM, involving nodes from cM, would
correspond to arcs in G, then we would also have a cycle c in G, involving the
same nodes as cM. However, this cycle c cannot contain only one head-to-head
node (because we suppose that the algorithm did not fail, hence G is simple),

SIMPLIFIED BELIEF NETWORKS 511

Figure 4. 0-1 Isomorphic structures GM and G.

it has to contain at least one additional head-to-head node; but the algorithm
only introduces head-to-head nodes after checking the corresponding marginal
independence (step 3.a), and we know that no marginal independence exists.
Therefore, if the model is not isomorphic to a simple graph, we conclude that
some link has been eliminated improperly by the algorithm, i.e., a node y has
been incorrectly excluded from the set of neighbors of some node x. Looking
at the algorithm, we see that links are eliminated at steps 1(a) or 1(c.iii). In the first
case, the independence relationships are tested, and so the edges are eliminated
correctly. However, in step 1(c.iii), a link x—y is eliminated [because Vx(y) ?
B] assuming that we are considering simple graphs. The problem arises because of
this assumption. Proposition 10 shows that, by testing the independence statement
I(xuVx(y) > Parentsxuy), with Parentsx being the set of parents for node x in the
output graph G (step 6 in the CH2 algorithm), we can determine whether G
represents the model or not. Observe that if the independence relationship
I(xuVx(y) > Parentsxuy) holds, the set Vx(y) > Parentsx is a set of minimal
cardinality d-separating x and y, i.e., this set coincides with the separator set
Fx(y). Although we could test this relationship before eliminating the edge,
taking into account that higher order independence tests must be used in this
process, they are delayed until the end.

PROPOSITION 10. Let M be a dag-isomorphic dependency model. Then, M is
isomorphic to a simple graph if, and only if, the algorithm CH2 gives a simple
graph as its output.

Finally, since step 6 of the algorithm CH2 needs to use higher order indepen-
dence tests, we consider the following question: what independence properties
can be obtained if we do not execute step 6? For example, consider the dag-
isomorphic dependency model GM, represented in Figure 4, and the simple graph
G (also displayed in Fig. 4) obtained after executing step 5 of the algorithm.

In this case, we can easily see that the graph G obtained by the first five
steps of CH2 (supposing that it does not fail) is neither an I-map nor a D-map
of the model: for example, for the model in Figure 4, we find that I(x6ux4, x5ux2)
is true in the model, but is not true in the graph G, hence G is not a D-map;

512 DE CAMPOS AND HUETE

moreover, we know that I(x4ux1, x2ux6) is not true in the model, but is true in G,
so G is not an I-map.

Thus, we conclude, as was to be expected, that using only zero- and first-
order independence relationships, we cannot always ensure that higher order
independences are preserved. The next question is to consider what happens
with the relationships used by the algorithm, i.e., the zero- and first-order indepen-
dence statements? We can prove that the simple graph given as the output by
the first five steps of CH2 has the same zero- and first-order independence
relationships as the model, and therefore we can say that these structures are
0-1 Isomorphics (although this result is quite intuitive, its formal proof is very
long and complicated, so we do not include it; a complete proof is to be found
in Ref. 26).

Finally, let us briefly summarize the different possibilities that we may face:

● If we know that the input model can be represented by a simple graph, then the
algorithm CH1 (steps 1..3 and 5 of algorithm CH2) recovers its structure using
only zero- and first-order conditional independence tests.

● If, on the other hand, we do not know whether the model may be represented by
a simple graph, then the algorithm CH2 (steps 1..5) efficiently recovers a simple
representation of the model, whenever it exists, i.e., a simple graph that has the
same zero- and first-order independence relationships as the model.

● If step 6 of the algorithm CH2 is also executed, then we can distinguish whether
the given model is isomorphic to a simple graph (and in this case the simple graph
representing the model is obtained as the output) or not by using some additional
independence tests of an order greater than one.

VII. CONCLUDING REMARKS

In this article we have presented an efficient algorithm for recovering simple
graphs, based on a detailed study of the properties of the independence relation-
ships that these structures can support. When we know that the hidden graph
is in fact a simple graph, the algorithm recovers a graph isomorphic to it, using
only zero- and first-order conditional independence tests. We have also discussed
how the algorithm can be used for learning when no previous information about
the hidden graph is known. In that case, it can be detected whether this graph
is simple or not by using a polynomial number of independence tests, some of
them of an order greater than one. The properties of the simple graphs obtained
without carrying out higher order independence tests have been studied too.
Our algorithm improves the complexity and reliability of previous results, at the
cost of adding the assumption of dag-isomorphism. As the algorithm is based
on an abstract concept of independence, it can be applied for learning belief
networks using formalisms for representing the uncertainty which is not necessar-
ily probabilistic1,16,17 In some of these uncertainty models, independence tests can
be computationally very expensive, so the use of zero- and first-order conditional
independence tests allows us to obtain faster and more reliable results.

In future work, we should study how simple graphs can be used to approxi-
mate general dags. Since a richer set of independence relationships may be

SIMPLIFIED BELIEF NETWORKS 513

represented in simple graphs, we expect to obtain better approximate models
than by using singly connected graphs. An axiomatic characterization of simple
graphs, in terms of independence properties, might be worth studying: our pur-
pose would be to find a finite set of independence properties that, as for other
kinds of graphs (such as singly connected networks,18 chordal graphs27 or undi-
rected graphs1), ensures that a dependency model is equivalent to a simple graph.
Another direction for research would be to design algorithms that, also using
previous information to restrict the type of underlying structure, would allow us
to recover more general graphs.

This work has been supported by the DGICYT under Project No. PB92-0939.

APPENDIX

In this appendix, we include the proofs of all the results stated in the main
body of the article.

PROPOSITION 1. Let G be a simple graph, and x, y two nodes in G. If there is an
active trail c that belongs to either HT(x, y) or TH(x, y), then c is the only active
trail linking x and y in G.

Proof. Let us suppose that there are at least two active trails linking x and y, c1

and c2, and assume that c1 [TH(x, y) (the case c1 [HT(x, y) is similar).

(a) Suppose that c1 and c2 have no node in common, except x and y. In this case,
we find that: (1) if c2 [TH(x, y) or c2 [HH(x, y), then there are two direct
parents for y with either a common ancestor or one parent is an ancestor of the
other, which is a structure forbidden in simple graphs; (2) if c2 [HT(x, y), we
obtain a directed cycle, also forbidden because G is a dag. In any case, we obtain
a contradiction.

(b) Suppose that there is at least a node a, (a ? x and a ? y) belonging to both c1

and c2. In that case, the active trail c2 can be obtained by combining trails
like:

● c92(ai, aj), with ai and aj being the only nodes in c92 that belong to c1, and at
least one of ai, aj being different from x and y.

● c02(bi, bj) with all the nodes in c02 belonging to c1.

Note also that at least one trail of type c92 must exist. Then, since c1 [TH(x, y),
we find that the subtrail of c1 linking ai and aj belongs to TH(ai, aj). So, we
are in the same position as before [case (a)], and therefore we also obtain
a contradiction.

The conclusion is that c1 has to be the only active trail linking x and y. j

PROPOSITION 2. Let G be a simple graph and let c be an active trail linking two
nodes x and y in G. Then, c is blocked by any node z in this trail and there is no
nonactive trail linking x and y which is opened by z.

514 DE CAMPOS AND HUETE

Proof. From the d-separation criterion we directly obtain that c is blocked by
z. Now, in order to prove that z does not open any nonactive trail, let us suppose
that there is a nonactive trail e linking x and y which is opened by z. In this case,
z has to be the only head-to-head node in e (or z is a descendant of every head-
to-head node in e). Consider two different cases:

1. Suppose that c [TH(x, y) [the case c [HT(x, y) is completely analogous]. Since
z opens the nonactive trail e, we can find a node p, p Ó c, p [e,
which is a parent of the head-to-head node nearest y in the trail e (and therefore
p is an ancestor of z). Then, we have an active trail c1 [TH(p, y) linking p and
y (this trail goes through z). On the other hand, as p is the parent of the head-
to-head node nearest to y in e, then another active trail c2, must exist connecting
p and y. Therefore, we find two active trails, c1 and c2, linking p and y, and c1 [
TH(p, y), in contradiction with Proposition 1.

2. Suppose that c [HH(x, y). Since z is a node in c, we can find an active trail
belonging to either TH(z, y) or HT(z, x) (which is a subtrail of c). Now, we
can apply the same reasoning used above, also obtaining a contradiction with
Proposition 1.

Therefore, there is no nonactive trail linking x and y which is opened by z. j

PROPOSITION 3. Let G be a simple graph, and let x, y be two nonadjacent nodes
in G, such that there exists at least one active trail linking x and y. Let rx(y) be
the set of nodes connected directly to x in any active trail linking x and y. Then
I(xurx(y)uy) holds in G.

Proof. As rx(y) contains a node from each active trail linking x and y, then all
these active trails are blocked by rx(y). Moreover, from Proposition 2, we know
that no nonactive trail is opened by instantiating the nodes in rx(y). Therefore,
all the trails linking x and y are blocked by rx(y), hence x and y are d-separated
by (are independent given) rx(y). j

PROPOSITION 4. Let G be a directed acyclic graph. Then G is a simple graph if,
and only if, for every node x in G, and for every pair of nodes px, hx, with px [
Parentsx and hx [Childrenx, I(pxuxuhx) holds.

Proof. Necessary condition:
Let G be a simple graph and let x be any node in G. Since, from Proposition 1,
x belongs to the single active trail connecting any node px [Parentsx to any
node hx [Childrenx then, using Proposition 3, we obtain I(pxuxuhx).

Sufficient condition:
Let us suppose that G is not a simple graph. Then, we can find a cycle having
only one head-to-head node. Let u be this node, and let pu, qp be nodes such
that the trail qp R pu R u belongs to the cycle (we can always find this trail,
because u is the only head-to-head node in the cycle). Therefore, there is an
active trail linking qp and u not including pu (the other part of the cycle which

SIMPLIFIED BELIEF NETWORKS 515

does not pass through pu). Then, using d-separation, we find ¬I(qpupuuu), which
contradicts the hypothesis. Thus, the graph must be simple. j

PROPOSITION 6. Let G be a simple graph, and let x, y be any two nodes in G.
Then, y belongs to I021

x if, and only if, there is either an active cycle between x and
y, or a direct connection between x and y in G.

Proof. Necessary condition:
Let us suppose that y [Io21

x , i.e., there are neither zero nor first-order
conditional independence statements between x and y, and assume that x and y
are not adjacent. Since x and y are marginally dependent, we can find at least one
active trail, c, connecting x and y. Two different alternatives may be considered:

1. Suppose that c is the only active trail linking x and y. Let z be the node of c
adjacent to x. Now, using Proposition 3, we obtain I(xuzuy), contradicting the fact
that there are no first-order conditional independence statements between x and y.

2. Suppose that there are at least two active trails connecting x and y. Then,
by using Proposition 1, we know that these trails must belong to
HH(x, y), and therefore each pair of trails forms an active cycle. If x is not a
head-to-head node in any of these cycles (the same reasoning applies to y), then
all the active trails linking x and y must share a common node z, which is a parent
of x. Once again using Proposition 3, we obtain I(xuzuy) (because rx(y) 5 hzj),
contradicting the fact that there is no first-order conditional independence state-
ment between x and y. Therefore, we conclude that x and y are the head-to-head
nodes in every active cycle containing x and y, hence there is an active cycle
between x and y in G.

The sufficient condition follows immediately from the d-separation criterion. j

Now, we shall prove Proposition 7. First, we prove some preliminary lemmas.

LEMMA 1. Let G be a simple graph, and let x, y be two nodes in G such that there
is at least one active cycle between x and y in G. Then V*x (y) is not empty.

Proof. We shall see that V*x (y) always includes at least the parents of x in any
active trail in the cycle connecting x and y.

Since there is an active cycle between x and y, then we can find at least two
active trails in HH(x, y). Let wi, wj be the parents of x in these trails. It is clear
that wi and wj belong to I021

x . Moreover, considering the active trail connecting
wi and y, we find that ¬I(wiuxuy) holds, and therefore wi [Kx(y) (and wj [
Kx(y), too). On the other hand, as G is simple, we know that I(wiuBuwj) has to
be true, and taking into account that there is a head-to-head connection at y,
we deduce that ¬I(wiuyuwj) holds. Therefore, wi and wj are in V*x (y), hence
V*x (y) ? B. j

The following lemmas identify graphically the prototypical skeletons that
we can find whenever there is a direct connection between x and y and V*x (y)
is not empty. In the figures, a dashed line represents a particular kind of active

516 DE CAMPOS AND HUETE

Figure 5. Active trail TH(x, y).

trail, instead of the trail itself; for example, x r---ai---R y represents any trail
in HH(x, y):

LEMMA 2. Let G be a simple graph, and let x, y be nodes in G such that y is a
child of x, i.e., a direct connection in TH(x, y) exists. Then V*x (y) is not empty if
and only if the graph in Figure 5 is a subgraph of G.

Proof. Sufficient condition:
Using the d-separation criterion on the graph in Figure 5, we can easily see

that wi and wj belong to V*x (y).
Necessary condition:

Suppose that V*x (y) is not empty and let wi be any node in V*x (y). In this
case, we can find at least some other node wj in V*x (y). As wi, wj are also in
I021

x then, according to Proposition 6, they are parents, children or nodes forming
an active cycle with x. Moreoever, since I(wiuBuwj) holds, neither wi nor wj can
be children of x. Thus, suppose that wi is a parent of x (the same reasoning
applies for wj). In that case, there is an active trail TH(wi, y), which includes
node x. Then, by using Proposition 4, we would deduce that I(wiuxuy) holds,
contradicting the fact that wi [Kx(y). So, wi (and also wj) cannot be a parent
of x. Therefore, the only possibility is that there are active cycles between wi

and x and between wj and x. So, at least two active trails connecting wi (and wj)
with x exist and then, we find that x belongs to some active trails HH(y, wi).
Moreover, since wi belongs to Kx(y), we know that ¬I(wiuxuy) holds. Therefore,
from Proposition 3, at least an active trail, c, connecting wi to y, not including
node x, must exist. Finally, by using Proposition 1, this active trail c has to be
of the HH(wi , y) type. So, we obtain the subgraph in Figure 5. j

LEMMA 3. Let G be a simple graph, and let x, y be nodes in G such that y is a
parent of x, i.e., a direct connection in HT(x, y) exists. Then V*x (y) is not empty
if and only if one of the graphs in Figure 6 is a subgraph of G.

Proof. Sufficient condition:

SIMPLIFIED BELIEF NETWORKS 517

Figure 6. Active trail HT(x, y).

It follows directly, by applying the d-separation criterion to the graphs in
Figure 6, that wi and wj belong to V*x (y).
Necessary condition:

As V*x (y) is not empty, we can find at least two nodes wi and wj belonging
to V*x (y). Once again, we shall see that wi and wj are neither parents nor children
of node x:

1. Suppose that wi (analogous for wj) is a child of x: in this case, as y is a parent of
x, using Proposition 4, I(wiuxuy) holds, contradicting the fact that wi [Kx(y).

2. Suppose that wi (analogous for wj) is a parent of x: in this case, wi and y have a
common child, x, and therefore (because we are considering simple graphs),
I(wiuBuy) holds, i.e., there is no active trail between wi and y. But we also know
that I(wiuBuwj) and ¬I(wiuyuwj) hold, and this implies, using d-separation, that
there is an active trail between wi and y, which is a contradiction.

Therefore, since wi, wj [I021
x and they are neither parents nor children of x,

then there is at least one active cycle between x and wi, i.e., two active trails in
HH(x, wi) (and the same happens for wj). Once again, from the fact that I(wiuBuwj)
and ¬I(wiuyuwj) hold, there is at least one active trail between wi and y, and,
considering that x is a child of y, we find that the form of these trails is c1 5
(wi 2 . . . 2 y R x). But we know that between wi and x there is an active trail
belonging to HH(wi, x), so according to Proposition 1, we find that c1 is also in
HH(wi, x), i.e., c1 5 (wi r . . . 2 y R x). Using a similar reasoning, we can find
an active trail c2 [HH(wj, x), such that y [c2, i.e., c2 5 (wj r . . . 2 y R x).
As wi and wj are marginally independent, i.e., there is no active trail connecting
wi and wj, we can find at least one head-to-head node in c1 > c2. If c1 and c2

intersect only at nodes x and y, we obtain the graphical representation in Figure
6(a); on the other hand, if they also intersect at another node, we obtain the
graphical representation in Figure 6(b). j

PROPOSITION 7. Let G be a simple graph, and x, y two nodes in G such that
y [I021

x . Then, there exists an active cycle between x and y in G if, and only if,
Vx(y) ? B.

Proof. In order to prove the result, we are going to demonstrate the equivalent
assertion: there is a direct connection between x and y in G if, and only if,
y [I021

x and Vx(y) 5 B.

518 DE CAMPOS AND HUETE

Necessary condition:
Suppose that there is a direct connection between x and y. Then, we obtain

directly that y [I021
x . Now, suppose that V*x (y) is not empty. In that case,

considering Lemmas 2 and 3, we find that for any node w in V*x (y) there is an
active cycle between x and w (like wi and wj in Figs. 5 and 6). We shall consider
the two possible direct connections between x and y.

1. Suppose that the connection belongs to HT(x, y), i.e., y R x [G. Let w be any
node in V*x (y). Using Lemma 3, let a be a parent of node y belonging to an active
trail connecting w and y. In this case, node a verifies that a [I021

x and that
¬I(auBuw), Moreover, the independence statements defining Vx(y) (condition b)
hold i.e., ¬I(auBux), I(auyux) and ¬I(auyuw). Therefore, every node w in V*x (y)
can be removed, hence Vx(y) is empty.

2. Suppose that the connection belongs to TH(x, y), i.e., y r x [G. Using Lemma
2, for each node w [V*x (y) we can find a node a that allows us to remove w
from Vx(y): let a be a parent of y in an active trail connecting w and y. Then, we
have a [I021

y and ¬I(auBuw). Moreover, for this node, we can find that the
relationships defining Vx(y) (condition a), I(auBux) and ¬I(auyux) are verified, and
therefore w does not belong to Vx(y). Thus, we may also conclude that the set
Vx(y) must be empty.

Sufficient condition:
Suppose that y [I021

x , Vx(y) 5 B, but there is no direct connection between
x and y. Using Proposition 6, we obtain that there is an active cycle between x
and y. Then, from Lemma 1 we conclude that V*x (y) is not empty. We shall
show that not all the nodes in V*x (y) can be removed from Vx(y), so that Vx(y)
would be nonempty.

Let w be any parent of node x in the active cycle between x and y. Then,
the proof of Lemma 1 shows that w is in V*x (y). In order to obtain an empty
Vx(y) we would have to remove w from this set. Thus, it is necessary to find a
node a in I021

y satisfying the independence statements that define Vx(y). Consider-
ing Proposition 6, since a [I021

y , the different alternatives for a are:

1. a is a child of y: in this case, we have ¬I(auBuw) and ¬I(auBux). Let us see that
the other independence statements (in case b) can not be verified simultaneously:
if ¬I(auyuw) is true, then there is an active trail linking a and w not including y,
and therefore we deduce ¬I(auyux).

2. a is a parent of y: in order to verify ¬I(auBuw), an active trail linking w and a must
exist, and so we deduce ¬I(auBux). But then we can also easily deduce ¬I(auyux).

3. There is an active cycle between a and y: the same reasoning used in the previous
case is still valid.

Thus, we conclude that, for node w, we cannot find another node a satisfying
the conditions that would allow us to remove w from Vx(y), which contradict
the hypothesis. Therefore, a direct connection between x and y must exists. j

PROPOSITION 8. Let M be a dependency model isomorphic to a simple graph, and
let L be a list of marginal and first-order conditional independence relationships

SIMPLIFIED BELIEF NETWORKS 519

obtained from M. Let G be the graph obtained by the Algorithm CH1. Then M
is isomorphic to G.

Proof. Let GM be any simple graph isomorphic to M. In order to prove the
proposition, it is suffice to see that GM has the same skeleton and the same head-
to-head connections as G. First, we shall see that for any node x in G we obtain
the same set of neighbors as in GM. Let y be any node in GM, y ? x. If between
x and y there is neither zero- nor first-order independence relationships in GM,
i.e., y [I021

x then, from Proposition 6, we know that there is a direct connection
between x and y or there is an active cycle between x and y. By using Proposition
7 we find that if there is a direct edge connecting x and y in GM, then Vx(y) is
empty and the algorithm inserts node y as direct neighbor of x [step 1 (c.iv)].
If, on the other hand, there is an active cycle between x and y, we obtain a
nonempty Vx(y), and in that case, node y is not included as a direct neighbor
of x [step 1 (c.iii)]. Therefore, after running the algorithm, there is a direct edge
between x and y in G, if and only if this connection exists in GM.

Now, we shall see that G has the same head-to-head connections as GM. We
know that any head-to-head connection in GM involves a marginal independence
statement. Therefore, since the algorithm checks this property [step 3(a)] before
including any head-to-head connection, we conclude that G has the same set of
head-to-head connections as GM. j

PROPOSITION 9. Let M be a dag-isomorphic dependency model. If after executing
step 5 of the algorithm CH2 we do not obtain an error code, then the output
structure, G, is a simple graph.

Proof. Since M is dag-isomorphic, let GM be any dag isomorphic to M, and G
be the graph obtained by the algorithm CH2.

1. First, we shall see that G is a dag, i.e., there is no directed cycle in G:
Suppose that c is a directed cycle in G, and let x1, . . . , xn21,

xn(5 x1) be the sequence of nodes in c, i.e., the substructure x1 R x2 R . . . R
xn21 R x1 appears in G. Let xi, xi11, xi12 be any three consecutive nodes in c. We
find that ¬I(xiuBuxi12) holds in the model [this has been tested by the algorithm
in step 3(a)]. Then, using the d-separation criterion, we find that there is at least
one active connection between xi and xi12 in GM. Now, using that I(xiuxi11uxi12)
holds [tested in step 4(a.ii) of the algorithm] and again the d-separation criterion,
we find that node xi11 belongs to this connection in GM. Since these properties
hold for any sequence of three nodes in c, we may conclude that, in GM, there is
a (undirected) cycle including nodes x1, . . . , xn21. In this case, as GM is a dag, we
know that at least there is a head-to-head node for this cycle in GM. Suppose
that xj is such a head-to-head node. Then, we obtain ¬I(xj21uxjuxj11), which is a
contradiction since, in step 4(a.ii) it had been tested that this independence relation-
ship was true. Therefore, there is no directed cycle in G.

2. Now, let us see that any cycle in G has to contain at least two head-to-head nodes:
Suppose that there is a cycle c in G having only one head-to-head node, x.

Let x1 and xn be the parents of x in c, x2, . . . , xn21 the other nodes in c, and let
xj be the (single) tail to tail node belonging to c. Thus, we have two active trails
c1, c2 [TH(xj, x) in G. Let xk, xk11, xk12 be any three consecutive nodes in c1

520 DE CAMPOS AND HUETE

(equivalently for c2). In that case, we know that ¬I(xkuBuxk12) and I(xkuxk11uxk12)
(otherwise, the algorithm would have produced an error code). Therefore, with
a reasoning similar to the one used before, we find that, in GM, there are at least
two active connections between xj and x, each one including those nodes in c1 and
c2, respectively. We also know that I(x1uBuxn) holds [tested in step 4(a.i)], so the
node xj must be a head-to-head node in GM for these connections [otherwise, we
would have an active connection linking x1 and xn in GM, which contradicts
I(x1uBuxn)], and therefore we obtain ¬I(xj21uxjuxj11). Taking into account that the
algorithm did not give an error code as the output in step 4(a.ii), then the trail
xj21 r xj R xj11 had to be oriented before executing step 4(a.ii) [i.e., the algorithm
oriented these edges in step 3(a)].

Now, we focus on the arc xj R xj11 in G (the same reasoning applies to the
arc xj21 r xj). Since this arc was oriented in step 3(a), we can find a node y,
adjacent to xj11 in G, such that xj R xj11 r y belongs to G. So, the algorithm
found I(xjuBuy) true, and then xj11 is a head-to-head node for the connections
between xj and y in GM. Therefore, we can conclude that all the active connections
between xj and xj11 in GM must be HH(xj, xj11). This implies that the active connec-
tion between xj and x, which passes through xj11, and xn is head on xj11, so that
we have an active connection TH(xj11, xn) in GM. The same reasoning allows us
to deduce also that there is an active connection TH(xj21, x1) in GM. On the other
hand, we know that ¬I(xj21uBuxj11), otherwise we would have directed the arcs as
xj21 R xj r xj11 at step 3(a). So, we can ensure that, in GM, there is an active trail
linking xj21 and xj11. Then, by combining this trail with the trails TH(xj21, x1) and
TH(xj11, xn), we obtain an active trail linking x1 and xn in GM, which contradicts
the statement I(x1uBuxn).

Therefore, we conclude that it is not possible that a cycle in G includes only
one head-to-head node, hence the graph G has to be simple. j

PROPOSITION 10. Let M be a dag-isomorphic dependency model. Then, M is
isomorphic to a simple graph if, and only if, the algorithm CH2 gives a simple
graph as its output.

Proof. Necessary condition:
If the model can be represented by a simple graph, we know (Proposition

8) that the first three steps in CH2, which are the same as in algorithm CH1,
correctly identify the skeleton and all the head-to-head nodes of a simple graph
isomorphic to M. Then, the independence checkings in step 4 cannot produce
an error code. Moreover, in step 6, if Vx(y) is not empty, then there is an
active cycle between x and y (Proposition 7), and the independence relationship
I(xuVx(y) > Parentsxuy) has to be true, hence the algorithm does not fail, and
gives a simple graph isomorphic to M as the output.

Sufficient condition:
Let G be the simple graph obtained by the algorithm. Suppose that the

model is not isomorphic to a simple graph, and let GM be any dag isomorphic
with M. As GM is not simple, then there exists a cycle in GM with only one head-
to-head node, x. Let y be a parent of x in this cycle, and z a node adjacent to
y, also in the cycle. Note that there are neither zero- nor first-order independence
relationships between any pair of x, y and z. In that case, if all Va(b) (with a,
b taking values in x, y, and z) were empty, then the edges x—y, y—z, z—x

SIMPLIFIED BELIEF NETWORKS 521

would belong to the output graph G, contradicting the fact that this graph is
simple (and therefore it is atriangular). Then, some set Va(b) has to be non empty,
and therefore, as the algorithm did not fail, the corresponding independence
statement I(auVa(b) > Parentsaub) must be ture.

Consider Qa(b) 5 Va(b) > Parentsa, that is to say, the variables in Va(b)
which are adjacent to a in G. At least one of the following relationships hold:
(1) I(xuQx(y)uy), (2) I(yuQy(z)uz), or (3) I(xuQx(z)uz).

As x, y, and y, z are adjacent in GM, statements 1 and 2 do not hold.
Thus, I(xuQx(z)uz) is the only alternative, but in this case, using the d-separation
criterion, we find that all the active connections between x and z in GM (and we
know that there are at least two of them) are blocked by Qx(z). Then, at least
y and some node, v, belonging to the other active connection between x and z
in GM, must belong to Qx(z). In these circumstances, since y and v belong to
Vx(z) > Parentsx, we deduce that I(yuBuv) is true [the algorithm has verified this
assertion in step 3(a), which represents a contradiction because there is an active
trail in the cycle connecting y and v in GM. Therefore, we conclude that the
model must be isomorphic to a simple graph. j

References

1. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
Morgan Kaufmann, San Mateo, 1988.

2. J. Gebhardt and R. Kruse, ‘‘Learning possibilistic graphical models,’’ in Proceeding
of Third European Congress on Intelligent Techniques and Soft Computing
(EUFIT’95), 1995, pp. 57–64.

3. L.M. de Campos and J.F. Huete, ‘‘Learning non probabilistic belief networks,’’ in
Symbolic and Quantitative Approaches to Reasoning and Uncertainty, Lecture Notes
in Computer Science 747, M. Clarke, R. Kruse, and S. Moral, Eds., Springer-Verlag,
Berlin, 1993, pp. 57–64.

4. S.L. Lauritzen and D.J. Spiegelhalter, ‘‘Local computations with probabilities on
graphical structures and their applications to expert systems’’ (with discussion), J.
Roy. Statist. Soc. (Ser B), 50, 157–224 (1988).

5. D. Heckerman, D. Geiger, and D. Chickering, Learning Bayesian Networks: The
Combination of Knowledge and Statistical Data, Technical Report MSR-TR-94-09,
Microsoft Research, 1995.

6. G.F. Cooper and E. Herskovits, ‘‘A bayesian method for the induction of probabilistic
networks from data,’’ Mach. Learn. 9, 309–347 (1992).

7. D. Heckerman, D. Geiger, and D.M. Chickering, ‘‘Learning bayesian networks: The
combination of knowledge and statistical data,’’ in Proceedings of the Tenth Conference
on Uncertainty in Artificial Intelligence, R. López de Mántaras and D. Poole, Eds.,
Morgan Kaufmann, 1994, pp. 293–301.

8. W. Lam and F. Bacchus, ‘‘Using causal information and local measures to learn
bayesian belief networks,’’ in Proceedings of the Ninth Conference on Uncertainty in
Artificial Intelligence, D. Heckerman and A. Mamdani, Eds., Morgan Kaufmann,
1993, pp. 243–250.

9. D. Spiegelhalter, A. Dawid, S. Lauritzen, and R. Cowell, ‘‘Bayesian analysis in expert
systems,’’ Statist. Sci., 8, 219–283 (1993).

10. D. Geiger, A. Paz, and J. Pearl, ‘‘Learning simple causal structures,’’ Int. J. Intell.
Syst., 8, 231–247 (1993).

11. J. Pearl and T. Verma, ‘‘A theory of inferred causation,’’ in Principles of Knowledge

522 DE CAMPOS AND HUETE

Representation and Reasoning: Proceedings of the Second International Conference,
J.A. Allen, R. Fikes, and E. Sandewall, Eds., Morgan Kaufmann, San Mateo, 1991,
pp. 441–452.

12. P. Spirtes, C. Glymour, and R. Scheines, ‘‘An algorithm for fast recovery of sparse
causal graphs,’’ Social Sci. Computer Rev., 9, 62–72 (1991).

13. P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction and Search, Lecture
Notes in Statistics 81, Springer-Verlag, New York, 1993.

14. D. Chickering, D. Geiger, and D. Heckerman, Learning Bayesian Networks is NP-
Hard, Technical Report MSR-TR-94-17, Microsoft Research, 1994.

15. L.M. de Campos and J.F. Huete, ‘‘Independence concepts in upper and lower probabil-
ities,’’ in Uncertainty in Intelligent Systems, B. Bouchon-Meunier, L. Valverde, and
R.R. Yager, Eds., North-Holland, Amsterdam, 1993, pp. 49–59.

16. L.M. de Campos and J.F. Huete, ‘‘Possibilistic Independence,’’ in Proceeding of Third
European Congress on Intelligent Techniques and Soft Computing (EUFIT’95), 1995,
pp. 69–74.

17. L.M. de Campos and S. Moral, ‘‘Independence concepts for convex sets of probabili-
ties,’’ in Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
P. Besnard and S. Hanks, Eds., Morgan Kauffman, 1995, pp. 108–115.

18. L.M. de Campos, Independency Relationships and Learning Algorithms for Singly
Connected Networks, Technical Report DECSAI-96-02-04, Dept. of Computer Sci-
ence and Artificial Intelligence, Universidad de Granada, 1996.

19. D. Geiger, A. Paz, and J. Pearl, ‘‘Learning causal trees from dependence information,’’
in Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI 90),
1990, pp. 770–776.

20. J.F. Huete and L.M. de Campos, ‘‘Learning causal polytrees,’’ in Symbolic and Quanti-
tative Approaches to Reasoning and Uncertainty, Lecture Notes in Computer Science
747, M. Clarke, R. Kruse, and S. Moral, Eds., Springer-Verlag, Berlin, 1993, pp.
180–185.

21. N. Friedman and M. Goldszmidt, ‘‘Building classifiers using Bayesian networks’’
Proceedings of the National Conference on Artificial Intelligence (AAAI 96), to
appear.

22. D. Heckerman, ‘‘A tractable inference algorithm for diagnosing multiple diseases,’’
in Uncertainty in Artificial Intelligence 5, R.D. Shachter, T.S. Levitt, L.N. Kanal, and
J.F. Lemmer, Eds., Eselvier Science Publishers B.V. North-Holland, 1990, pp.
163–171.

23. T. Verma and J. Pearl, ‘‘Causal networks: Semantics and expressiveness,’’ in Uncer-
tainty in Artificial Intelligence 4, R.D. Shachter, T.S. Lewitt, L.N. Kanal, and J.F.
Lemmer, Eds., North-Holland, 1990, pp. 69–76.

24. L.K. Rasmussen, Blood group determination of Danish Jersey cattle in F-blood group
system, Dina Research Report No. 8, 1992.

25. M. Frydenberg, ‘‘The chain graph Markov property,’’ Scand. J. Statistic, 17, 333–
353 (1990).

26. J.F. Huete, Aprendizaje de Redes de Creencia mediante la detección de independencias:
Modelos no probabilı́sticos, Ph.D. Thesis, Universidad de Granada, 1995.

27. L.M. de Campos, ‘‘Characterizations of decomposable dependency models,’’ J. Artifi.
Intell. Res., 5, 289–300 (1996).

