1,044 research outputs found

    Analyzing Whole-Body Pose Transitions in Multi-Contact Motions

    Full text link
    When executing whole-body motions, humans are able to use a large variety of support poses which not only utilize the feet, but also hands, knees and elbows to enhance stability. While there are many works analyzing the transitions involved in walking, very few works analyze human motion where more complex supports occur. In this work, we analyze complex support pose transitions in human motion involving locomotion and manipulation tasks (loco-manipulation). We have applied a method for the detection of human support contacts from motion capture data to a large-scale dataset of loco-manipulation motions involving multi-contact supports, providing a semantic representation of them. Our results provide a statistical analysis of the used support poses, their transitions and the time spent in each of them. In addition, our data partially validates our taxonomy of whole-body support poses presented in our previous work. We believe that this work extends our understanding of human motion for humanoids, with a long-term objective of developing methods for autonomous multi-contact motion planning.Comment: 8 pages, IEEE-RAS International Conference on Humanoid Robots (Humanoids) 201

    λͺ¨μ…˜ ν”„λ¦¬λ¨Έν‹°λΈŒλ₯Ό μ΄μš©ν•œ λ³΅μž‘ν•œ λ‘œλ΄‡ μž„λ¬΄ ν•™μŠ΅ 및 μΌλ°˜ν™” 기법

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ ν•­κ³΅μš°μ£Όκ³΅ν•™κ³Ό, 2020. 8. κΉ€ν˜„μ§„.Learning from demonstrations (LfD) is a promising approach that enables robots to perform a specific movement. As robotic manipulations are substituting a variety of tasks, LfD algorithms are widely used and studied for specifying the robot configurations for the various types of movements. This dissertation presents an approach based on parametric dynamic movement primitives (PDMP) as a motion representation algorithm which is one of relevant LfD techniques. Unlike existing motion representation algorithms, this work not only represents a prescribed motion but also computes the new behavior through a generalization of multiple demonstrations in the actual environment. The generalization process uses Gaussian process regression (GPR) by representing the nonlinear relationship between the PDMP parameters that determine motion and the corresponding environmental variables. The proposed algorithm shows that it serves as a powerful optimal and real-time motion planner among the existing planning algorithms when optimal demonstrations are provided as dataset. In this dissertation, the safety of motion is also considered. Here, safety refers to keeping the system away from certain configurations that are unsafe. The safety criterion of the PDMP internal parameters are computed to check the safety. This safety criterion reflects the new behavior computed through the generalization process, as well as the individual motion safety of the demonstration set. The demonstrations causing unsafe movement are identified and removed. Also, the demolished demonstrations are replaced by proven demonstrations upon this criterion. This work also presents an extension approach reducing the number of required demonstrations for the PDMP framework. This approach is effective where a single mission consists of multiple sub-tasks and requires numerous demonstrations in generalizing them. The whole trajectories in provided demonstrations are segmented into multiple sub-tasks representing unit motions. Then, multiple PDMPs are formed independently for correlated-segments. The phase-decision process determines which sub-task and associated PDMPs to be executed online, allowing multiple PDMPs to be autonomously configured within an integrated framework. GPR formulations are applied to obtain execution time and regional goal configuration for each sub-task. Finally, the proposed approach and its extension are validated with the actual experiments of mobile manipulators. The first two scenarios regarding cooperative aerial transportation demonstrate the excellence of the proposed technique in terms of quick computation, generation of efficient movement, and safety assurance. The last scenario deals with two mobile manipulations using ground vehicles and shows the effectiveness of the proposed extension in executing complex missions.μ‹œμ—° ν•™μŠ΅ 기법(Learning from demonstrations, LfD)은 λ‘œλ΄‡μ΄ νŠΉμ • λ™μž‘μ„ μˆ˜ν–‰ν•  수 μžˆλ„λ‘ ν•˜λŠ” μœ λ§ν•œ λ™μž‘ 생성 기법이닀. λ‘œλ΄‡ μ‘°μž‘κΈ°κ°€ 인간 μ‚¬νšŒμ—μ„œ λ‹€μ–‘ν•œ 업무λ₯Ό λŒ€μ²΄ν•΄ 감에 따라, λ‹€μ–‘ν•œ μž„λ¬΄λ₯Ό μˆ˜ν–‰ν•˜λŠ” λ‘œλ΄‡μ˜ λ™μž‘μ„ μƒμ„±ν•˜κΈ° μœ„ν•΄ LfD μ•Œκ³ λ¦¬μ¦˜λ“€μ€ 널리 μ—°κ΅¬λ˜κ³ , μ‚¬μš©λ˜κ³  μžˆλ‹€. λ³Έ 논문은 LfD 기법 쀑 λͺ¨μ…˜ ν”„λ¦¬λ¨Έν‹°λΈŒ 기반의 λ™μž‘ μž¬μƒμ„± μ•Œκ³ λ¦¬μ¦˜μΈ Parametric dynamic movement primitives(PDMP)에 κΈ°μ΄ˆν•œ μ•Œκ³ λ¦¬μ¦˜μ„ μ œμ‹œν•˜λ©°, 이λ₯Ό 톡해 λ‹€μ–‘ν•œ μž„λ¬΄λ₯Ό μˆ˜ν–‰ν•˜λŠ” λͺ¨λ°”일 μ‘°μž‘κΈ°μ˜ ꢀ적을 μƒμ„±ν•œλ‹€. 기쑴의 λ™μž‘ μž¬μƒμ„± μ•Œκ³ λ¦¬μ¦˜κ³Ό 달리, 이 μ—°κ΅¬λŠ” 제곡된 μ‹œμ—°μ—μ„œ ν‘œν˜„λœ λ™μž‘μ„ λ‹¨μˆœνžˆ μž¬μƒμ„±ν•˜λŠ” 것에 κ·ΈμΉ˜μ§€ μ•Šκ³ , μƒˆλ‘œμš΄ ν™˜κ²½μ— 맞게 μΌλ°˜ν™” ν•˜λŠ” 과정을 ν¬ν•¨ν•œλ‹€. 이 λ…Όλ¬Έμ—μ„œ μ œμ‹œν•˜λŠ” μΌλ°˜ν™” 과정은 PDMPs의 λ‚΄λΆ€ νŒŒλΌλ―Έν„° 값인 μŠ€νƒ€μΌ νŒŒλΌλ―Έν„°μ™€ ν™˜κ²½ λ³€μˆ˜ μ‚¬μ΄μ˜ λΉ„μ„ ν˜• 관계λ₯Ό κ°€μš°μŠ€ νšŒκ·€ 기법 (Gaussian process regression, GPR)을 μ΄μš©ν•˜μ—¬ μˆ˜μ‹μ μœΌλ‘œ ν‘œν˜„ν•œλ‹€. μ œμ•ˆλœ 기법은 λ˜ν•œ 졜적 μ‹œμ—°λ₯Ό ν•™μŠ΅ν•˜λŠ” 방식을 톡해 κ°•λ ₯ν•œ 졜적 μ‹€μ‹œκ°„ 경둜 κ³„νš κΈ°λ²•μœΌλ‘œλ„ μ‘μš©λ  수 μžˆλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” λ˜ν•œ λ‘œλ΄‡μ˜ ꡬ동 μ•ˆμ „μ„±λ„ κ³ λ €ν•œλ‹€. κΈ°μ‘΄ μ—°κ΅¬λ“€μ—μ„œ 닀루어진 μ‹œμ—° 관리 기술이 λ‘œλ΄‡μ˜ ꡬ동 νš¨μœ¨μ„±μ„ κ°œμ„ ν•˜λŠ” λ°©ν–₯으둜 μ œμ‹œλœ 것과 달리, 이 μ—°κ΅¬λŠ” κ°•ν•œ κ΅¬μ†μ‘°κ±΄μœΌλ‘œ λ‘œλ΄‡μ˜ ꡬ동 μ•ˆμ „μ„±μ„ ν™•λ³΄ν•˜λŠ” μ‹œμ—° 관리 κΈ°μˆ μ„ 톡해 μ•ˆμ •μ„±μ„ κ³ λ €ν•˜λŠ” μƒˆλ‘œμš΄ 방식을 μ œμ‹œν•œλ‹€. μ œμ•ˆλœ 방식은 μŠ€νƒ€μΌ νŒŒλΌλ―Έν„° κ°’ μƒμ—μ„œ μ•ˆμ „μ„± 기쀀을 κ³„μ‚°ν•˜λ©°, 이 μ•ˆμ „ 기쀀을 톡해 μ‹œμ—°μ„ μ œκ±°ν•˜λŠ” 일련의 μž‘μ—…μ„ μˆ˜ν–‰ν•œλ‹€. λ˜ν•œ, 제거된 μ‹œμœ„λ₯Ό μ•ˆμ „ 기쀀에 따라 μž…μ¦λœ μ‹œμœ„λ‘œ λŒ€μ²΄ν•˜μ—¬ μΌλ°˜ν™” μ„±λŠ₯을 μ €ν•˜μ‹œν‚€μ§€ μ•Šλ„λ‘ μ‹œμœ„λ₯Ό κ΄€λ¦¬ν•œλ‹€. 이λ₯Ό 톡해 λ‹€μˆ˜μ˜ μ‹œμ—° 각각 κ°œλ³„ λ™μž‘ μ•ˆμ „μ„± 뿐 μ•„λ‹ˆλΌ 온라인 λ™μž‘μ˜ μ•ˆμ „μ„±κΉŒμ§€ κ³ λ €ν•  수 있으며, μ‹€μ‹œκ°„ λ‘œλ΄‡ μ‘°μž‘κΈ° μš΄μš©μ‹œ μ•ˆμ „μ„±μ΄ 확보될 수 μžˆλ‹€. μ œμ•ˆλœ μ•ˆμ •μ„±μ„ κ³ λ €ν•œ μ‹œμ—° 관리 κΈ°μˆ μ€ λ˜ν•œ ν™˜κ²½μ˜ 정적 섀정이 λ³€κ²½λ˜μ–΄ λͺ¨λ“  μ‹œμ—°μ„ ꡐ체해야 ν•  수 μžˆλŠ” μƒν™©μ—μ„œ μ‚¬μš©ν•  수 μžˆλŠ” μ‹œμ—°λ“€μ„ νŒλ³„ν•˜κ³ , 효율적으둜 μž¬μ‚¬μš©ν•˜λŠ” 데 μ‘μš©ν•  수 μžˆλ‹€. λ˜ν•œ λ³Έ 논문은 λ³΅μž‘ν•œ μž„λ¬΄μ—μ„œ 적용될 수 μžˆλŠ” PDMPs의 ν™•μž₯ 기법인 seg-PDMPsλ₯Ό μ œμ‹œν•œλ‹€. 이 접근방식은 λ³΅μž‘ν•œ μž„λ¬΄κ°€ 일반적으둜 볡수개의 κ°„λ‹¨ν•œ ν•˜μœ„ μž‘μ—…μœΌλ‘œ κ΅¬μ„±λœλ‹€κ³  κ°€μ •ν•œλ‹€. κΈ°μ‘΄ PDMPs와 달리 seg-PDMPsλŠ” 전체 ꢀ적을 ν•˜μœ„ μž‘μ—…μ„ λ‚˜νƒ€λ‚΄λŠ” μ—¬λŸ¬ 개의 λ‹¨μœ„ λ™μž‘μœΌλ‘œ λΆ„ν• ν•˜κ³ , 각 λ‹¨μœ„λ™μž‘μ— λŒ€ν•΄ μ—¬λŸ¬κ°œμ˜ PDMPsλ₯Ό κ΅¬μ„±ν•œλ‹€. 각 λ‹¨μœ„ λ™μž‘ λ³„λ‘œ μƒμ„±λœ PDMPsλŠ” ν†΅ν•©λœ ν”„λ ˆμž„μ›Œν¬λ‚΄μ—μ„œ 단계 κ²°μ • ν”„λ‘œμ„ΈμŠ€λ₯Ό 톡해 μžλ™μ μœΌλ‘œ ν˜ΈμΆœλœλ‹€. 각 단계 λ³„λ‘œ λ‹¨μœ„ λ™μž‘μ„ μˆ˜ν–‰ν•˜κΈ° μœ„ν•œ μ‹œκ°„ 및 ν•˜μœ„ λͺ©ν‘œμ μ€ κ°€μš°μŠ€ 곡정 νšŒκ·€(GPR)λ₯Ό μ΄μš©ν•œ ν™˜κ²½λ³€μˆ˜μ™€μ˜μ˜ 관계식을 톡해 μ–»λŠ”λ‹€. 결과적으둜, 이 μ—°κ΅¬λŠ” μ „μ²΄μ μœΌλ‘œ μš”κ΅¬λ˜λŠ” μ‹œμ—°μ˜ 수λ₯Ό 효과적으둜 쀄일 뿐 μ•„λ‹ˆλΌ, 각 λ‹¨μœ„λ™μž‘μ˜ ν‘œν˜„ μ„±λŠ₯을 κ°œμ„ ν•œλ‹€. μ œμ•ˆλœ μ•Œκ³ λ¦¬μ¦˜μ€ ν˜‘λ™ λͺ¨λ°”일 λ‘œλ΄‡ μ‘°μž‘κΈ° μ‹€ν—˜μ„ ν†΅ν•˜μ—¬ κ²€μ¦λœλ‹€. μ„Έ κ°€μ§€μ˜ μ‹œλ‚˜λ¦¬μ˜€κ°€ λ³Έ λ…Όλ¬Έμ—μ„œ 닀루어지며, 항곡 μš΄μ†‘κ³Ό κ΄€λ ¨λœ 첫 두 가지 μ‹œλ‚˜λ¦¬μ˜€λŠ” PDMPs 기법이 λ‘œλ΄‡ μ‘°μž‘κΈ°μ—μ„œ λΉ λ₯Έ 적응성, μž„λ¬΄ νš¨μœ¨μ„±κ³Ό μ•ˆμ „μ„± λͺ¨λ‘ λ§Œμ‘±ν•˜λŠ” 것을 μž…μ¦ν•œλ‹€. λ§ˆμ§€λ§‰ μ‹œλ‚˜λ¦¬μ˜€λŠ” 지상 μ°¨λŸ‰μ„ μ΄μš©ν•œ 두 개의 λ‘œλ΄‡ μ‘°μž‘κΈ°μ— λŒ€ν•œ μ‹€ν—˜μœΌλ‘œ λ³΅μž‘ν•œ μž„λ¬΄ μˆ˜ν–‰μ„ ν•˜κΈ° μœ„ν•΄ ν™•μž₯된 기법인 seg-PDMPsκ°€ 효과적으둜 λ³€ν™”ν•˜λŠ” ν™˜κ²½μ—μ„œ μΌλ°˜ν™”λœ λ™μž‘μ„ 생성함을 κ²€μ¦ν•œλ‹€.1 Introduction 1 1.1 Motivations 1 1.2 Literature Survey 3 1.2.1 Conventional Motion Planning in Mobile Manipulations 3 1.2.2 Motion Representation Algorithms 5 1.2.3 Safety-guaranteed Motion Representation Algorithms 7 1.3 Research Objectives and Contributions 7 1.3.1 Motion Generalization in Motion Representation Algorithm 9 1.3.2 Motion Generalization with Safety Guarantee 9 1.3.3 Motion Generalization for Complex Missions 10 1.4 Thesis Organization 11 2 Background 12 2.1 DMPs 12 2.2 Mobile Manipulation Systems 13 2.2.1 Single Mobile Manipulation 14 2.2.2 Cooperative Mobile Manipulations 14 2.3 Experimental Setup 17 2.3.1 Test-beds for Aerial Manipulators 17 2.3.2 Test-beds for Robot Manipulators with Ground Vehicles 17 3 Motion Generalization in Motion Representation Algorithm 22 3.1 Parametric Dynamic Movement Primitives 22 3.2 Generalization Process in PDMPs 26 3.2.1 Environmental Parameters 26 3.2.2 Mapping Function 26 3.3 Simulation Results 29 3.3.1 Two-dimensional Hurdling Motion 29 3.3.2 Cooperative Aerial Transportation 30 4 Motion Generalization with Safety Guarantee 36 4.1 Safety Criterion in Style Parameter 36 4.2 Demonstration Management 39 4.3 Simulation Validation 42 4.3.1 Two-dimensional Hurdling Motion 46 4.3.2 Cooperative Aerial Transportation 47 5 Motion Generalization for Complex Missions 51 5.1 Overall Structure of Seg-PDMPs 51 5.2 Motion Segments 53 5.3 Phase-decision Process 54 5.4 Seg-PDMPs for Single Phase 54 5.5 Simulation Results 55 5.5.1 Initial/terminal Offsets 56 5.5.2 Style Generalization 59 5.5.3 Recombination 61 6 Experimental Validation and Results 63 6.1 Cooperative Aerial Transportation 63 6.2 Cooperative Mobile Hang-dry Mission 70 6.2.1 Demonstrations 70 6.2.2 Simulation Validation 72 6.2.3 Experimental Results 78 7 Conclusions 82 Abstract (in Korean) 93Docto

    Expressivity in Natural and Artificial Systems

    Full text link
    Roboticists are trying to replicate animal behavior in artificial systems. Yet, quantitative bounds on capacity of a moving platform (natural or artificial) to express information in the environment are not known. This paper presents a measure for the capacity of motion complexity -- the expressivity -- of articulated platforms (both natural and artificial) and shows that this measure is stagnant and unexpectedly limited in extant robotic systems. This analysis indicates trends in increasing capacity in both internal and external complexity for natural systems while artificial, robotic systems have increased significantly in the capacity of computational (internal) states but remained more or less constant in mechanical (external) state capacity. This work presents a way to analyze trends in animal behavior and shows that robots are not capable of the same multi-faceted behavior in rich, dynamic environments as natural systems.Comment: Rejected from Nature, after review and appeal, July 4, 2018 (submitted May 11, 2018

    Goal Set Inverse Optimal Control and Iterative Re-planning for Predicting Human Reaching Motions in Shared Workspaces

    Full text link
    To enable safe and efficient human-robot collaboration in shared workspaces it is important for the robot to predict how a human will move when performing a task. While predicting human motion for tasks not known a priori is very challenging, we argue that single-arm reaching motions for known tasks in collaborative settings (which are especially relevant for manufacturing) are indeed predictable. Two hypotheses underlie our approach for predicting such motions: First, that the trajectory the human performs is optimal with respect to an unknown cost function, and second, that human adaptation to their partner's motion can be captured well through iterative re-planning with the above cost function. The key to our approach is thus to learn a cost function which "explains" the motion of the human. To do this, we gather example trajectories from pairs of participants performing a collaborative assembly task using motion capture. We then use Inverse Optimal Control to learn a cost function from these trajectories. Finally, we predict reaching motions from the human's current configuration to a task-space goal region by iteratively re-planning a trajectory using the learned cost function. Our planning algorithm is based on the trajectory optimizer STOMP, it plans for a 23 DoF human kinematic model and accounts for the presence of a moving collaborator and obstacles in the environment. Our results suggest that in most cases, our method outperforms baseline methods when predicting motions. We also show that our method outperforms baselines for predicting human motion when a human and a robot share the workspace.Comment: 12 pages, Accepted for publication IEEE Transaction on Robotics 201

    Merging Position and Orientation Motion Primitives

    Get PDF
    In this paper, we focus on generating complex robotic trajectories by merging sequential motion primitives. A robotic trajectory is a time series of positions and orientations ending at a desired target. Hence, we first discuss the generation of converging pose trajectories via dynamical systems, providing a rigorous stability analysis. Then, we present approaches to merge motion primitives which represent both the position and the orientation part of the motion. Developed approaches preserve the shape of each learned movement and allow for continuous transitions among succeeding motion primitives. Presented methodologies are theoretically described and experimentally evaluated, showing that it is possible to generate a smooth pose trajectory out of multiple motion primitives
    • …
    corecore