4 research outputs found

    Incremental and Decremental Maintenance of Planar Width

    Full text link
    We present an algorithm for maintaining the width of a planar point set dynamically, as points are inserted or deleted. Our algorithm takes time O(kn^epsilon) per update, where k is the amount of change the update causes in the convex hull, n is the number of points in the set, and epsilon is any arbitrarily small constant. For incremental or decremental update sequences, the amortized time per update is O(n^epsilon).Comment: 7 pages; 2 figures. A preliminary version of this paper was presented at the 10th ACM/SIAM Symp. Discrete Algorithms (SODA '99); this is the journal version, and will appear in J. Algorithm

    Two Approaches to Building Time-Windowed Geometric Data Structures

    Get PDF
    Given a set of geometric objects each associated with a time value, we wish to determine whether a given property is true for a subset of those objects whose time values fall within a query time window. We call such problems time-windowed decision problems, and they have been the subject of much recent attention, for instance studied by Bokal, Cabello, and Eppstein [SoCG 2015]. In this paper, we present new approaches to this class of problems that are conceptually simpler than Bokal et al.\u27s, and also lead to faster algorithms. For instance, we present algorithms for preprocessing for the time-windowed 2D diameter decision problem in O(n log n) time and the time-windowed 2D convex hull area decision problem in O(n alpha(n) log n) time (where alpha is the inverse Ackermann function), improving Bokal et al.\u27s O(n log^2 n) and O(n log n loglog n) solutions respectively. Our first approach is to reduce time-windowed decision problems to a generalized range successor problem, which we solve using a novel way to search range trees. Our other approach is to use dynamic data structures directly, taking advantage of a new observation that the total number of combinatorial changes to a planar convex hull is near linear for any FIFO update sequence, in which deletions occur in the same order as insertions. We also apply these approaches to obtain the first O(n polylog n) algorithms for the time-windowed 3D diameter decision and 2D orthogonal segment intersection detection problems

    Three Approaches to Building Time-Windowed Geometric Data Structures

    Get PDF
    Given a set of geometric objects (points or line segments) each associated with a time value, we wish to determine whether a given property is true for a subset of those objects whose time values fall within a query time window. We call such problems time-windowed decision problems. We present algorithms to preprocess for the time-windowed closest pair decision problem in O(n) expected time, for the time-windowed 2D diameter decision problem in O(n log n) time, the time-windowed 2D convex hull area decision problem in O(n α(n) log n) time (where α is the inverse Ackermann function), and the time-windowed 3D diameter decision and orthogonal segment intersection detection problems in O(n polylog n) time. Our first approach is to reduce the closest pair decision problem to 2D dominance range emptiness using grids to compute candidate satisfying pairs. We extend this approach to find the closest pair of points by reducing the problem to 2D dominance range minimum, which we further reduce to 2D point location. Our second approach is to reduce time-windowed decision problems to a generalized range successor problem, which we solve using a novel way to search range trees. Our third approach is to use dynamic data structures directly, taking advantage of a new observation that the total number of combinatorial changes to a planar convex hull is near linear for any FIFO update sequence, in which deletions occur in the same order as insertions
    corecore