309,486 research outputs found

    An incremental approach to genetic algorithms based classification

    Get PDF
    Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed

    On the incremental learning and recognition of the pattern of movement of multiple labelled objects in dynamic scenes

    Full text link
    In this paper we discuss combining incremental learning and incremental recognition to classify patterns consisting of multiple objects, each represented by multiple spatio-temporal features. Importantly the technique allows for ambiguity in terms of the positions of the start and finish of the pattern. This involves a progressive classification which considers the data at each time instance in the query and thus provides a probable answer before all the query information becomes available. We present two methods that combine incremental learning and incremental recognition: a time instance method and an overall best match method.<br /

    End-to-end Incremental Learning

    Get PDF
    Although deep learning approaches have stood out in recent years due to their state-of-the-art results, they continue to suffer from (catastrophic forgetting), a dramatic decrease in overall performance when training with new classes added incrementally. This is due to current neural network architectures requiring the entire dataset, consisting of all the samples from the old as well as the new classes, to update the model---a requirement that becomes easily unsustainable as the number of classes grows. We address this issue with our approach to learn deep neural networks incrementally, using new data and only a small exemplar set corresponding to samples from the old classes. This is based on a loss composed of a distillation measure to retain the knowledge acquired from the old classes, and a cross-entropy loss to learn the new classes. Our incremental training is achieved while keeping the entire framework end-to-end, i.e., learning the data representation and the classifier jointly, unlike recent methods with no such guarantees.This work has been funded by project TIC-1692 (Junta de Andalucía), TIN2016-80920R (Spanish Ministry of Science and Technology) and Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore