8 research outputs found

    Incremental garbage collection in massive object stores

    Get PDF
    © 2001 IEEEThere are only a few garbage collection algorithms that have been designed to operate over massive object stores. These algorithms operate at two levels, locally via incremental collection of small partitions and globally via detection of cross partition garbage, including cyclic garbage. At each level there is a choice of collection mechanism. For example, the PMOS collector employs tracing at the local level and reference counting at the global level. Another approach implemented in the Thor object database uses tracing at both levels. In this paper we present two new algorithms that both employ reference counting at the local level. One algorithm uses reference counting at the higher level and the other uses tracing at the higher level. An evaluation strategy is presented to support comparisons between these four algorithms and preliminary experiments are outlined

    Ramasse-miettes générationnel et incémental gérant les cycles et les gros objets en utilisant des frames délimités

    Get PDF
    Ces dernières années, des recherches ont été menées sur plusieurs techniques reliées à la collection des déchets. Plusieurs découvertes centrales pour le ramassage de miettes par copie ont été réalisées. Cependant, des améliorations sont encore possibles. Dans ce mémoire, nous introduisons des nouvelles techniques et de nouveaux algorithmes pour améliorer le ramassage de miettes. En particulier, nous introduisons une technique utilisant des cadres délimités pour marquer et retracer les pointeurs racines. Cette technique permet un calcul efficace de l'ensemble des racines. Elle réutilise des concepts de deux techniques existantes, card marking et remembered sets, et utilise une configuration bidirectionelle des objets pour améliorer ces concepts en stabilisant le surplus de mémoire utilisée et en réduisant la charge de travail lors du parcours des pointeurs. Nous présentons aussi un algorithme pour marquer récursivement les objets rejoignables sans utiliser de pile (éliminant le gaspillage de mémoire habituel). Nous adaptons cet algorithme pour implémenter un ramasse-miettes copiant en profondeur et améliorer la localité du heap. Nous améliorons l'algorithme de collection des miettes older-first et sa version générationnelle en ajoutant une phase de marquage garantissant la collection de toutes les miettes, incluant les structures cycliques réparties sur plusieurs fenêtres. Finalement, nous introduisons une technique pour gérer les gros objets. Pour tester nos idées, nous avons conçu et implémenté, dans la machine virtuelle libre Java SableVM, un cadre de développement portable et extensible pour la collection des miettes. Dans ce cadre, nous avons implémenté des algorithmes de collection semi-space, older-first et generational. Nos expérimentations montrent que la technique du cadre délimité procure des performances compétitives pour plusieurs benchmarks. Elles montrent aussi que, pour la plupart des benchmarks, notre algorithme de parcours en profondeur améliore la localité et augmente ainsi la performance. Nos mesures de la performance générale montrent que, utilisant nos techniques, un ramasse-miettes peut délivrer une performance compétitive et surpasser celle des ramasses-miettes existants pour plusieurs benchmarks. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Ramasse-Miettes, Machine Virtuelle, Java, SableVM

    Deriving distributed garbage collectors from distributed termination algorithms

    Get PDF
    This thesis concentrates on the derivation of a modularised version of the DMOS distributed garbage collection algorithm and the implementation of this algorithm in a distributed computational environment. DMOS appears to exhibit a unique combination of attractive characteristics for a distributed garbage collector but the original algorithm is known to contain a bug and, previous to this work, lacks a satisfactory, understandable implementation. The relationship between distributed termination detection algorithms and distributed garbage collectors is central to this thesis. A modularised DMOS algorithm is developed using a previously published distributed garbage collector derivation methodology that centres on mapping centralised collection schemes to distributed termination detection algorithms. In examining the utility and suitability of the derivation methodology, a family of six distributed collectors is developed and an extension to the methodology is presented. The research work described in this thesis incorporates the definition and implementation of a distributed computational environment based on the ProcessBase language and a generic definition of a previously unimplemented distributed termination detection algorithm called Task Balancing. The role of distributed termination detection in the DMOS collection mechanisms is defined through a process of step-wise refinement. The implementation of the collector is achieved in two stages; the first stage defines the implementation of two distributed termination mappings with the Task Balancing algorithm; the second stage defines the DMOS collection mechanisms

    Management of Long-Running High-Performance Persistent Object Stores

    Get PDF
    The popularity of object-oriented programming languages, such as Java and C++, for large application development has stirred an interest in improved technologies for high-performance, reliable, and scalable object storage. Such storage systems are typically referred to as Persistent Object Stores. This thesis describes the design and implementation of Sphere, a new persistent object store developed at the University of Glasgow, Scotland. The requirements for Sphere included high performance, support for transactional multi-threaded loads, scalability, extensibility, portability, reliability, referential integrity via the use of disk garbage collection, provision for flexible schema evolution, and minimised interaction with the mutator. The Sphere architecture is split into two parts: the core and the application-specific customisations. The core was designed to be modular, in order to encourage research and experimentation, and to be as light-weight as possible, in an attempt to achieve high performance through simplicity. The customisation part includes the code that deals with and is optimised for the specific load of the application that Sphere has to support: object formats, free-space management, etc. Even though specialising this part of the store is not trivial, it has the benefit that the interaction between the mutator and Sphere is direct and more efficient, as translation layers are not necessary. Major design decisions for Sphere included (i) splitting the store into partitions, to facilitate incremental disk garbage collection and schema evolution, (ii) using a flexible two-level free-space management, (Hi) introducing a three-dimensional method-dispatch matrix to invoke store operations, which contributes to Sphere's ease-of-extensibility, (iv) adopting a logical addressing scheme, to allow straightforward object and partition relocation, (v) requiring that Sphere can identify reference fields inside objects, so that it does not have to interact with the mutator in order to do so, and (vi) adopting the well-known ARIES recovery algorithm to ensure fault-tolerance. The thesis contains a detailed overview of Sphere and the context in which it was developed. Then, it concentrates on two areas that were explored using Sphere as the implementation platform. First, bulk object-loading issues are discussed and the Ghosted Allocation promotion algorithm is described. This algorithm was designed to allocate large numbers of objects to a store efficiently and with minimal log traffic and was evaluated using large-scale experiments. Second, the disk garbage collection framework of Sphere is overviewed and the implemented compacting, relocating garbage collector is described, along with the model of synchronisation with the mutator
    corecore