
Incremental Garbage Collection in Massive Object Stores

Fred Brown
Department of Computer Science

University of Adelaide
Sou th Aus t ra l i a 5 0 0 5

A US TRALIA
fred@cs, adelaide, edu. au

Abstract

There are only a few garbage collection algorithms
that have been designed to operate over massive object
stores. These algorithms operate at two levels, locally via
incremental collection of small partitions and globally via
detection o f cross partition garbage, including cyclic
garbage. At each level there is a choice o f collectTon
mechanism. For example, the PALOS collector employs
tracing at the local level and reference counting at the
global level. Another approach implemented in the Thor
object database uses tracing at both levels. In this paper
we present two new algorithms that both employ
reference counting at the local level. One algorithm uses
reference counting at the higher level and the other uses
tracing at the higher level. An evaluation strategy is
presented to support comparisons between these four
algorithms and preliminary experiments are outlined.

1. Introduction

The garbage collection of massive object stores gives
rise to a number of challenges not faced by main memory
collectors [1,13,14]:
• The scale of the object store precludes a stop-the-

world algorithm due to the time required.
Consequently, some form of incremental collection
strategy is essential. This may also require the
collector to cooperate with applications manipulating
the object store.

• It is highly likely that a massive object store will be
part of a database and require protection from
crashes. So, crash recovery may need to be integrated
with the garbage collection algorithms employed.

• The scale of the object store may result in most of the
object store residing on disk rather than primary

memory. Therefore, care is required in order to
minimise the disk I/O incurred by garbage collection.

• The scale of the object store is such that a complete
garbage collection may take a very long time. It
would therefore be desirable to make maximum
progress on each incremental collection. This may
require careful control over the order and timing of
incremental collections.
In meeting these challenges, garbage collection

algorithms must also ensure that they are safe and
complete. A safe algorithm will never garbage collect a
live object and a complete algorithm will eventually
collect all garbage. Therefore a garbage collection
algorithm suitable for use in a massive object store should
exhibit the following properties.
• The object store will be divided, either physically or

logically, into partitions that can be garbage collected
independently of other partitions.

• The collection algorithm will take account of the
application programs concurrently mampulatmg the
object store.

• Cross partition and cyclic garbage will be detected
via the synthesis of appropriate global knowledge.

• Crash recovery will be directly supported if the
underlying object store does not provide this as an
orthogonal mechanism.

• The algorithm's supporting data structures will be
carefully chosen in order to mmimise the I/O
overheads incurred during a collection.

• A number of different policies will be supported to
guide the selection of which partition to collect next.

• The collection algorithm will be safe and complete.

1.1. Algorithm taxonomy

A taxonomy of suitable garbage collection
algorithms could be defined in terms of how partitions are
collected and how the necessary global knowledge is

38
1530-0900/01 $10.00 © 2001 IEEE

synthesised. In both dimensions of the taxonomy there is
a choice between two major approaches, reference
counting or tracing.

Reference counting involves associating a counter
with every object that records the total number of pointers
referring to the object. If an object's reference counter is
0, the object is no longer in use, it is considered garbage
and its storage is reclaimed. Within a partition reference
counting can be effective at detecting acyclic garbage but
is incapable of detecting cyclic garbage. Reference
counting will require the overhead of a counter for every
object in the object store.

Tracing involves following all pointer fields starting
from one or more roots and identifying which objects can
still be used. All objects not encountered are considered
garbage and their storage is reclaimed. Tracing may
involve marking all reachable objects and performing a
sweep to reclaim the garbage or it may involve copying
all reachable objects and reclaiming all uncopied objects.

If tracing is used, then all cyclic garbage completely
contained within the partition being collected can be
detected and reclaimed. However, every partition must
maintain some form of remembered set to identify which
objects within a partition are reachable from elsewhere.
The remembered set forms the roots for the local tracing
of a partition. Popular objects, those referenced by large
numbers of objects in other partitions may cause severe
problems for some remembered set implementation
strategies.

At the global level it is necessary to synthesise
sufficient global knowledge to be able to detect cross
partition garbage and cross partition cyclic garbage. The
partitions that are incrementally collected will be referred
to as local partitions from now on. The synthesis of global
knowledge can be achieved by associating objects with
global partitions such that cyclic garbage is associated
with global partitions that are not referenced by the rest of
the object store. The identification of these garbage global
partitions can then be achieved by reference counting or
tracing references between global partitions. The global
partitions need not be related to the local partitions in any
way.

An additional dimension to the taxonomy could be the
addressing mechanism. Direct addressing of objects has
some potential efficiency benefits for application
behaviour but can cause severe problems for the store
implementation if objects must be physically moved
between partitions. The task of identifying which
references must be corrected when an object moves may
require some form of remembered set to be maintained.
This can be problematic if an object store contains a
significant number of popular objects that may need to be
moved. To avoid many of these problems most garbage
collection algorithms designed for massive object stores

require some form of indirect addressing mechanism to be
used.

For the purposes of this paper the addressing
dimension of the taxonomy will be ignored. Therefore we
can classify garbage collection algorithms for massive
object stores into four categories:
1. Local partitions are collected by tracing,

global partitions are collected by reference counting.
2. Local partitions are collected by tracing,

global partitions are collected by tracing.
3. Local partitions are collected by reference counting,

global partitions are collected by reference counting.
4. Local partitions are collected by reference counting,

global partitions are collected by tracing.

2. Existing algorithms

There are only a few garbage collection algorithms
that have been designed to operate over massive object
stores [1,13,14]. Each of these algorithms is based on
dividing the object store into partitions which may be
garbage collected without interfering with running
applications. This is supplemented by an additional
mechanism that is able to synthesise global knowledge in
order to detect cyclic and cross-partition garbage. Support
for crash recovery is delegated to a lower level
mechanism and is typically not addressed by the
algorithms. Attempts to mimmise the I/O induced by
garbage collection do appear in these algorithms but they
are not based on empirical evidence and their
effectiveness has not been evaluated. Finally, none of the
existing algorithms directly address the issue of ensuring
maximum progress. This issue is either not addressed or
left to higher level policies that have yet to be evaluated.

2.1. PMOS

The Persistent Mature Object Space algorithm,
PMOS [14], is an example of an algorithm from the ftrst
category. PMOS is an extension of the Mature Object
Space algorithm [8] which divides the object store into
fixed size local partitions known as cars which are
members of time ordered global partitions known as
trains. Every car has a remembered set that, for each
externally referenced object, identifies which other cars
point to the object. A reference counter is kept for each
train so that it can be discarded when none of the train's
objects are referenced from other trains.

The garbage collection of a car involves copying all
objects reachable from the remembered set, or program
roots, to other cars. The evacuated car is then discarded
along with the remaining unreachable objects. A
reachable object pointed to from a younger train is copied

39

to a car in the younger train. If an object is pointed to
from an older train or its own train, it will be copied to
another car in its own Wain. Since objects can only be
copied to cars in the same or a newer train and objects are
only copied to trains that refer to them, cycles of garbage
will eventually congregate in the youngest train that
contained any part of the cycle. Once all live objects have
been copied from the train containing the cycle, the cross-
train reference counting will cause the entire train
containing the cycle to be reclaimed.

To ensure that PMOS is complete, the policies that
select cars for garbage collection must guarantee that they
will eventually select every car and that progress will be
made. See [11] for details. In addition to being complete
the PMOS algorithm is also safe.

The remembered set implementation strategy has
been designed with the aim of mmimising disk I/O.
Where possible the remembered set for a car is stored
inside the car and updates are not applied until the car is
brought into memory. However, no empirical studies have
been yet undertaken to establish the effectiveness of this
design.

The use of remembered sets enables PMOS to
support the direct addressing of objects. When an object is
moved to a new car, the remembered set identifies which
cars contain references that need to be updated. However,
the remembered set implementation can become very
expensive in the presence of popular objects. For
example, global objects referenced by pointer literals
could be potentially referenced by every car in the object
store. Similar problems could occur in object-oriented
systems with static members of a class being referenced
by every instance of their class. To overcome these
difficulties objects that can never become garbage could
be segregated as in the existing implementations [11].
However, this does not guarantee that real applications
will not create their own popular objects and suffer severe
performance penalties as a result.

Although PMOS is both safe and complete it is
unclear how much work is required to collect all garbage
in an object store. For example, collecting a doubly linked
list of garbage spread over N cars could take up to O(N:)
collections before the list is in a single train and some
arbitrary number of additional collections before all
reachable objects were copied out of that single train so
that it could be reclaimed, To address the issue of making
maximum progress some experiments have been
conducted into partition selection policies for PMOS [12].
However, it is still too early to identify any particular
policy that is guaranteed to be more effective than random
selection.

2.2. T h o r

An example of an algorithm from the second
category has been implemented as part of the Thor object
database [9,13].

This algorithm is based on local partitions that can be
formed from arbitrary numbers of disk pages. Each page
provides an indirect addressing mechanism so that
internal fragmentation can be managed by relocating
objects within a page. Each partition maintains a
remembered set that identifies cross-partition references.

The garbage collection of a partition involves two
marking phases. The first phase propagates global mark
bits starting from program roots and remembered set
entries due to globally marked objects. If this phase finds
references to objects in other partitions then the
remembered set entries of those objects are globally
marked. The second phase does a local trace of all objects
reachable from the remembered set and discards any
objects not found by either phase. Thus internal garbage,
including cycles, can be collected immediately.

Cross-partition cyclic garbage cannot be detected
until the global marking has been propagated to the entire
object store. This can take a long time since marking a
remembered set entry causes the collector to revisit the
remembered set's partition. The maximum number of
partition visits is proportional to the number of partitions
times the maximum number of inter-partition references
from any object to the root of the object store.

At the end of a global marking phase the only
unmarked objects in the object store are part of cycles of
cross-partition garbage. So, during the first visit to each
partition during a global marking phase, all unmarked
objects are immediately deleted. In effect the global
marking divides the object store into two global partitions
membership of which is denoted by the mark bits.

This algorithm attempts to minimise unnecessary
disk I/O using a particular implementation of remembered
sets. In this scheme all entries from a particular car to
another car are kept together. In effect, each partition has
a l i s t of in-references and out-references. To further
reduce I/O overheads, updates to these lists are delayed
and performed in batches. Some performance analysis has
been undertaken on the effectiveness of this strategy [13].
It should be noted however, that this remembered set
implementation strategy is also subject to problems with
popular objects.

The global marking strategy ensures that this
algorithm is both complete and safe. However, as noted
above it can take a long time before any cyclic cross-
partition garbage can be reclaimed. Even after a global
marking phase has been completed every partition that
contained any form of cross-partition cyclic garbage must

40

be revisited in order to reclaim it. In contrast the PMOS
collector can identify cyclic garbage as soon as it is
isolated within a single tram. As far as we are aware no
partition selection policy experiments have been applied
to this algorithm.

2.3. Exodus

Another example of an algorithm from the second
category has been used with the EXODUS storage
manager [1,7]. This algorithm design takes the view that
cyclic cross-partition garbage will be rare and if there is
any, it can be collected by employing an additional
garbage collection algorithm. However, the algorithm
does make some significant contributions in the area of
safe interaction with transactions. For example, all
overwritten references are retained in a pruned references
table until the transaction performing the overwrite
commits. Also all new objects are retained in a created
object table until the transaction creating them commits.
Both tables prevent objects being reclaimed that may
subsequently be found to be live due to a transaction
commit or abort. Although this algorithm is safe it is not
complete and will not be considered further.

2.4. Summary

The existing algorithms described above all rely on
remembered sets to track cross partition references and to
support local partition garbage collection. In the case of
PMOS, the remembered set is essential in identifying
references that must be updated when an object is moved.
As noted above popular objects may cause severe
problems for remembered set implementations.

A further area of difficulty is identifying an effective
partition selection policy to guide the order of incremental
collections. To be effective a partition selection policy
must perform significantly better than random selection.

3. Reference counting algorithms

We are not aware of any examples of algorithms
from categories three and four of the taxonomy that have
been specifically designed for use with massive object
stores. These categories employ reference counting to
identify garbage within local partitions.

Two commonly stated reasons for not using
reference counting for massive object stores is the
overhead of maintaining reference counting in the
presence of transactions and the inability of reference
counting to detect cyclic garbage [1].

The first diffiCulty is an assumed performance issue
that may or may not be significant. As will be noted later,

the issue of performance evaluation is sufficiently
complex that the contribution of any particular
implementation strategy to overall system performance
cannot be predicted. Therefore, the use of reference
counting to collect local partitions should not be
discounted without investigating its actual behaviour in a
real system.

3.1. Collecting cyclic garbage

The second difficulty, an inability to collect cyclic
garbage, can be overcome with an appropriate global
partitioning mechanism. The existing reference counting
algorithms that can collect cycles all use an additional
mechanism to identify the cycles.

The earliest attempts relied on programmers
identifying the boundaries between cycles so that each
cycle effectively lives in its own partition [4]. Reference
counting could then be employed to collect entire
partitions. Relying on programmer input is potentially
error prone, so later attempts relied on compiler hints to
partition objects. However, this approach was only used
in functional programming systems where referential
integrity and the absence of assignment ensured that
partition hints remained accurate [10]. The new
algorithms presented in this paper also rely on partitioning
objects but they work in the general case and are not
dependent on programmer or compiler hints.

The alternative approach to partitioning is to employ
tracing algorithms to ensure completeness [10]. However,
this global tracing could prove prohibitively expensive in
the case of a massive object store.

3.2. Remembered sets

A potential weakness of the algorithms based on
local tracing is that they need to maintain remembered
sets for each local partition. In the presence of popular
objects these remembered sets could become very large
and costly to maintain. The use of reference counting
eliminates the need for remembered sets, assuming they
need not be retained to support object relocation. The new
algorithms presented below assume indirect addressing is
used so that remembered sets can be discarded.

3.3. Partition selection policies

A major challenge in ensuring maximum progress in
reclaiming storage is identifying where most garbage is
located [6]. With the algorithm examples given above, an
additional mechanism is required to predict where
garbage may be located. In contrast, reference counting
identifies the location of some acyclic garbage

41

immediately it becomes garbage. Therefore, reference
counting may provide an excellent starting point for a
partition selection policy. However, an additional
mechanism is still required to sort local partitions in terms
of their obvious garbage content.

The potential success of a partition selection policy
based on reference counting is dependent on other factors.
For example, if there is a large amount of cyclic garbage
in an object store, the progress of the global repartitionmg
required to detect it may prove more important than the
rate at which acyclic garbage is detected. Of partic~ar
importance is the correlation between partitions with
obvious acyclic garbage and those that should be chosen
to obtain maximum overall progress in reclaiming
garbage.

3.4. I/O considerations

The I/O overheads incurred by the garbage collection
of a massive object store are a major consideration. A
potential difficulty with reference counting algorithms is
the need to continually modify reference counts on
objects that may not be directly involved in a
computation. The extent of this difficulty will depend on
where the reference counts are located. It may be
desirable to keep reference counts in a central location
rather than with the objects. If indirect addressing is being
used the reference counts could form part of the address
tables used to locate the objects.

Although the overheads of maintaining reference
counts are significant, in the context of a massive object
store, these overheads must be offset against the
alternative costs involved in maintaimng remembered
sets. Remembered sets can also incur significant
overheads especially in a system with large numbers of
popular objects. Therefore the choice of garbage
collection algorithm for a particular system must be based
on a sound understanding of the data and applications it
must support. The evaluation approach given below is one
way in which this understanding could be realised.

4. The new algorithms

The two new algorithms presented in this paper have
been designed to operate in the same environment as the
PMOS collector. In fact they were derived whilst
attempting to overcome problems encountered in
implementing PMOS. It is assumed that applications
operate on copies of objects, held in an object cache, that
are returned to the object store prior to an object store
checkpoint. To support incremental collections of the
object store, the object cache supplies a list of all object
pointers it holds when a collection is requested. The

object store does not support user transactions or
concurrency control. The implementation of these issues
is left to the higher levels of the architecture. Crash
recovery is handled by the underlying buffering
mechanisms that can be instructed to perform a
checkpoint of the object store. Consequently, the new
algorithms do not need to consider crash recovery,
concurrency or transactions.

Both of the new algorithms employ the same
implementation for object addressing, reference counting,
local partitioning and the identification of global
partitions.

4.1. Indirect addressing

All object addresses are object numbers that are used
to index a multi-level object table. The initial object table
is made up of four levels of table each with 256 entries.
All entries in the leaf nodes of the table contain a triple
consisting of an object's real address in the object store,
an object's reference count and an object's train number.
The global partitioning used by these algorithms is a
simulation of the train partitioning used in PMOS,
consequently the global partitions are referred to as trains.

The process of addressing an object is performed
using the following steps. First, the top 8 bits of the
object's number are used to index the top level of the
object table. Then the next 8 bits are used to index the
next level of the object table and so on until the object's
triple is located. The object may then be directly
addressed or its reference count or train number may be
manipulated.

4.2. Reference counting

Whenever the object store is asked to update the
pointer field of an object two reference count
manipulations may occur. First, the object identified by
the reference being overwritten has its reference count
decremented by 1. If the reference count has become 0 the
object is now garbage and a counter associated with the
object's partition is incremented by the size of the object.
Second, the object identified by the reference being
written has its reference count incremented by 1. As an
optimisation, the object's reference counter does not
record pointers from an object to itself.

4.3. Local partitions

The object store is divided into local partitions by
grouping fixed ranges of object numbers. Each partition
has an associated partition selection counter that records
the total size of all objects it contains that have a zeroed

42

reference count. This total is the minimum amount of
acyclic garbage the partition contains. The partition
selection counters are held in a table indexed by partition
number. Entries in this table contain the counter and a
position in a second table. The second table is organised
as a heap with its largest values at the root. Whenever a
local partition has its selection counter modified, the
partitions entry is moved up or down the heap as
appropriate. In the worst case the cost of this movement is
proportional to the logarithm of the number of partitions
in the object store.

When an incremental collection is perforined, the
partition at the root of the heap may be a good candidate
for collection. It contains more garbage directly due to
zeroed reference counts than any other local partition in
the object store. Regardless of how good a candidate the
chosen partition is, some additional policy is required to
ensure that all local partitions are eventually collected.

4.4. Global part i t ions - trains

The global partitions used by these algorithms
simulate the trains used in PMOS. The intention is to
migrate objects between trains so that cyclic garbage
congregates in the same train where it can then be
identified by counting references between trains or tracing
cross train references. All trams are numbered in
ascending order and objects can only be migrated to
newer trains that point to them. The choice of how many
gains there are and when to create them are policy
decisions.

Unlike PMOS, the trains used with the new
algorithms are virtual. Rather than associating local
partitions with a train~ individual objects are tagged with
the number of the train they currently belong to. When the
collector visits a local partitio~ every pointer field is
checked for cross train references. If an object contains a
reference to an object in an older train, the second
object's train number is changed to that of the first object.
Additional steps are required to track an object's
movement between trains and to subsequently identify
entire trains that can be reclaimed.

4.5. Reference count ing and comple t enes s

One of the new algorithms is an example of an
algorithm from category 3 of our taxonomy. This
algorithm uses reference counters to track cross-train
references and to identify which trains are garbage. It
operates as follows.

4.5.1. Global phases. A trains data structure is
maintained which is indexed by train number and each

entry contains two reference counters, old and new. A
train with an old counter of 0 is not referenced by any
other trains in the object store and is considered dead. The
new values for the reference counters are calculated by
scanning the entire object store. Each scan of the entire
store is called a global phase. A global phase counter is
maintained which is used to date stamp local partitions
when they are visited by the collector. On the completion
of a global phase, the new reference counters replace the
old reference counters. The global phase counter is then
incremented, the new reference counters are re-initialised
to 0 and a new phase begins.

4.5.2. Collecting a local partition. A collection of a
local partition involves three main tasks, collecting
garbage, re-initialising cross-train reference counters and
migrating objects between trains.

The first step in collectmg garbage is, for every
object in the local partition that belongs to a dead train,
every pointer field is overwritten by a null pointer.
Second, every object in the local partition with a zero
reference count has every pointer field overwritten by a
null pointer. The second step is extended ff additional
objects in the local partition have had their reference
counts decremented to zero as a result of the null pointer
assignments. Third, the space allocated to objects with a
zeroed reference count or to objects from a dead train is
reclaimed. An object's address, i.e. its object number,
cannot be reused until its reference count becomes zero.
This means that an object from a dead train may still have
an address and a reference counter even though its storage
has been reclaimed. Finally, the local partition's selection
counter is set to zero.

When the collector selects a partition for collection
the partition's date stamp is compared with the current
value of the global phase counter. If the date stamp is out
of date, this is the first visit to the partition in the current
global phase. On the first visit the date stamp is brought
up to date and then every pointer field in the local
partition is inspected. If an object contains a pointer to an
object in a newer train, then the newer train has its new
reference counter incremented by 1. When this task has
been applied to every partition the new reference counts
will be up to date. Pointers to older trains are ignored
because the next task removes them.

The migration of objects between trains is achieved
by inspecting every pointer field of every object m the
local partition. If objectl, in trainl, contains a pointer to
object2 in an older train~ train2, then object2 has its train
number changed to be trainl. Trainl's new reference
counter is incremented by object2's reference counter
minus 1. This increase in the reference counter may be
too large but the sources of all other references to the

43

moved object are unknown. Train2's new reference
counter is also incremented by the number of pointer
fields in object2. This increase is to allow for any
references from object2 to other objects in train2 which
are now cross-train references. Any unnecessary increases
in the reference counters will be corrected during the next
global phase. This does not affect the correctness of the
algorithm but may delay the detection of dead trains. The
second and third tasks can be applied in parallel since
they do not conflict.

4.5.3. Cross-train reference counting. When a pointer
assignment occurs the reference counting manipulations
described in section 4.2 are performed. If a new cross-
train reference is being written to objectl in trainl which
references object2, in an older train, train2, then object2's
tram number is changed to trainl. In addition, trainl's
new reference counter is incremented by the value of
object2's reference counter. If the collector has already
visited the partition containing object2 in the current
global phase, then train2's new reference counter is
incremented by the number of pointer fields in object2.

If the collector has already visited the partition
containing objectl in the current global phase, the cross-
tram reference counts are modified as follows.
Overwriting a cross-tram reference will decrement the
new reference counter in the referenced tram. Writing a
new cross-train reference to a newer train causes the new
reference counter of the referenced tram to be
incremented.

4.5.4. Summary, The conservative modification of
cross tram reference counters during object migration
ensures that a live tram cannot be erroneously considered
dead but it may delay the detection of a dead train. In the
worst case, a complete cycle of garbage must be isolated
in a single train and then a new global phase completed
before the cycle is detected. However, unlike the
algorithm used with Thor, a global phase need only
involve a single visit to every local partition. If the
collection rate is acceptable, the delay in collecting cyclic
garbage may be acceptable too.

The original MOS algorithm was unable to guarantee
that an object would eventually migrate to a newer tram.
In this algorithm, the migration of objects between trains
during assignment ensures that progress is always made.
During a global phase, either a cross-train reference is
detected during the collection of a local partition or it is
detected by an assignment that copies it. Therefore, this
algorithm is both safe and complete.

4.6. Train marking and completeness

The second new algorithm is an example of an
algorithm from category 4 of our taxonomy. This
algorithm uses tracing to track cross-Wain references and
to identify which trains are garbage. It operates as
follows.

4.6.1. Global phases. A trains data structure is
maintained which is indexed by train number and each
entry contains a list of other trams that may be referenced
by objects in the current train. A train that cannot be
reached by following these lists, starting from the
youngest tram, cannot contain objects reachable from the
root of the object store and is considered dead. The
contents of these train lists are calculated by scanning the
entire object store. Each scan of the entire store is called a
global phase. A global phase counter is maintained which
is used to date stamp local partitions when they are visited
by the collector. On the completion of a global phase, the
train lists are traversed starting from the youngest train.
Any train that is not reached during this traversal is
marked as dead. The global phase counter is then
incremented, the train lists are re-initialised to be empty
and a new phase begins.

4.6.2. Collecting a local partition. A collection of a
local partition involves three main tasks, collecting
garbage, re-initialising train lists and migrating objects
between trains.

The first step in collecting garbage is, for every
object in the local partition that belongs to a dead train,
every pointer field is overwritten by a null pointer.
Second, every object in the local partition with a zero
reference count has every pointer field overwritten by a
null pointer. The second step is extended if additional
objects in the local partition have had their reference
counts decremented to zero as a result of the null pointer
assignments. Third, the space allocated to objects with a
zeroed reference count or to objects from a dead train is
reclaimed. An object's address, i.e. its object number,
cannot be reused until its reference count becomes zero.
This means that an object from a dead train may still have
an address and a reference counter even though its storage
has been reclaimed. Finally, the local partition's selection
counter is set to zero.

When the collector selects a partition for collection
the partition's date stamp is compared with the current
value of the global phase counter. If the date stamp is out
of date, this is the first visit to the partition in the current
global phase. On the first visit the date stamp is brought
up to date and then every pointer field in the local
partition is inspected. If an object in trainl contains a

44

pointer to an object in a newer trailL train2, then train2 is
placed on trainl's train list. When this task has been
applied to every partition the new train lists will be up to
date. Pointers to older Wains are ignored because the next
task removes them.

The migration of objects between Wains is achieved
by inspecting every pointer field of every object in the
local partition. If objectl, in trainl, contains a pointer to
object2 in an older train, train2, then object2 has it's train
number changed to be trainl. Traml's tram list has train2
placed on it and trainl is placed on traill2's tram list. This
ensures that ff a third tram referenced the moved object,
trainl will become reachable from the third train's Wain
list. It also ensures that if object2 references other objects
in trMn2, the newly created cross-train references are
reflected in trainl's train list. The second and third tasks
can be applied in parallel since they do not conflict.

4.6.3. Reference counting. When a pointer assignment
occurs the reference counting manipulations described in
section 4.2 are performed. In addition, if a new cross-train
reference is being written from an object in trainl to an
object, object2, in another train, train2, the following
occurs. First, train2 is added to trainl's train list. If traml
is newer than train2, object2 has its tram number changed
to trainl and trainl is added to tmin2's train list.

4.6.4. Summary. This algorithm is both correct and
complete. As with the previous algorithm, the migration
of objects during pointer assignment is sufficient to
guarantee progress during a global phase. The
conservative approach to recording cross-train references
ensures that no live train is erroneously considered dead.
In the worst case, once a cycle of garbage is isolated, a
subsequent global phase is required to identify it as
garbage. However, unlike PMOS and the previous
algorithm, a cycle of garbage can be isolated without
having to migrate the entire cycle into a single train. This
may compensate for the delay in waiting for the
additional global phase required to identify dead trains.

5. Evaluation strategy

Evaluating the above algorithms is problematic. Each
algorithm's behaviour is dependent on the interaction of
the design decisions reflected by the implementation. This
may be further complicated by application specific access
patterns that either highlight or mask unhelpful
behaviours. For example, popular objects can cause
severe problems for algorithms based on remembered
sets. Therefore, these algorithms can only be effectively
evaluated if the presence or absence of popular objects is
taken into account. Similarly, the presence or absence of

cyclic garbage can severely affect the evaluation of these
algorithms. To accommodate the potential complexities
the proposed evaluation strategy for the above algorithms
is to nm a number of specific and repeatable experiments
tailored to particular applications and user data.

5.1. Experimental environment

The experimental environment is the Napier88 layered
architecture [2]. This architecture has been successfully
used with a number of other programming languages
including Staple, Galileo and Quest [3]. The architectural
layers can be easily replaced to produce a new instance of
the architecture where only one component has changed.
For example, any one of the four algorithms given above
can replace the object store layer.

It is also possible to preserve the lower layers and
replace the higher layers. So, to conduct repeatable
experiments, a trace of all interface calls to a particular
layer could be collected. Subsequently, a new instance of
the architecture could be instantiated where the layers
using the traced interface are replaced by software that
replays the trace. This would allow interactive
programming sessions to be recorded and accurately
replayed over different object store implementations.

Traces can be collected at a number of different
levels including, the object store interface, the object
cache interface or at the virtual machine level. Each
different level allows experiments to focus on particular
performance characteristics. For example, replaying the
virtual machine's behaviour would allow repeatable
experiments m paging and overall I/O behaviour,
replaying object cache behaviour would assist with
experiments in object cache management and replaying
the object store behaviour would allow experiments with
specific aspects of a garbage collection algorithm.

In addition to conducting repeatable experiments, it
is also necessary to analyse the structure of an object
store's data. Appropriate characterisation of an object
store or application behaviour will assist in identifying the
conditions under which a specific algorithm can be most
effective or perform badly. Some basic analysis tools
have been constructed for the layered architecture and
used to support experiments with partition selection
policies for use with PMOS[3]. This work was an attempt
to re-evaluate the results of previously published
simulation work [6].

5.2. Experiments

The experiments to be conducted will be targeted at
areas including, garbage collection rates, object placement
policies, remembered set implementations, frequency of

45

garbage collections, object addressing mechanisms and
paging and I/O behaviours. These experiments will
attempt to build on the work of others in identifying an
effective evaluation strategy for garbage collection
algorithms in massive object stores [5].

6. Conclusions

This paper has presented a taxonomy of incremental
garbage collection algorithms for massive object stores
with examples of safe and complete algorithms where
they exist. In addition, two new algorithms have been
presented for categories where none were previously
known. The new algorithms illustrate how reference
counting can be used in the presence of cyclic garbage to
construct incremental garbage collection algorithms that
are both safe and complete. An experimental framework
for evaluating the algorithms was briefly outlined and is
currently being implemented.

7. References

[1] Amsaleg, L., Franklin, M. & Gruber, O. "Garbage Collection
for a Client-Server Persistent Object Store". ACM Transactions
on Computer Systems, Vol. 17, No. 3, August 1999, pp153-201.

[2] A.L. Brown, A. Dearle, R. Mon'ison, D.S. Munro, and J.
Rosenberg, "A Layered Persistent Architecture for Napier88".
Intn 7 Workshop on Computer Architectures to Support Security
and Persistence of lnformatl"on. In Security and Persistence.
(Eds. J.Rosenberg & L.Keedy). Springer-Verlag, 155-172.

[3] A.L. Brown, and R. Morrison, "A Generic Persistent Object
Store", Software Engineering Journal, Special Issue on Object-
oriented Systems, Vol.7, No.2, March 1992, 161-168.

[4] Bobrow, D.G., ']VIanaging Reentrant Structures Using
Reference Counts", ACM Transactions on Programming
Languages and Systems, Vol. 2, March, 1980.

[5] Cook, J.E., Klauser, A., Wolf, A.L. & Zorn, B.G. "Semi-
automatic, Self-adaptive Control of Garbage Collection Rates in
Object Databases". In Proc. ACM SIGMOD

Internan'onalConference on the Management of Data, Montreal,
Canada, (1996), pp 377-388.

[6] Cook, J.E., Wolf, A.L. & Zorn, B.G. '°A Highly Effective
Partition Selection Policy for Object Database Garbage
Collection.". IEEE Transactions on Knowledge and Data
Engineering 10, 1 (1998) pp 153-172.

[7] EXODUS Project Group, "EXODUS Storage Manager
Overview", Technical Report, Computer Science Department,
University of Wisconsin at Madison, Madison, WI, 1993.

[8] Richard L. Hudson and J. Eliot B. Moss. Incremental
garbage collection for mature objects. In Proceedings of the
Internat~'onal Workshop on Memory Management, Lecture
Notes in Computer Science, Vo1637, Springer-Verlag, 1992.

[9] Liskov, B. Adya, A. Casto, M. Day, M. Ghemawat, G.
Gruber, R. Maheshwari, U. Myers, A. & Shrira, L., "Safe and
Efficient Sharing of Objects in Thor", In Proc. ACM SIGMOD,
1996, pp 318-329.

[10] Lins, R.D. & Vasques, M.A., "A Comparitive Study of
Algorithms for Cyclic Reference Counting", Technical Report
92, Computing Laboratory, The University of Kent at
Canterbury, August 1991.

[11] Munro, D.S., Brown, A.L., Morrison, R. & Moss, J.E.B.
"Incremental Garbage Collection of a Persistent Object Store
using PMOS'. In Advances in Persistent Object Systems,
Morrison, R., Jordan, M. & Atkinson, M.P. (ed), Morgan
Kaufinann (1999) pp 78-91.

[12] Munro, D.S. & Brown, A.L., "'Evaluating Partition
Selection Policies using the PMOS Garbage Collector," to
appear in Proc. 9th Internan'onal Workshop on Persistent Object
Systems (POS9), Lillehammer, Norway (2000).

[13] Maheshwari, U. & Liskov, B. "Partitioned Garbage
Collection of a Large Object Store". In Proc. ACMSIGMOD'97,
Phoenix, Arizona (1997) pp 313-323.

[14] Moss, J.E.B., Munro, D.S. & Hudson, R.L. "PMOS: A
Complete and Coarse-Grained Incremental Garbage Collector
for Persistent Object Stores". In Proc. 7th International
Workshop on Persistent Object Systems (POST), Cape May, NJ,
USA (1996).

46

