5,738 research outputs found

    Semantic Retrieval and Automatic Annotation: Linear Transformations, Correlation and Semantic Spaces

    No full text
    This paper proposes a new technique for auto-annotation and semantic retrieval based upon the idea of linearly mapping an image feature space to a keyword space. The new technique is compared to several related techniques, and a number of salient points about each of the techniques are discussed and contrasted. The paper also discusses how these techniques might actually scale to a real-world retrieval problem, and demonstrates this though a case study of a semantic retrieval technique being used on a real-world data-set (with a mix of annotated and unannotated images) from a picture library

    Characterisation and adaptive learning in interactive video retrieval

    Get PDF
    El objetivo principal de esta tesis consiste en utilizar eficazmente los modelos de tópicos latentes para afrontar el problema de la recuperación automática de vídeo. Concretamente, se pretende mejorar tanto a nivel de eficiencia como a nivel de precisión el actual estado del arte en materia de los sitemas de recuperación automática de vídeo. En general, los modelos de tópicos latentes son un conjunto de herramientas estadísticas que permiten extraer los patrones generadores de una colección de datos. Tradicionalmente, este tipo de técnicas no han sido consideradas de gran utilidad para los sistemas de recuperación automática de vídeo debido a su alto coste computacional y a la propia complejidad del espacio de tópicos en el ámbito de la información visual.In this work, we are interested in the use of latent topics to overcome the current limitations in CBVR. Despite the potential of topic models to uncover the hidden structure of a collection, they have traditionally been unable to provide a competitive advantage in CBVR because of the high computational cost of their algorithms and the complexity of the latent space in the visual domain. Throughout this thesis we focus on designing new models and tools based on topic models to take advantage of the latent space in CBVR. Specifically, we have worked in four different areas within the retrieval process: vocabulary reduction, encoding, modelling and ranking, being our most important contributions related to both modelling and ranking

    GraphMatch: Efficient Large-Scale Graph Construction for Structure from Motion

    Full text link
    We present GraphMatch, an approximate yet efficient method for building the matching graph for large-scale structure-from-motion (SfM) pipelines. Unlike modern SfM pipelines that use vocabulary (Voc.) trees to quickly build the matching graph and avoid a costly brute-force search of matching image pairs, GraphMatch does not require an expensive offline pre-processing phase to construct a Voc. tree. Instead, GraphMatch leverages two priors that can predict which image pairs are likely to match, thereby making the matching process for SfM much more efficient. The first is a score computed from the distance between the Fisher vectors of any two images. The second prior is based on the graph distance between vertices in the underlying matching graph. GraphMatch combines these two priors into an iterative "sample-and-propagate" scheme similar to the PatchMatch algorithm. Its sampling stage uses Fisher similarity priors to guide the search for matching image pairs, while its propagation stage explores neighbors of matched pairs to find new ones with a high image similarity score. Our experiments show that GraphMatch finds the most image pairs as compared to competing, approximate methods while at the same time being the most efficient.Comment: Published at IEEE 3DV 201

    Incremental probabilistic Latent Semantic Analysis for video retrieval

    Get PDF
    Recent research trends in Content-based Video Retrieval have shown topic models as an effective tool to deal with the semantic gap challenge. In this scenario, this paper has a dual target: (1) it is aimed at studying how the use of different topic models (pLSA, LDA and FSTM) affects video retrieval performance; (2) a novel incremental topic model (IpLSA) is presented in order to cope with incremental scenarios in an effective and efficient way. A comprehensive comparison among these four topic models using two different retrieval systems and two reference benchmarking video databases is provided. Experiments revealed that pLSA is the best model in sparse conditions, LDA tend to outperform the rest of the models in a dense space and IpLSA is able to work properly in both cases
    corecore