791 research outputs found

    Clustering Hidden Markov Models With Variational Bayesian Hierarchical EM.

    Get PDF
    The hidden Markov model (HMM) is a broadly applied generative model for representing time-series data, and clustering HMMs attract increased interest from machine learning researchers. However, the number of clusters ( K ) and the number of hidden states ( S ) for cluster centers are still difficult to determine. In this article, we propose a novel HMM-based clustering algorithm, the variational Bayesian hierarchical EM algorithm, which clusters HMMs through their densities and priors and simultaneously learns posteriors for the novel HMM cluster centers that compactly represent the structure of each cluster. The numbers K and S are automatically determined in two ways. First, we place a prior on the pair (K,S) and approximate their posterior probabilities, from which the values with the maximum posterior are selected. Second, some clusters and states are pruned out implicitly when no data samples are assigned to them, thereby leading to automatic selection of the model complexity. Experiments on synthetic and real data demonstrate that our algorithm performs better than using model selection techniques with maximum likelihood estimation

    A bayesian allocation model based approach to mixed membership stochastic blockmodels

    Get PDF
    Although detecting communities in networks has attracted considerable recent attention, estimating the number of communities is still an open problem. In this paper, we propose a model, which replicates the generative process of the mixed-membership stochastic block model (MMSB) within the generic allocation framework of Bayesian allocation model (BAM) and BAM-MMSB. In contrast to traditional blockmodels, BAM-MMSB considers the observations as Poisson counts generated by a base Poisson process and marks according to the generative process of MMSB. Moreover, the optimal number of communities for BAM-MMSB is estimated by computing the variational approximations of the marginal likelihood for each model order. Experiments on synthetic and real data sets show that the proposed approach promises a generalized model selection solution that can choose not only the model size but also the most appropriate decomposition.WOS:000750893600001Scopus - Affiliation ID: 60105072Science Citation Index ExpandedQ3-Q4Article; Early AccessUluslararası işbirliği ile yapılmayan - HAYIRŞubat2022YÖK - 2021-22YÖK - 2021-2

    Robust and Accurate Point Set Registration with Generalized Bayesian Coherent Point Drift

    Get PDF
    Point set registration (PSR) is an essential problem in surgical navigation and image-guided surgery (IGS). It can help align the pre-operative volumetric images with the intra-operative surgical space. The performances of PSR are susceptible to noise and outliers, which are the cases in real-world surgical scenarios. In this paper, we provide a novel point set registration method that utilizes the features extracted from the PSs and can guarantee the convergence of the algorithm simultaneously. More specifically, we formulate the PSR with normal vectors by generalizing the bayesian coherent point drift (BCPD) into the six-dimension scenario. Our contributions can be summarized as follows. (1) The PSR problem with normal vectors is formulated by generalizing the Bayesian coherent point drift (BCPD) approach; (2) The updated parameters during the algorithm's iterations are given in closed-forms; (3) Extensive experiments have been done to verify the proposed approach and its significant improvements over the BCPD has been validated. We have validated our proposed registration approach on both the human femur model. Results demonstrate that our proposed method outperforms the state-of-the-art registration methods and the convergence is guaranteed at the same time
    corecore