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ABSTRACT

Composing Deep Learning and Bayesian
Nonparametric Methods

Aonan Zhang

Recent progress in Bayesian methods largely focus on non-conjugate models featured with extensive

use of black-box functions: continuous functions implemented with neural networks. Using deep

neural networks, Bayesian models can reasonably fit big data while at the same time capturing model

uncertainty. This thesis targets at a more challenging problem: how do we model general random

objects, including discrete ones, using random functions? Our conclusion is: many (discrete) random

objects are in nature a composition of Poisson processes and random functions. Thus, all discreteness is

handled through the Poisson process while random functions captures the rest complexities of the

object. Thus the title: composing deep learning and Bayesian nonparametric methods.

This conclusion is not a conjecture. In spacial cases such as latent feature models , we can prove

this claim by working on infinite dimensional spaces, and that is how Bayesian nonparametric kicks

in. Moreover, we will assume some regularity assumptions on random objects such as exchangeability.

Then the representations will show up magically using representation theorems. We will see this two

times throughout this thesis.

One may ask: when a random object is too simple, such as a non-negative random vector in the

case of latent feature models, how can we exploit exchangeability? The answer is to aggregate infinite

random objects and map them altogether onto an infinite dimensional space. And then assume

exchangeability on the infinite dimensional space. We demonstrate two examples of latent feature

models by (1) concatenating them as an infinite sequence (Section 2, 3) and (2) stacking them as a 2d

array (Section 4).

Besides, we will see that Bayesian nonparametric methods are useful to model discrete patterns

in time series data. We will showcase two examples: (1) using variance Gamma processes to model

change points (Section 5), and (2) using Chinese restaurant processes to model speech with switching



speakers (Section 6).

We also aware that the inference problem can be non-trivial in popular Bayesian nonparametric

models. In Section 7, we find a novel solution of online inference for the popular HDP-HMM model.
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Chapter 1

Introduction

Learning flexible, interpretable representations for data is a fundamental goal in modern machine

learning. Often, one aims to learn some latent features from the entire dataset and then represent each

object using those latent features. In this section, we setup this problem in a probabilistic way as a

latent feature model (LFM), which is a random multiset over N objects (labelled as [N ] wlog.). LFM

can be treated a simplified version of random partitions. First, we will introduce a nice, existing theory

of random partitions. Then we point out that this nice theory cannot be extended to LFMs. Thus our

motivation is to find new theories for LFMs.

1.1 A classical theory for random partitions

Let N denotes the number of individuals. A partition of [N ], denoted by πN = {A1, . . . , AK} is a set

of mutually exclusive subsets Ak whose union is [N ]. A random partition ΠN is exchangeable if its

distribution is invariant under any permutation of [N ]. As we shall see, the exchangeability assumption

is crucial for the theory of random partitions. We then introduce a consistent sequence1 of random

partitions (ΠN )N∈N and define restriction operatorRM (·) as restricting a random partition to [M ]. For

example, let π6 = {{1, 2, 4}, {6}, {3, 5}}. Then R4(π6) = {{1, 2, 4}, {3}}. A restriction operator links

any two random partitions ΠM ,ΠN whereM ≤ N via consistency. ΠM ,ΠN are called distributional

consistent if RM (ΠN ) =d ΠM . We call a sequence of random partitions (ΠN )N∈N consistent if any

1A single exchangeable random partition ΠN turns out to be quite uninteresting. Actually it can always be constructed via
two steps: randomly fill an urn withN different colored balls and then sample without replacement from the urn [Ald85, Sch12].
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pair of them are consistent, and we call a consistent sequence of random partitions an infinite random

partition Π∞ := (ΠN )N∈N.

Theorem 1 [Kin78]. An infinite random partition Π∞ can be generated as follows. First sample a sequence

of ranked frequencies p1 ≥ p2 ≥ . . . such that p =
∑
i pi ≤ 1. Then i.i.d. sample individuals according to

a mixture distribution
∑
i piδφi(dx) + (1 − p)ρ(dx), where φi are different points on R and ρ is a diffuse

distribution on R. Finally cluster individuals that coincide.

Note that in the mixture model
∑
i piδφi(dx) + (1 − p)ρ(dx), all the points that fall in ρ will be

isolated from each other. Since those singletons are not interesting for most purposes, we will assume

p = 1. And we call an infinite random partition regular if it has no singleton. Theorem 1 tells that

regular infinite random partitions are essentially i.i.d. sampling from discrete distributions. For

practical use this is good since we only need to consider models that generate a discrete distribution.

An alternative way to think about random partitions is through their combinatorial properties.

Note that the law of any exchangeable random partition ΠN can be represented as

P(ΠN = {A1, . . . , AK}) = p(|A1|, . . . , |AK |). (1.1)

Here p(·) is called the exchangeable partition probability function (EPPF) for ΠN . It is thus possible

to build consistent EPPFs that are naturally derived from infinite random partitions. Let p(·) be a

symmetric function from any composition of any integer N to [0, 1] that satisfies

p(n1, . . . , nK) =

K∑
i=1

p(. . . , ni + 1, . . .) + p(n1, . . . , nK , 1). (1.2)

EPPFs can be seen as a distribution of random partitions by marginalizing out the random measure∑
i piδφi(dx). In some special cases, it can be tractable to directly sample cluster assignment of a new

incoming object given existing partitions, or using MCMC to iteratively sample assignments for objects

conditioning on partitions of the rest objects. Gibbs partitions is one of the most famous examples.

Example 1 (Gibbs partitions). A random partition ΠN is called a Gibbs partition if

P(ΠN = {A1, . . . , AK}) =
vK
∏K
i=1 w|Ai|

BN (v•, w•)
, (1.3)

where BN (v•, w•) is the normalization term for non-negative sequences v• := (v1, v2, . . .) and w• :=
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(w1, w2, . . .). To be precise, BN (v•, w•) =
∑N
K=1 vKBN,K(w•), where

BN,K(w•) =
∑

{A1,...,AK}∈PKN

K∏
i=1

w|Ai| (1.4)

is called the (N,K)-th partial Bell polynomial [Pit06]. �

It is worth noting that calculating the (N,K)-th partial Bell Polynomial only requires polynomial

time according to the following recurrent rule, due to the product structure of w.

BN,K(w•) =

N−K+1∑
i=1

N − 1

i− 1

wiBN−i,K−1(w•) (1.5)

Under special cases, even simpler iterative rule follows.

Example 2 (Stirling numbers of the second kind). Let SN,K := BN,K(1•) be the number of possible

partitions of [N ] intoK clusters. Simpler recurrence relations exist: SN,K = SN−1,K−1 +K · SN−1,K .

Applying SN,K to (1.3) with v• = 1• one gets a uniform random partition. �

Unlike random partitions that enjoy nice equivalent representations as sampling from random

discrete distributions, latent feature models (LFM) are much harder to manipulate in theory and

practice. The fundamental reason is that LFMs allows each individual to possess multiple latent features,

which brings about additional challenges of modelling correlations among latent features. This will be

made precise in the next section.

1.2 Existing theory on latent feature models

Latent feature models (LFM) are natural extension of random partitions by allowing each individual

possess multiple (latent) features. LetN denotes the number of individuals. We call a feature allocation

over [N ] as fN = {A1, . . . , AK}where Ai denotes the set of individuals that possess feature i. Here

we only look at the combinatorial structure and don’t index each feature. So fN is a set of subsets

of [N ]. E.g. f6 = {{3, 5}, {1, 2, 3}, {6}}. Similar as random partitions, we can introduce restriction

operatorsRM (·), random feature allocations FM , FN , whereM ≤ N and consistency between them

asRM (FN ) =d FM .

Definition 1 (Latent feature models). An infinite latent feature model (FN )N∈N, which we will call

latent feature model for short, is a consistent sequence of random feature allocations such that for each
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N ∈ N, FN satisfies following assumptions:

i. (Individual Exchangeability/IE) All individuals are exchangeable.

ii. (Finiteness/F) Each individual possesses finite number of latent features almost surely. That is,

K is almost surely finite for finite N . �

Apart from above constraints, LFMs suffers from additional ill-behaved properties than random

partitions. For example, [BPJ+13] shows that even an extremely simple LFM does not enjoy a “Gibbs-

type" representation.

Example 3 (A trivial non Gibbs-type LFM). Consider an LFM generated as follows. Given 0 < p1, p2 <

1, for each individual we independently sample its features by two consecutive biased coin tosses, first

with head probability p1 and second with probability p2. Then we assign according features to the

individual if we get a head. Consider we have two individuals, then it is straight forward to see

P(F2 = {{1}, {1}}) = p1(1− p1)p2(1− p2) 6= 2p1(1− p1)p2(1− p2) = P(F2 = {{1}, {2}}). (1.6)

That is, feature counts are “insufficient statistics" for LFMs. This is in contrast to the random partition

case, given EPPFs. �

Example 3 demonstrates that we should take extra care when considering LFMs. In the next two

section, we present two existing perspectives on modelling LFMs. Unfortunately, none of them offers

a satisfactory solution for correlated LFMs, LFMs that explicitly model feature correlations.

1.2.1 LFMs as random partitions

A natural way to resolve the above problem is to rephrase LFMs as random partitions and use existing

random partition theory to derive representations of LFMs. Consider latent feature models as exactly

random partition models by clustering according to the feature assignments. Let π(·) be a projection

from feature allocations to partitions, for which two individuals belong to a single cluster if and only

if they share a same feature allocation scheme. For example, suppose f6 = {{3, 5}, {1, 2, 3}, {6}}, then

π(f6) = {{1, 2}, {3}, {4}, {5}, {6}}. It is straightforward to see that this mapping preserves individual

exchangeability and finiteness.

Proposition 1. If a latent feature model FN satisfies (IE) and (F), so does its induced random partition π(FN ).
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A natural thought is to derive a projective limit of (π(FN ))N∈N. But this totally eliminate the

additional structures that LFMs provide. For example, let f ′6 = {{3}, {4}, {5}, {6}}. Then π(f6) = π(f ′6).

However, the feature assignment of f6 and f ′6 are quite different. Besides, the limit frequency provided

by Theorem 1 is totally not interpretable, since there is no information among the frequencies telling

us the feature sharing assignments. These are the key reasons why we want to work with random

objects that are more complicated than random partitions.

1.2.2 LFMs with randomly permuted features

To avoid over-simplification, one natural way to study LFMs is by re-parameterization. That is, to

introduce alternative random objects (F̃N )N∈N that can be mapped to LFMs (FN )N∈N. The merit of

re-parameterization is to exploit nice properties of (F̃N )N∈N in order to derive nice representations

and/or enable fast posterior inference. In this section we will follow [BPJ+13] to re-parameterize

LFMs as a random sequence of subsets of [N ] by uniformly permuting elements of FN . The reason

for uniform permutation is to compensate for the additional combinatorial factors introduced by

in-distinguishable features, as shown in Example 3. Representations similar as EPPF can thus be

introduced for the resulting random sequences. Formally, for eachN ∈ N assume F̃N := σ(FN ), where

σ(FN ) is a uniform random permutation over subsets of (FN ) given a pre-defined ordering of the

subsets (e.g. by the order of appearance). Note that this re-parameterization does not break down the

exchangeability among individuals, since the permutation is uniform over features. BPJ+13 considers

the following representation for F̃N :

Example 4 (Exchangeable feature probability functions (EFPF)). A uniformly permuted random

feature allocation F̃N admits an EFPF representation p(N, ·), where p(N, ·) is symmetric over its second

to the last arguments, if

P(F̃N = (A1, . . . , AK)) = p(N, |A1|, . . . , |AK |). (1.7)

An LFM (FN )N∈N is an EFPF model if for each N ∈ N, F̃N = σ(FN ) admits an EFPF representation.�

Remark 1. For EFPF models, note that

i. One key difference between EFPF and EPPF is that EFPF should also take the total number of

individuals N into account, while for EPPF the total number of individuals N is determined by

summation of all entries for p(·).
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ii. In contrast to EPPF, symmetry in EFPF p(N, ·) is automatic from the definition in F̃N .

iii. There are implicit constraints in p(N, ·). For example, is it certainly not possible that p(2, 2, 2) =

p(2, 1, 1) = 1. However, for certain purposes (e.g. deriving a consistent limit) there’s no need to

explicitly enumerate those constraints. �

It turns out that EFPF captures several useful LFMs that was previously introduced in the machine

learning literature. The most famous examples are the Indian buffet process (IBP) [GG06, GG11] and

its generalizations [TG09], which form the foundation of Bayesian non-parametric latent factor analysis.

EFPFmodels are popular because we are able to derive limit frequencies for each feature, and the LFMs

can be constructed by first sample the limit frequencies and then each individual sample its allocated

features independently given the limit frequencies. The first such kind of well-known result is the truth

that IBP can be constructed by first sample a Beta process and each individual independently sample a

Bernoulli point process given the Beta process [TJ07]. In this case the feature allocation is represented

by point processes, where each point represent an individual feature. Moreover, in several cases the

limit frequencies can be constructed by (conditional) independent random variables, which enables fast

empirical inference methods such as variational inference [DMVGT09, PZW+10, PCB11, BJP+12, PJ16].

BPJ+13 presents a detailed discussion of those models.

Example 5 (Feature frequency models (FFM)). Let (Vk) be a sequence of random variables with values

in [0, 1] such that
∑∞
k=1 Vk < ∞ almost surely. Let φk ∼iid U [0, 1] and independent of (Vk) and

B =
∑∞
k=1 Vkδφk . For each data point n, independently draw its feature assignment as a point process

Gn =
∑∞
k=1 Zn,kδφk where Znk are i.i.d. Bernoulli draws with probability Vk. The feature allocation is

induced by the points in Gn. �

Similar as Theorem 1, there is a one-to-one correspondence between an EFPF and an FFM.

Theorem 2 [BPJ+13]. Let λ be a non-negative random variable. We can obtain an exchangeable feature

allocation by generating a feature allocation from a feature frequency model and then, for each index n, including

an independentPoisson(λ)-distributed number of features of the form {n} in addition to those features previously

generated. A feature allocation of this type has an EFPF. Conversely, every feature allocation with an EFPF

has the same distribution as one generated by this construction for some joint distribution of λ and the feature

frequencies.

Thus, EFPFs or FFMs are nice equivalent sub-families of LFMs. More discussions from Bayesian

inference perspectives can be found in [HR15, J+17], for example. Other generalizations [ZHDC12,
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J+17] and applications such as topic modelling [WWHB10] and dictionary learning [ZCP+09] of FFMs

are extensively studied in the machine learning and statistics literature.

1.3 Correlated LFMs

The key restriction of FFMs is is the conditional independency assumption among (Znk)k∈N given

(Vk)k∈N. Consider the following example, also introduced in [BPJ+13].

Example 6 (An LFMwith two correlated features). Consider an LFMwith two distinguishable features.

An individual has only four feature allocation cases with probability p00, p01, p10, p11, where for

example, p01 is the probability for allocating only the second feature to an individual. It is straight

forward to see the only constraint here is p00 + p01 + p10 + p11, which does not guarantee an FFM.

Actually, an FFM should in addition satisfy p00p11 = p01p10.

Thus, FFMs is a subset in LFMs that ignores modelling feature correlations. In practice, researchers

found that modelling structured correlations among features using LFMs can be useful for data

organization, visualization, and prediction. For example, GJTB04 introduces nested Chinese restaurant

processes (nCRP), a non-parametric model that constructs a tree hierarchical structure among all

the features. Each individual is allowed to pick one path from root node down to a leaf node. The

correlations among features is clear: features close to the root have larger change to be picked, and thus

should contain more generally shared information. For example, in topic modelling each feature is a

topic, a distribution over words in the vocabulary. The topics that are closer to the root are the ones that

focus on more common words. Extensions such as nested hierarchical Dirichlet processes [PWBJ15b],

allows each individual pick multiple paths down the tree.

In the following sections, we will build theory for flexible correlated LFMs that requires (1) repa-

rameterize LFMs as alternative random objects ξ, (2) use exchangeability assumptions on ξ, and (3)

automatically derive the functional form of ξ. We will see two examples. In Section 2 and Section 3,

we reparameterize LFMs as an infinite sequence with exchangeable blocks. Using representation

theorem, we find that our model is a mixture of Markov chains. In Section 4, we reparameterize LFMs

as a separately exchangeable 2d discrete random measure. And we will figure out our model as a

composition of random functions with Poisson processes.
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Chapter 2

Markov Mixed Membership Models

In this Chapter, we present a practical parametric model called Markov mixed membership model

(Markov M3) that reparameterize LFMs containingK latent features (topics as features in this case) as

a sequence over [K] that sequentially select topics for each document. In particular, MarkovM3models

sequences as a mixture of Markov chains. Thus learns a fully connected graph (transition probability

matrix) structure among mixing components. The Markov structure results in a simple parametric

model that can learn a complex dependency structure between nodes, while still maintaining full

conjugacy for closed-form stochastic variational inference. Empirical results demonstrate that Markov

M3 performs well compared with tree structured topic models, and can learn meaningful dependency

structure between topics.

Mixed membership modeling is a statistical framework for modeling grouped data where each

group is represented as a unique mixture over a shared structure [ABEF14]. A wide range of data fall

within the scope of mixedmembership models, including documents [BNJ03a], images [LP05], and the

genome [PSRD00]. Exchangeability assumptions can be relaxed to extend mixed membership models

to link data [ABFX08], heterogeneous data [CB09, WB11] and matrix factorization [MWJ10]. In this

chapter, we focus on the case where each group’s data is assumed i.i.d. given its mixed membership

mixing measure.

For discrete grouped data, the most basic mixed membership model is latent Dirichlet allocaiton

(LDA) [BNJ03a], which assumes a finite set of discrete distributions, and models each group as a

mixture over these distributions using a Dirichlet prior. The simple “flat” Dirichlet prior assumes

no structure among the atoms, and so the model can overfit as the number of components increases
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beyond a certain number. To capture finer resolutionwithout overfitting, structure has been introduced

to the atom relationships, for example by modeling pairwise correlations [BL07] or tree structures

[BGJ10a].

Among these models, the tree-structured model is especially interesting for the structure it can

learn [BGJ10a, LZZC12, KKKO12, AHS13, PWBJ15a]. Because the components are given a strict

parent/child relationship, tree models can discover components of different granularities having

top-down dependencies. In topic modeling, this is natural since topics can be more or less specific and

the children of one topic can further specify the more general content of the parent topic that unites

them.

To consider two Bayesian nonparametric instances, the nested Chinese restaurant process (nCRP)

[BGJ10a] and nested hierarchical Dirichlet process (nHDP) [PWBJ15a] are two tree-structured models

that select distributions on paths from a root node (see Figure 2.1). For example, the nCRP selects the

atoms for a group by following a path from root to leaf node; the nHDP generalizes this by selecting a

subtree of atoms for each group. Still, in both models it is assumed that there is a clear tree-structured

relationship among nodes. In this chapter, we explore a related modeling framework that allows for a

more flexible range of node connections by assuming a Markov structure among the nodes.

To this end, we present the Markov mixed membership model (Markov M3) for grouped data that

learns a fully connected graph structure among mixing components. With respect to tree-structured

models, our proposed Markov model is straightforward in that, rather than imposing a tree-structured

transition rule between nodes, wemodel the nodes as a fully connected graphwith a first-orderMarkov

rule for transitioning between nodes (see Figure 2.1). We therefore refer to this as a graph-based mixed

membership model. In the context of topic models, this means that any topic can a priori transition to

any other topic, but using a sparse Dirichlet prior on transition distributions we learn a meaningful

dependence between topics through posterior inference.

An advantage of our proposed framework is that it avoids the combinatorial issues encountered

during inference by models such as the nCRP [WB09], and does not require complicated pruning

procedures such as required by the nHDP [PWBJ15a]. In contrast, Markov M3 is a fully conjugate-

exponential family model that allows for closed-form updates that doesn’t require the complicated

procedures of the nCRP or nHDP. Aswith those twomodels, ourmodel is easily learnedwith stochastic

variational inference allowing for processing of large data sets [HBWP13a].
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Figure 2.1: Comparison between three path-based models. (Left) The tree-structured nested Chinese restaurant
process (nCRP) selects one path per group; (Mid.) the tree-based nested hierarchical Dirichlet process (nHDP)
places high probability on a subtree for each group; (Right) the proposed graph-basedMarkov mixed membership
model selects one path per group using a Markov random walk on the fully connected set of nodes (an example
high-probability connectivity is depicted in the background here).

2.1 Model Description

Mixed membership models are applicable to data sets where the observations are grouped, i.e., where

viewing the data on the instance-level results in subsets of the data. For example, each document in a

set can be represented as a group of words. Mixed membership models assume that the groups share

a data generating (global) structure, but with different distributions to account for group-level (local)

differences. For example, topic models share the same set of distributions on words, but mix over

them differently for each group.

A common assumption made by mixed membership models is that the data is exchangeable within

and across groups. In this case, where there exists a random mixed membership measure (i.e., De-

finitte’s measure) that results in i.i.d. generation of the data. LDA is an example of an exchangeable

mixed membership model both within and across groups, whereas dynamic topic models assume

partial exchangeability since the order of documents matters [BL06]. We present a fully exchangeable

model in which each group mixes on paths selected from a fully connected graph according to a

Markov random walk.

2.1.1 Markov mixed membership models

We define the generative process for the Markov mixed membership model. The following procedure

is also summarized in Algorithm 1. Let wd be the set of data for group d. We model this data as an i.i.d.

set drawn from a mixture Gd with mixing distribution νd ∼ GEM(γ0) and a group-specific sequence of

atoms (β̂1, β̂2, . . . ). We can draw from the GEM stick-breaking distribution by sampling,

udi
iid∼ Beta(1, γ0), νdi = udi

i−1∏
j=1

(1− udi). (2.1)
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We use the mixture Gd =
∑∞
i=1 νdiδβ̂i to generate group wd = (wd1, . . . , wdn) by sampling

`dn ∼ Discrete(νd), wdn|`dn ∼ f(β̂`dn). (2.2)

The distribution f is problem-specific. In this chapter we take f to be a discrete distribution and β̂ a

V -dimensional probability vector. We assume there areK atoms, where β̂i ∈ βββ = {β1, . . . , βK}, and

define the prior

βk
iid∼ Dir(β01V). (2.3)

In the nCRP [BGJ10a], the sequence of β̂i is selected by following a path from the root node to the

leaf node of a tree. Instead, we assume a first order Markov structure for this sequence. We construct

a Markov transition distribution on βββ by drawing

θk
iid∼ Dir(α0/K, . . . , α0/K) (2.4)

for each k. The distribution on the sequence β̂ββd is then P (β̂i = βj′ |β̂i−1 = βj |θθθ) = θj,j′ . The variable

zd shown in Algorithm 1 and used for inference indexes this sequence: zdi = j′ if β̂i = βj′ . We assume

the same Dirichlet prior on the initial state distribution π as well.

We observe that if wewere to set `dn = n, we would assignwdn to atom β̂n and the result would be a

standard hidden Markov model (HMM). What differentiates our model, and reintroduces group-level

exchangeability, is that each word chooses which of the selected states it belongs to i.i.d. νd. The

analogy to the HMM can be pursued by thinking of the words of a document first being partitioned

into ordered sets according to νd, and then drawing each group according to an HMM. We will see

how this way of considering the model leads to variational inference that builds on inference for the

HMM [Bea03].

2.1.2 Relationship to tree-structured models

As Figure 2.1 illustrates, the major different between graph-based and tree-based mixed membership

models is the dependence structure between nodes. Where models such as the nCRP impose a strict

parent/child hierarchy, Markov M3 in a sense captures the potential for each node to be the parent of

all others (which simply results from a shift of perspective aboutMarkov chains). The limitedmodeling

ability of the nCRP is primarily due to the rigid single path allowed per group. In topic modeling,

this forces each selected topic to be a strict subset of those previously selected. This assumption was
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relaxed by recent tree-structured alternatives [KKKO12, AHS13, PWBJ15a]. For example, as Figure 2.1

indicates, the nHDP allows for multiple paths per document, so two general topics can be combined

in a single document by allowing words to select paths in different directions.

As seen in Figure 2.1, Markov M3 in one sense returns to the one path per group structure of the

nCRP, but allows for exploration of the entire space like the nHDP. This provides another remedy to the

rigidness of the nCRP. It also offers modeling capabilities not found in the nHDP, since in that model,

the presence of two subtrees is not causally linked according to the prior—the presence of one subtree

says nothing about the presence of another. With MarkovM3, there is a causal connection between two

atoms according to the Markovian generative structure (which we observe is not symmetric). Markov

M3 is again like the nCRP in that, once it selects its path of atoms, it mixes on them using a probability

vector drawn from a stick-breaking distribution.

TheMarkovmixedmembership model can be viewed as a possible parametric version of the nested

Chinese restaurant process, in that we can show that the nCRP is the limiting process of the model in

Algorithm 1 asK goes to infinity. To roughly sketch this, consider the marginal probability measure

GKm =
∑K
k=1 θmkδβk constructed for themth node. [IZ02] proved that limK→∞GKm = Gm ∼ DP(α0µ).

In the limit K → ∞, θmk = 0 with probability one, while
∑
k θmk = 1. In this case, the nonzero

probability can be shown to be on a disjoint set of atoms for each Gm with probability one, despite the

fact that they share atoms in the finite approximation GKm. Practically speaking, this means that a state

transition sequence sampled from the infinite limit of Markov M3 will never return to the same node

twice, and so the model can equivalently be thought of as selecting a path in a tree. We formally state

this in the following Proposition.

Proposition 2. AsK goes to infinity, the Markov mixed membership model recovers the underlying mixing

measure of the nested Chinese restaurant process.

2.1.3 Related work

Graph-based mixed membership models have been applied to grouped data in other settings. For

example, mixed membership models have been applied to graph data, where instances are linked

as a graph, and stochastic block models [ABFX08] have been proposed to model the links between

instances through clustering. Mixed membership models have also been applied to collaborative
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Algorithm 1 Generative process for Markov M3

Global variables
Draw an initial-state distribution π ∼iid Dir(α0

K 1K).
for each atom k ∈ {1, 2, · · · ,K} do

1. Draw parameter βk ∼iid µ.
2. Draw transition distribution θk ∼iid Dir(α0

K 1K).
end for
Local variables
for each document d ∈ {1, 2, · · · , D} do

1. Draw a Markov chain of atoms zd ∼ MC(π,θ).
2. Draw a distribution on atoms, νd ∼ GEM(γ0).
for each word n in document d do

1. Draw assignment `dn ∼iid Disc(νd).
2. Draw observation wdn ∼ f(βzd,`dn ).

end for
end for

filtering [MWJ10, WB11] and link prediction [CB09]. Exploring exchangeable structures in graphs has

also received recent theoretical interest [OR15a].

We also observe that mixed membership models can be applied to the more traditional use of

hidden Markov models for sequential data. For example [Pau14] considers a similarly named process

for the fundamentally different problem of nonexchangeable sequence modeling.

2.2 Scalable Variational Inference

Wederive a variational inference algorithm for learning an approximate posterior of all model variables

shown in Algorithm 1. We can factorize the joint distribution of our model as

p(w,βββ,θθθ, z,u, `̀̀, π) = p(βββ)p(θθθ)p(π) ×
∏
d p(wd|βββ, zd, `̀̀d)p(zd|θθθ, π)p(`̀̀d|ud)p(ud). (2.5)

We apply mean-field variational inference to approximate the posterior p(βββ,θθθ, z,u, `̀̀|w) by defining a

factorized q distribution on these variables and locally maximizing the variational objective function

L = Eq[ln p(w,βββ,θθθ, z,u, `̀̀)]− Eq[ln q]

using coordinate ascent, which approximately minimizes the KL-divergence between the true posterior

and q. We restrict q to the following factorized form

q(βββ,θθθ, π, z,u, `̀̀) = q(βββ)q(θθθ)q(π)q(z)q(u)q(`̀̀), (2.6)
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which we further factorize as

q(βββ)q(θθθ)q(π) = q(π|απ)

K∏
k=1

q(βk|λk)q(θk|αk),

q(z)q(u) =
∏
d

q(zd|ϕd)
∏
i

q(udi|adi, bdi),

q(`) =
∏
d

∏
n

q(`dn|φdn). (2.7)

We select all q distributions to be in the same family as the prior defined in Algorithm 1. In the

following, we use coordinate ascent to optimize the variational objective, with respect to the variational

parameters. We first discuss the update of local variables zd,ud, `̀̀d, which are only dependent on

a single instance. Then we discuss the global variables βββ,θθθ, π that depends on multiple instances.

Though we have proposed a parametric model in the size of the graph, K, we have defined the

Markov chain for each group to be infinite in length. For inference, we introduce a truncation of this

stick-breaking construction to level T , as is typically done [BJ06]. We note that truncation-free methods

are a possible remedy [WB12].

2.2.1 Local variables

The most complex part of inference is in learning the Markov sequence zd that selects atoms for group

d. We can derive the explicit form of its posterior from

q(zd) ∝ exp
(∑

i

E[ln p(zdi|zd,i−1, θθθ)︸ ︷︷ ︸
pairwise potential

] +
∑
i

∑
n

φdn(i)E[ln p(wd |̀`̀d, zdi,βββ)︸ ︷︷ ︸
single potential

]
)
. (2.8)

In Eq. (2.8) we can break q(zd) into single potentials and pairwise potentials as indicated. We can

then solve using the forward-backward algorithm to infer the posterior joint marginals. In fact, this

is exactly the procedure for learning the state transitions of an HMMwith the important difference

that the emission at step i is not predefined, but instead the soft clustering of data in wd induced by

the variational parameters of `̀̀d, which is changing with each iteration. A simple modification can be

made to the forward-backward algorithm that accounts for the new emission process (please see the

supplemental material).

Let χfdi(k) and χbdi(k) be the outputs of the forward and backward algorithms, respectively. As
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with the HMM, we will use the quantities

ϕdi(k) ∝ χfdi(k)χbdi(k) (2.9)

ξdi(k, k
′) ∝ χfd,i(k)χbd,i+1(k′)κdi(k, k

′), (2.10)

where we define

κdi(k, k
′) = exp{E[ln θk,k′ ] +

∑
n φdn(k′)E[lnβk′,wdn ]}.

Normalization is over k for ϕ and the pair (k, k′) for ξ. The multinomial variational parameter φdn

corresponds to the data allocation variable `dn, found by calculating

φdn(i) ∝ exp
(
E[ln νdi] +

∑
k ϕdi(k)E[lnβk,wdn ]

)
. (2.11)

We observe that the last term sums over atom assignments for the ith value in the Markov sequence.

The first expectation is from the stick-break construction

E[ln νdi] = E[lnudi] +
∑i−1
j=1 E[ln(1− udj)] (2.12)

The final local variables are the stick-breaking proportions ud. Given the allocation distributions

q(`dn), the update of the beta q distribution of udi is

adi = 1 +
∑
n

φdn(i), bdi = γ0 +
∑
n,i′>i

φdn(i′). (2.13)

We can iterate several times updating the local variables for each document before moving on to the

global variables.

2.2.2 Global variables

The global variables include the Markov transition probabilities and the atoms. The update to the

variational parameters of the initial state and transition probabilities, π and θθθ, are identical to the

HMM,

απ,k =
α0

K
+
∑
d

ϕd1(k), (2.14)

αk,k′ =
α0

K
+
∑
d

∑
i

ξdi(k, k
′). (2.15)
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Algorithm 2 An outline of batch variational inference
Local variables: For each document d,
Update q(zd) with forward-backward. Eq. (2.8)
Update each word allocation q(`dn). Eq. (2.11)
Update stick proportions q(udi). Eq. (2.13)
Global variables: For π and each atom k,
Update the initial state distribution q(π). Eq. (2.14)
Update the transition distribution q(θk). Eq. (2.15)
Update the atom distribution q(βk). Eq. (2.16)

For Dirichlet-distributed atoms βββ, the variational update to the Dirichlet q distribution of βk is

λkv = β0 +
∑
d

∑
n

1(wdn = v)
∑
i

φdn(i)ϕdi(k). (2.16)

The right-most summation calculates the probability that word wdn and topic βk are both be assigned

to the same point in the Markov sequence (zd1, zd2, . . . ), which is required for word wdn to belong to

component βk.

2.2.3 Stochastic variational inference

Since Markov M3 is a conjugate-exponential family model, it is immediately amenable to stochastic

variational inference (SVI) [HBWP13a]. For models such as tree-based models and the proposed

graph-based model, such large data extensions can help in learning the greater level of structure

defined by the model prior. As with other mixed membership models, we can exploit the fact that the

variational objective function factorizes as

L = − Eq[ln q] + Eq[ln p(βββ,θθθ, π)] (2.17)

+
∑
d Eq[ln p(wd, zd,ud, `̀̀d|βββ,θθθ, π)].

Using SVI, we stochastically optimize L by restricting the local calculations to a small subset Ct

of the D groups at iteration t. Given the subset Ct, SVI proceeds by (1) optimizing all local variables

indexed by Ct, (2) forming the global updates restricted to Ct, and (3) averaging these updates with

the current values. Let α̂π,k, α̂k,k′ and λ̂kv be the coordinate ascent updates restricted to Ct. These are

calculated as in Eq. (2.14)–(2.16). Then the stochastic updates to the true values are

α
(t+1)
π,k = (1− ρt)α(t)

π,k + ρt(D/|Ct|)α̂π,k

α
(t+1)
k,k′ = (1− ρt)α(t)

k,k′ + ρt(D/|Ct|)α̂k,k′
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Figure 2.2: Held-out perplexity results. The Markov transition model (Markov M3) overall achieves best perfor-
mance among parametric models. Its best performance is even better than the state-of-the-art nonparametric
nHDP.

Table 2.1: Three datasets used for batch comparison.

Corpus # train # test # vocab # tokens
Huff Post 3.5K 589 6,313 907K
Science 4K 1K 4,403 1.39M
Nips 2.2K 300 14,086 3.3M

λ
(t+1)
kv = (1− ρt)λ(t)

kv + ρt(D/|Ct|)λ̂kv (2.18)

The decaying learning rate ρt must satisfy
∑∞
t=1 ρt = ∞,

∑∞
t=1 ρ

2
t < ∞ to ensure convergence

[Bot98]. We set ρt = (τ0 + t)−κ, where τ0 > 0 and 0.5 < κ ≤ 1.

2.3 Experiments

Our experiments with Markov M3 focus on grouped discrete data problems. We first consider topic

modeling on small and large scale problems. We then show qualitative results on a music tagging

problem, where the union of quantized song features and user tags provides the discrete grouping on

a song level.

2.3.1 Document modeling

Batch comparisons. We first apply our model to three datasets easily learned with batch inference:

Huffington Post, Science and NIPS papers. The statistics from each data set is shown in Table 2.1. We

split each data set into a training set and a test set, also shown in Table 2.1. For the testing set we

split each document into a 90/10 split and learned local parameters on 90% of words in the document

and predicted 10% for prediction given the inferred topic proportions. We present the quantitative
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Figure 2.3: Predictive performance for online Markov M3 and online LDA. Markov M3 is consistantly better for
various number of topics through the entire learning process.

performance using preplexity, which can be calculated as

perplexity = exp
(
−
∑
n∈wTS log p(wn|wTR)

|wTS |

)
, (2.19)

where wTR, wTS represent training and test words in the test set respectively.

We compare performance of our model with LDA, the correlated topic model (CTM) [BL07] and

the nested HDP (nHDP) [PWBJ15a]. The nHDP was shown to give better predictive ability than the

nCRP, and so we do not compare with that algorithm. We have also noted that whenK goes to infinity,

the Markov M3 recovers the nCRP mixed membership model and so performance of our model tends

to the nCRP.

The perplexity results using a different number of topic are shown in Figure 2.2. For the nonpara-

metric nHDPwe truncate its posterior topic number to 175, which is higher than the maximum number

of topics used by the parametric models. On all datasets, the Markov M3 consistently performs better

than other parametric models. The reason is that Markov M3 can more flexibly model all pairwise

topic dependencies, while LDA only considers there to be a slight negative correlation among topics,

and CTM considers pairwise correlation without dependency information. We observe that the best

performance for Markov M3 is better than nHDP, which gives evidence that a graph structure is

preferable to a tree structure for modeling topic dependencies.

Stochastic learning. For a large-scale problem, we train our model using stochastic variational

inference on the New York Times dataset, which contains 1.8 million documents, and compare its

predictive performance on a held-out test set with online LDA [HBB10]. For both models we use the

same topic initialization. We also use a learning rate of (10 + t)−0.75 for both models, and a batch size

of |Ct| = 500. For Markov M3, we truncate the path length to 15 and set γ0 = 1.



CHAPTER 2. MARKOVMIXED MEMBERSHIP MODELS 21

E-Sports at College, With Stars and Scholarships

sports
olympic
game
athlete

summer

team
coach
season

player
league
season

game
big

student
college
campus
faculty

school
education

student

company
business

Obama’s Budget Seeks International Minimum Tax for Corporations

tax
income
percent
property

cut

billion
quarter
earning

sale
share

percent
increase

japan
trade

foreign
international

country

rate
bound

bill

fund
investor
money
stock

China Further Tightens Grip on the Internet

com
internet

web
site

online
china

chinese
beijing
taiwan
asian

problem
need
small

system
computer

technology
software

economic
growth
inflation

rate

Figure 2.4: Topic paths selected by three documents. The size of the node indicates the proportion of the topic.

In Figure 2.3, we show the predictive performance throughout the learning process of both models,

considering various number of topics. We see that the stochastic version of Markov M3 performs

better than online LDA, which is consistent with the results on smaller scale problems.

Markov M3 learns a transition distribution over all topics. In Fig. 2.5, we depict the most probable

transitions from several topics within the graph. We limit connections and directions to those above

a threshold for clarity and use size to roughly indicate probability. As can be seen, most transition

probabilities between topics are very low, thus are not displayed on the graph. Among all the topics,

a few of them are general (e.g., topic 67 with top words ’say’, ’life’, ’man’), but most topics are more

specific. Topics naturally form small cliques, where the transition probability within a cluster is

significantly higher than transitions across clusters. There are also connections between topics in

different but similar domains. For example, there is a high transition probability between a "film"

topic (18) to a "music" topic (46).

We further illustrate the Markov property by focusing on the document level. Since each document

learns a distribution on paths through the graph, we show the most probable path found using the

Viterbi algorithm. We show the paths selected for three documents in Figure 2.4, where the arrow

indicates path direction and the size of the node indicates the proportion for that topic. In general,

Markov M3 tends to visit earlier topics with larger proportions, as is encouraged by the stick-breaking

prior. The topics selected in these examples are clearly interpretable, and the sequence captures
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parameter. Results are shown in terms of average log likelihood on a test set.

information about topics relations.

Sensitivity analysis. We empirically analyze the effect of the truncation level of the Markov chain

and the stick-breaking concentration parameter in our model. The truncation level indicates the

number of topics we allow to each document. When the truncation level is too small, each document

can only explore very limited number topics.1 As Figure 2.6 shows, the model is less accurate in this

1We recall that the nCRP restricted each document to 3 topics, not counting the shared root topic.
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Figure 2.7: Markov transition paths learned from three songs without knowing their tags (the ground truth tags
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case. However, when the length of Markov randomwalk become too large, performance also decreases.

This is because the update to the transition distributions θk treat the entire sequence of each document

equally. If there are many empty topics in the Markov sequence, as indicated by the q distributions

on udi, the information in the q distributions of the transition matrix can become less informative. In

this sense, truncation of the model is important and should be set so that most available topics are

used by a document. The concentration parameter γ0 defines the smoothness for the stick-breaking

proportions. Figure 2.6 shows that choosing a smooth prior can help improve performance.

2.3.2 Million song dataset

We also experiment with Million Song Dataset [BMEWL11]. We first extract music audio features

from 371K songs and learn a codebook of size 512 using K-means. We represent each song as a vector

that can be split into two parts. The first part contains the vector-quantized audio features using the

codebook. This gives a vector w ∈ NJ , where wk represents the counts of audio frames that fall into

cluster k for a particular song. The remaining part is a user-applied bag-of-tags v ∈ {0, 1}L, with a

total of L = 561 tags. We set vl = 1 if tag l is observed for the given song. Thus, the entire quantized

feature can be represented as [w,v], or a document with a vocabulary size of 1,073.

Exploiting latent factors that generates audio waveforms for tagging has been studied in recent

years [HBC10, LHE13]. The end goal we consider is the problem of assigning semantic tags to a song

by only analyzing its audio waveform using a model learned from the weakly labeled songs (i.e.,
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incomplete and noisy labeled). We apply Markov M3 with 50 nodes (topics) to this problem to learn

joint audio-tag topics–each factor is a distribution over "words", which is a combination of the audio

codebook and the tags. In our problem set-up, we note that the audio features dominate entire feature

since the number of user-applied tags is much smaller than the number of quantized audio features,

and so the topics learned will be audio-centered and the marginal tag distribution can be viewed as a

weak semantic label of music style captured by that audio factor.

As with document modeling we learns a fully connected graph over music factors, which we

display here by showing the path transitions for three held-out test songs. Again, the model learns

a distribution on paths, and we only show the most probable path using Viterbi. For this testing

problem, since we don’t have any tags, we feed the quantized audio features into our model and to

learn their Markov transitions over factors. We then use the tagging portion of the selected atoms to

represent the path selected. From Figure 2.7, we find that Markov M3 pulls out the correct, but noisy

tags (marked as red) with high probability, and also discovers other possibly relevant tags.

In this chapter, we proposed a Markov mixed membership model (Markov M3) that explores a

fully connected graph structure among components. Markov M3 provides a new way of performing

mixed membership modeling with structured distributions, and an alternative to similar tree-based

models. We showed howMarkov M3 gives a new perspective on the nCRP by showing nCRP to be

a limiting case of Markov M3. We showed the effectiveness of this modeling framework on small

and large datasets for discrete grouped data such as documents and quantized music. In the next

chapter, we introduce an infinite dimensional view of Markov M3 derived from a sequential “feature

allocation" scheme.
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Chapter 3

Markov Latent Feature Models

In this chapter, we formalize the idea of modeling LFMs using sequences with a representation theorem.

The key idea is to interpret each state of a sequential process as corresponding to a latent feature, and

the set of states visited between two null-state visits as picking out features for an observation. We call

a subsequence between two null-states as a “block". We show that, given exchangeability over blocks,

we can represent the sequence as a mixture of recurrent Markov chains. In this way we can perform

correlated latent feature modeling for the sparse coding problem. We demonstrate two cases in which we

define finite and infinite latent feature models constructed from first-order Markov chains, and derive

their associated scalable inference algorithms. We show empirical results on a genome analysis task

and an image denoising task.

Latent feature models learn the unobserved factors that are shared among a collection of objects.

Often a small fraction of these latent features can be used to jointly describe, or “sparsely code,” a

single object. This assumption is often made for a wide range of tasks [GSG07]. For example, each

DNA sequence can be assigned features that measure repeating patterns of certain base pairs, or each

image can be assigned features that correspond to the items it contains.

The process for making latent feature assignments can be thought of as generating a 0-1 matrix

where the 1-elements in each row index the latent features assigned to the object. For example, the

Indian buffet process (IBP) [GG11] defines a feature allocation whereby features are independently

assigned according to a rich-get-richer scheme. The IBP is a Bayesian nonparametric model in which

the number of latent features can grow to infinity with data. It also assumes exchangeability among

objects, meaning the order of the data does not affect the feature assignment probabilities. With such
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assumptions there always exists a mixing measure (de Finetti’s measure) by which feature allocation

scheme for different objects are conditionally independent. For example, the mixing measure for the

IBP is the beta process [TJ07]. Employing such representations allows for simple variational inference

algorithms that can easily scale to large data sets [HBWP13b, SP15, SKG15].

Models based on the IBP and beta process assume independence among the latent features allocated

to an object, but in many cases these latent features may have dependencies. For example, in a natural

image a car is more likely to co-occur with a bus rather than a whale. Several methods have been

developed for modeling dependencies among latent features or clusters. For example, beta diffusion

trees [HKG14] organize latent features in a tree to learn a multi-resolution feature structure. Other tree

models, such as the nested Chinese restaurant processes [BGJ10b] and the nested hierarchical Dirichlet

processes [PWBJ15b], use a discrete-path based tree structure to select latent features for each object.

To avoid the rigid structure of trees in a mixed-membership framework, Markov mixed-membership

models [ZP15b] propose instead modeling the pair-wise correlation of latent clusters with a Markov

random walk on a fully-connected, finite graph.

We propose aMarkov latent feature model (MLFM), which extends the idea of using Markov random

walks to latent factor modeling problems such as those addressed by the IBP and beta process. The

main novelty in this new framework is that we use a sequential block—a subsequence between two

adjacent visits to a “null state”—to define the feature allocation process (Section 3.1). Since only a

subset of states will be visited prior to returning to the null state, a MLFM is a sparse coding model.

We introduce two scalable MLFM models, a parametric and nonparametric version, for which we

directly define the mixing measure of the associated recurrent Markov chain (Section 3.2). This allows

us to derive a scalable variational inference algorithm (Section 3.3). Finally, we apply MLFM to a

genome analysis task and an image denoising task to show its effectiveness (Section 3.4).

3.1 Feature Allocation via Sequences

Before describing the specific generative processes we use, we discuss the central property of the

proposed Markov latent feature model (MLFM) that distinguishes it from other approaches to sparse

coding. Let Z = (Z0, Z1, · · · ) be an infinitely long stochastic process, where each Zi ∈ N ∪ {0} and

Z0 = 0, with 0 indexing the “null state”. As we shall see, the null state plays the role of partitioning

latent features for different objects, while N is a feature index set.
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Figure 3.1: An illustration of the construction of a 0-1 matrix from a sequential process, which we define to be a
mixture of recurrent Markov chains. On the LHS, the chain Z starts from a null state Z0 = 0 and generates four
blocks (subsequences) Zψ(1) to Zψ(4) by returning to 0 four times (shown as four colored paths on the graph).
One the RHS, this sequence constructs a 0-1 matrix with four rows and the columns indicating the unique set of
states visited in each block.

The generative process we define sequentially pick features for an object until the process returns

to 0. Let τ(0) = 0 be the index of the initial null state and

τ(1) = min{n > τ(0) : Zn = 0}. (3.1)

The sequence through Zτ(1) selects the features assigned to the first object as the unique set of states

visited between Zτ(0) and Zτ(1). We call τ(1) the first return time and define ψ(1) to be the sequence

(τ(0)+1, . . . , τ(1)). Therefore Zψ(1) is the first block of the process Z and corresponds to the features

allocated to the first observation.

We continue this procedure through a second return time τ(2), constructing the second subsequence

Zψ(2) fromwhichwe obtain the set of latent features assigned to the second observation. More generally,

if we have N observations, then we read the stochastic process until step τ(N), the time we finish

selecting features for the last object.

We can use this set of blocks to construct a 0-1 matrix Ẑ, where each row indicates the features

associated with the corresponding observation similar to the IBP. We show an example for N = 4 in

Figure 3.1.

Thus far we have not defined the distribution of Z. However, we choose to make the following two

restrictions:

1. The null state should be visited infinitely many times.

2. The rows of Ẑ should be exchangeable.

The first restriction allows us to model an infinite number of observations and is a statement about the
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recurrency of Z. The second restriction is made to allow for simple inference using a mixing measure.

Our added goal of modeling feature correlations leads us to enforce the second restriction via Markov

exchangeability. Recall that a sequence Z is Markov exchangeable if the probability of two sequences Z′

and Z′′ is the same when they share a permuted collection of subsequences. In the context of Figure

3.1, this simply states that the probability of Z is the same according to the chosen distribution if we

permute a finite number of Zψ(i). The following lemma is a direct result of these definitions.

Lemma 1. The rows of Ẑ are exchangeable if Z is Markov exchangeable.

Theorem 1. [DF80] A recurrent process Z is Markov exchangeable if and only if it is a mixture of Markov

chains.

We therefore specify Z as a mixture of recurrent Markov chains. As a result, the latent features are

correlated, which can be viewed as a graph where the edges indicate Markov transitions among states

(see Figure 3.1). We observe that models such as the IBP satisfy the above requirements, but without

modeling correlations. Using the Markov property provides this modeling capacity in a way that

allows for simple inference and has straightforward nonparametric extensions.

3.2 Markov Latent Feature Models

In Section 3.1 we proposed restricting Z to be a mixture of recurrent Markov chains. In principle,

any formulation based on this restriction would be valid, including those whose mixing measure is

unknown, but for practical purposes we would like to explicitly model the mixing measure of the recur-

rent Markov chain. We therefore propose two models below, one parametric and one nonparametric,

both based on a simple first-order Markov assumption.

3.2.1 A parametric model

Assume we have N observations and have K + 1 possible states (including the null state). We can

formulate Z as

p(Z1:τ(N)|Z0) =

∫ τ(N)−1∏
j=0

p(Zj+1|Zj , θθθ)µ(dθθθ), (3.2)
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where p(Zj+1|Zj , θθθ) = θZj ,Zj+1 . We let the mixing measure µ be a prior on the Markov transition

matrix θθθ. In particular, we let the vector θθθk = (θθθk,0, . . . , θθθk,K) be distributed as

θθθk ∼ Dir
(

α
K+1 , · · · ,

α
K+1

)
, 0 ≤ k ≤ K. (3.3)

Notice that together with the null state we haveK + 1 states; we do not separate the null state from

the other states, but jointly model them together.

We call this model the finite Markov latent feature model (MLFM in our experiments). When the

expected return time to the null state is much smaller thanK, MLFM will be a sparse coding model in

that each observation will possess a small subset of features. Unlike models based on the beta process,

in which the number of features for each observation follows a Poisson distribution, the distribution

on the number of features in MLFM cannot be derived in closed-form. However, this distribution

is connected to the stationary distribution of the process. We next present a bound on the expected

number of features.

Proposition 3. Suppose θθθ is known and ∆ is its stationary distribution. Let Ai be the set of unique features

used by object i, then E[|Ai|] ≤ 1
∆0

, where ∆0 corresponds to the null state.

Proof. First observe that |Ai| ≤ τ(i)− τ(i− 1) because the sequence may return to the same feature

multiple times. By the Markov exchangeablity of Z, we have |Ai| =d |A1| and τ(i)− τ(i− 1) =d τ(1).

Since θk,k′ > 0, the Markov chain is regular and thus ergodic. Since E[τ(1)] is the expected return time

for a regular Markov chain and E[τ(1)] = 1
∆0

[Nor98], the result follows.

3.2.2 A nonparametric model

In our second example, we extend the above model to an infinite number of features in the spirit of

the IBP and beta process. We use the hierarchical Dirichlet processes (HDP) [TJBB06a] to model the

mixing measure θθθ:

βββ ∼ GEM(α), θθθk ∼ Dir(αβββ), (3.4)

where βk = vk
∏k−1
k′=0(1 − vk′) and vk′ ∼ Beta(1, α). We call this model the infinite Markov latent

feature model (iMLFM in the experiments).
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3.2.3 Application to a linear Gaussian model

We apply these models to the dictionary learning problem using a linear Gaussian model. In this case,

the data matrix of N observationsX = [X1, · · · ,XN ] is modeled as

X = W(Ẑ> ◦C) + εεε, (3.5)

where W = [w1, · · · ,wK ] is the dictionary matrix with K elements, C is a K × N matrix, εεε =

[ε1, · · · , εN ] is a noise matrix, and

wk ∼ N (0, 1
η I), cki ∼ N (0, 1

λ ), εi ∼ N (0, σ2I).

As defined above, the coding matrix Ẑ is generated from the Markov sequence Z described in Section

3.1 using the priors on either the finite or infinite state Markov chain define above. In the infinite-state

model,K =∞.

3.2.4 Discussion

The two examples of an MLFM given above are models that induce directed correlations among latent

features. However, they are not the only choice. From Theorem 1, we can apply any mixture of

recursive Markov chains to build a model. Another choice would be to use an edge-reinforced random

walk (ERRW). An ERRW-induced latent feature model is undirected. A class of ERRWs has been

shown to be a mixture of reversible Markov chains, for which Bayesian inference has recently been

studied [DR06, BFT+13]. However, constructing nonparametric priors for reversible Markov chains is

non-trivial. [KGP14] provides one solution, but a scalable version has not yet been developed.

Several previous works have studied the theoretical properties of other feature allocation construc-

tions. For example, [BPJ+13] studied an exchangeable class of feature partitions using a “paintbox”

characterization, while [HR13] analyzed the combinatorial structure of beta negative binomial pro-

cesses and [ZPS15] investigate such constructions for feature count matrices.

3.3 Inference

We derive a variational inference algorithm for the parametric Markov latent feature model where we

model the mixing measure as a Dirichlet distribution. We can extend inference to the nonparametric
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case by modeling βββ in Equation (3.4) using, e.g., the direct assignment method as mentioned in

[LPJK07a, JW14b] for the HDP; another recent fully Bayesian method is [ZGP16a]. We exclude this

additional step in our algorithm below since the derivation is identical to the HDP in this portion of

the model.

3.3.1 Batch Variational Inference

The joint distribution of the Markov latent feature model factorizes as

p(θθθ,W,C,Z,X) =
[∏K

j=0 p(θθθj)p(wj)
]
×
[∏N

i=1 p(Ci)p(Zψ(i)|θθθ)p(Xi|Ci,Zψ(i),W)
]
.

We recall that Zψ(i) is the block of the Markov chain that selects features for the ith observation and

must terminate at the null state. We restrict the posterior to a factorized form as well,

q(θθθ,W,C,Z) =
[ K∏
j=1

q(θθθj)q(wj)
][ N∏

i=1

q(Ci)q(Zψ(i))
]
,

and we define

q(θθθj) = Dir(aj), q(wj) = δwj (·),

q(Ci) = N (µµµi,ΣΣΣi), q(Zψ(i)) = δZψ(i)
(·). (3.6)

The variational objective is

L = Eq[ln p(θθθ,W,C,Z,X)]− Eq[ln q(θθθ,W,C,Z)].

Using this factorization, we observe in advance that our algorithm below is equivalent to aMAP-EM

algorithm for maximizing p(X,W,Z), where C and θθθ constitute the hidden data. This is because

q(θθθ,W,C,Z) = q(θθθ,C|W,Z)q(W,Z)

and θθθ and C are conditionally independent and can be solved exactly given the point estimates W

and Z, which the delta q distribution enforces. In other words, the mean-field representation for θθθ and

C is exact and not an approximation in this case.

Update Z andC: Sparse coding with greedy search. We jointly update Zψ(i) andCi using a new

approach to sparse coding with Bayesian models. The method is similar to orthogonal matching

pursuits, used in sparse coding by K-SVD [AEB06], in that it greedily selects the next feature to add by
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Algorithm 3 Sparse coding with greedy search
Input: q(θθθ) and W.
for i = 1 to N do

1. Set Zψ(i) = ∅ and Ai = ∅.
while maxj ξj > 0 do

(a) Set ξj = LAi([Zψ(i), j, 0])− LAi([Zψ(i), 0]).
(b) Set j′ = arg maxj ξj .
(c) Set Zψ(i) ← [Zψ(i), j

′] and Ai ← Ai ∪ {j′}.
end while
Set Zψ(i) = [Zψ(i), 0].

end for
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Figure 3.2: (Left) Factors learned from BPFA, nCRP, and iMLFM on the HGDP-CEPH dataset. Observations from
various regions are aligned vertically, as displayed on the left side. (Right) Graph learned from iMLFM and nCRP.

integrating out the corresponding weight, followed by an update of all weights on the active features.

The structure of the algorithm is also similar to MAP-EM inference for mixtures of factor analyzers

[GH96a].

To sparsely code the ith observation, we can focus on the objective term

L(Zψ(i), q(Ci)) = Eq
[
ln
p(Xi,Ci,Zψ(i)|θθθ,W)

q(Ci)

]
. (3.7)

First observe that given Zψ(i),

q(Ci) = p(Ci|Xi,Zψ(i),W) = N (µµµi,ΣΣΣi) (3.8)

is known exactly and is a multivariate Gaussian derived explicitly below. Here, we jointly update Zψ(i)

and q(Ci) by incrementally extending (or terminating) the path Zψ(i).

Because our inference problem is equivalent to MAP-EM for the joint likelihood p(X,W,Z) we

can do this as follows: Let Ai be the current set of features selected by the path Zψ(i) and q(CAi) =
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N (µµµAi ,ΣΣΣAi) be the corresponding marginal posterior over these dimensions, where

ΣΣΣAi = (λI + 1
σ2W

>
AiWAi)

−1, µµµAi = 1
σ2 ΣΣΣAiW

>
AiXi.

We expand the path of Zψ(i) using EM by constructing

LAi(Zψ(i)) = Eq[ln p(Xi,Zψ(i)|CAi ,W, θθθ)]

where the expectation is over θθθ and the subset of Ci indexed by Ai using q(CAi) derived above. The

remaining dimensions of Ci are marginalized out a priori. Since we are dealing with multivariate

normal variables, all calculations are in closed form and remain Gaussian.

We then greedily pick the next state that improves this objective the most and add that state to the

end of the path Zψ(i), or we terminate if moving to the null state and adding no more features provides

the best improvement. When the algorithm terminates, we have a point estimate of the path Zψ(i)

that selects the latent features for the ith observation, and the corresponding conditional posterior

q distribution on the weight vector Ci. By the equivalent MAP-EM construction of this algorithm,

each step is guaranteed to increase the objective function. We summarize this greedy algorithm in

Algorithm 1.

Proposition 4. The sparse coding greedy search algorithm will stop in a finite number of steps.

Proof. First, note the q(Ci) is a function of Ẑi. The objective function in Eq. (3.7) becomes

L(Zψ(i))) = L1(Zψ(i)) + L2(Zψ(i)), (3.9)

where

L1(Zψ(i)) = Eq[ln p(Zψ(i)|θθθ)]

L2(Zψ(i)) = Eq[ln p(Xi|Ci, Ẑi,W)] + f(Ẑi). (3.10)

Here f(Ẑi) = Eq[ln p(Ci)
q(Ci)

], by marginalizing out Ci. Note that L2(Zψ(i)) can only take finite values,

since there are finite configurations for Ẑi. We only need to prove that L1(Zψ(i)) cannot always be

improved. We have

L1(Zψ(i)) =

τ(i)∑
j=τ(i−1)+1

Eq[ln θZj−1,Zj ]. (3.11)

Let L(1)
1 =

∑τ(i)−1
j=τ(i−1)+1 Eq[ln θZj−1,Zj ] be the cost of all transitions execpt for the last one, and L(2)

1
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be the rest part of L1. Note that as the sequence grows, L(1)
1 is monotonically decreasing, since

θZj−1,Zj < 1. And L(2)
1 (the cost of last transition plus a constant) can only take finite values. Thus, L1

cannot monotonically increase through greedy search.

Furthermore, we observe in our experiments that the algorithm tends to terminate after a small

fraction of available features have been selected, using a number comparable to IBP-based models.

Update q(θθθ): The distribution q(θθθj) = Dir(aj) can be found by optimizing theMarkov chain portion

of the objective function below,

L(q(θθθ)) = Eq[ln p(θθθ)] +
∑N
i=1 Eq[ln p(Zψ(i)|θθθ)].

Since Zψ(i) is a point estimate, this is equivalent to finding the conditional posterior of θθθj , and thus

aj,j′ =
α

K + 1
+

τ(N)−1∑
i=0

1(Zi = j, Zi+1 = j′).

Update W: For this point estimate, we want to maximize

L(W) = ln p(W) +
∑N
i=1 Eq[ln p(Xi|Ci, Ẑi,W)].

Let q(Ci) = N (µµµi,ΣΣΣi), and define Z̃i = diag(Ẑi). We can differentiate with respect toW to find that

W =
[ N∑
i=1

Xiµµµ
>
i Z̃i

][
ησ2I +

N∑
i=1

Z̃i(µµµiµµµ
>
i + ΣΣΣi)Z̃i

]−1

.

3.3.2 Stochastic Variational Inference

We use stochastic variational inference (SVI) [HBWP13b] to scale up MLFM by using stochastic opti-

mization with natural gradients. Suppose N is large, the objective function for W is

L(W) = ln p(W) +

N∑
i=1

Eq[ln p(Xi|Ci, Ẑi,W)]. (3.12)

At iteration twe sample a subset indexed by Ct and set the objective

Lt(W) = ln p(W) +
N

|Ct|
∑
i∈Ct

E[ln p(Xi|Ci, Ẑi,W)]. (3.13)

Then we can perform an unbiased natural gradient decent for W as follows:

Bt = ησ2 |Ct|
N

I +
∑
i∈Ct

Z̃i(µµµiµµµ
>
i + Σi)Z̃i,
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Table 3.1: PSNR | SSIM (average# features used per patch) on various images and noise settings.

BARBARA σ = 5 σ = 10 σ = 15 σ = 20 σ = 25

iMLFM 38.28 | 0.958 (3.58) 34.74 | 0.932 (2.17) 32.47 | 0.909 (1.59) 30.81 | 0.885 (1.31) 29.56 | 0.857 (1.16)
MLFM 37.82 | 0.953 (3.80) 34.55 | 0.930 (2.09) 32.47 | 0.908 (1.58) 30.86 | 0.886 (1.32) 29.53 | 0.857 (1.17)
BPFA 37.26 | 0.949 (4.50) 34.22 | 0.927 (2.40) 32.23 | 0.907 (1.72) 30.67 | 0.885 (1.45) 29.51 | 0.859 (1.27)
KSVD 38.05 | 0.956 (7.04) 34.45 | 0.930 (3.11) 32.41 | 0.907 (1.77) 30.86 | 0.881 (1.16) 29.55 | 0.852 (0.83)

TV(aniso) 34.17 | 0.936 ( — ) 29.77 | 0.877 ( — ) 27.49 | 0.820 ( — ) 26.00 | 0.770 ( — ) 25.07 | 0.728 ( — )
TV(iso) 34.18 | 0.936 ( — ) 29.77 | 0.877 ( — ) 27.50 | 0.822 ( — ) 26.01 | 0.773 ( — ) 25.12 | 0.734 ( — )
baseline 34.16 | 0.887 ( — ) 28.14 | 0.724 ( — ) 24.61 | 0.594 ( — ) 22.11 | 0.497 ( — ) 20.18 | 0.422 ( — )

GOLDHILL σ = 5 σ = 10 σ = 15 σ = 20 σ = 25

iMLFM 35.72 | 0.935 (3.22) 32.70 | 0.881 (1.65) 31.12 | 0.838 (1.22) 30.03 | 0.799 (1.09) 29.15 | 0.764 (1.03)
MLFM 35.20 | 0.928 (3.20) 32.64 | 0.878 (1.58) 31.15 | 0.837 (1.24) 30.00 | 0.797 (1.09) 29.14 | 0.762 (1.03)
BPFA 34.73 | 0.924 (3.05) 32.17 | 0.875 (1.39) 30.87 | 0.833 (1.30) 29.89 | 0.790 (1.16) 29.09 | 0.762 (1.08)
KSVD 36.65 | 0.941 (6.78) 33.25 | 0.885 (2.49) 31.40 | 0.832 (1.25) 30.01 | 0.787 (0.77) 29.05 | 0.746 (0.53)

TV(aniso) 34.73 | 0.908 ( — ) 31.43 | 0.833 ( — ) 29.74 | 0.776 ( — ) 28.61 | 0.732 ( — ) 27.79 | 0.696 ( — )
TV(iso) 34.81 | 0.910 ( — ) 31.52 | 0.836 ( — ) 29.83 | 0.781 ( — ) 28.69 | 0.736 ( — ) 27.87 | 0.700 ( — )
baseline 34.16 | 0.897 ( — ) 28.14 | 0.727 ( — ) 24.61 | 0.577 ( — ) 22.11 | 0.461 ( — ) 20.18 | 0.373 ( — )
LENA σ = 5 σ = 10 σ = 15 σ = 20 σ = 25

iMLFM 37.49 | 0.934 (2.39) 34.99 | 0.905 (1.53) 33.51 | 0.879 (1.25) 32.38 | 0.861 (1.12) 31.43 | 0.844 (1.06)
MLFM 37.36 | 0.931 (2.29) 35.07 | 0.905 (1.53) 33.58 | 0.880 (1.26) 32.42 | 0.862 (1.13) 31.40 | 0.843 (1.07)
BPFA 37.41 | 0.932 (2.56) 34.92 | 0.903 (1.73) 33.41 | 0.882 (1.45) 32.31 | 0.861 (1.25) 31.17 | 0.840 (1.13)
KSVD 38.26 | 0.937 (4.22) 35.38 | 0.905 (1.66) 33.68 | 0.879 (0.91) 32.40 | 0.856 (0.61) 31.30 | 0.832 (0.43)

TV(aniso) 35.92 | 0.917 ( — ) 32.71 | 0.874 ( — ) 30.96 | 0.841 ( — ) 29.84 | 0.816 ( — ) 28.87 | 0.793 ( — )
TV(iso) 35.95 | 0.917 ( — ) 32.78 | 0.874 ( — ) 31.04 | 0.843 ( — ) 29.93 | 0.818 ( — ) 28.98 | 0.796 ( — )
baseline 34.16 | 0.855 ( — ) 28.14 | 0.646 ( — ) 24.61 | 0.493 ( — ) 22.11 | 0.390 ( — ) 20.18 | 0.317 ( — )

PEPPERS σ = 5 σ = 10 σ = 15 σ = 20 σ = 25

iMLFM 36.47 | 0.935 (2.30) 34.23 | 0.924 (1.46) 33.00 | 0.905 (1.23) 31.94 | 0.884 (1.12) 31.09 | 0.871 (1.05)
MLFM 35.97 | 0.931 (2.12) 34.28 | 0.926 (1.46) 33.01 | 0.905 (1.24) 31.99 | 0.885 (1.13) 31.09 | 0.869 (1.07)
BPFA 35.61 | 0.937 (2.33) 34.10 | 0.920 (1.64) 32.45 | 0.904 (1.38) 31.37 | 0.882 (1.23) 30.46 | 0.864 (1.11)
KSVD 37.72 | 0.949 (4.82) 34.20 | 0.923 (1.73) 32.16 | 0.900 (0.90) 30.80 | 0.877 (0.58) 29.64 | 0.855 (0.42)

TV(aniso) 35.73 | 0.938 ( — ) 32.40 | 0.903 ( — ) 30.44 | 0.872 ( — ) 29.25 | 0.850 ( — ) 28.26 | 0.828 ( — )
TV(iso) 35.85 | 0.938 ( — ) 32.56 | 0.905 ( — ) 30.59 | 0.875 ( — ) 29.42 | 0.853 ( — ) 28.40 | 0.832 ( — )
baseline 34.16 | 0.855 ( — ) 28.14 | 0.642 ( — ) 24.61 | 0.485 ( — ) 22.11 | 0.382 ( — ) 20.18 | 0.310 ( — )

W′
t = (

∑
i∈Ct Xiµµµ

>
i Z̃i)B

−1
t ,

W(t+1) = (1− ρt)W(t) + ρtW
′
t. (3.14)

Similarly, to update the conditional posterior of θθθ, we have q(θθθ) =
∏K
k=0 q(θθθk), where q(θθθk) = Dir(ak).

We update

a′j,j′ =
α

K + 1
+

N

|Ct|
∑
i∈Ct

τ(i)∑
i′=τ(i−1)+1

1{Zi′=j,Zi′+1=j′},

a
(t+1)
j,j′ = (1− ρt)a(t)

j,j′ + ρta
′
j,j′ , (3.15)

where ρt = (t+ t0)−κ, and κ ∈ (0.5, 1].
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Figure 3.3: Average predictive result on HGDP-CEPH dataset.

3.4 Experiments

We demonstrate the effectiveness of our MLFM framework on two tasks. The first task is an analysis

of the HGDP-CEPH cell line panel dataset [RPW+02] for which we test batch learning performance of

our two models. The second task is image denoising, where batch learning is slower and so we use

stochastic inference.

3.4.1 HGDP-CEPH Cell Line Panel

For this small-scale experiment, we use a subset of 266 individuals across 11 countries from the HGDP-

CEPH Human Genome Diversity Cell Line Panel [RPW+02]1. Each person is represented by their

genotypes measured at D = 377 autosomal microsatellite loci.

We split this data into a set of 54 individuals for testing, and use the rest for training. For evaluation

we use average predictive log-likelihood of the testing set, which we approximated using Monte

Carlo integration over the q distributions. We experiment with MLFM lettingK range from 5 to 30

features, and iMLFM truncated to 100 latent features. We compare with BPFA [PC09b] and nested

CRP [BGJ10b], which we modified into a linear Gaussian model. Both models were truncated to 100

latent features as well. We set hyper-parameters to be η = 1, λ = 1, σ = 0.8. We ran each model 20

times and averaged the results. All models converge by 100 global iterations and the time cost is

similar across all models.

We show the mean and variance of the predictive log-likelihood for all models in Figure 3.3. Since

1As reported in [RPW+02], the remaining individuals form two large heterogeneous clusters which are hard to distinguish
in general.
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Figure 3.4: (Left) A similarity-preserving 2-d embedded graph of the learned dictionary elements using their
transition probabilities. We show edges about a threshold, and the direction of an edge between two dictionary
elements according to the higher transition probability. (Right) Feedback maps for dictionary elements in various
regions in the graph on the left.

the nonparametric models are not a function of latent feature, we show their performance as a straight

line. We observe that the performance for MLFM starts to decrease whenK reaches 25 and its best

performance is the same as the nonparametric iMLFM, which is not surprising. We also observe

that nonparametric model performance is ordered as BPFA < nCRP < iMLFM. We believe that this

improvement in performance is a result of the increasing ability to model the relationships between

features in this sequence.

We also show some qualitative results for these models. In Figure 3.2 we show the 0-1 feature

assignment matrix for the three nonparametric models. To the left we show the country of origin for

the person associated with each row. In the columns we show the most heavily used features and

re-order them for a better visualization. Since BPFA assumes all the features are mutually independent,

it has a harder time exploiting the natural structure in the data. The nCRP gives a better result since it

learns a hierarchy of features spread across countries and continents. However, since the model uses a

strict tree structure as shown on the RHS of Figure 3.2, it may not be flexible enough to uncover all the

hierarchical correlations.

On the RHS of Figure 3.2 we also show the graph learned by iMLFM, where the 13 significantly

used features (and the null state, denoted by a dark node) are displayed. The entire graph looks

like a tree when organized according to transition probability as we have done, but there are some
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differences. First, the structure is not a strict hierarchy. For example, there are transitions from the null

state to the “leaves.” There are also transitions across “subtrees.” Thus, we learn a graph structure

that approximates a tree, following the structure of the data, but allows for individuals not to adhere

strictly to this (in this case because, e.g., there may have been some ancestor from another region).

This shows the flexibility of our Markov-structured model.

3.4.2 Image denoising

We also experiment using scalable inference for an image denoising task, where we would like to

recover the original image from an image corrupted by white Gaussian noise. We demonstrate results

for four 512× 512 images: ’Barbara’, ’Goldhill’, ’Lena’, and ’Peppers’ (below in Figure 3.5). We extract

8× 8 patches from the noise-corrupted images using a single-pixel sliding window to scan the entire

image. This gives a total of 255,025 patches.

We compare with scalable BPFA [SP15], the non-probabilistic K-SVD model [AEB06], and isotropic

and anisotropic total variation (TV) [GO09]. We set η = 1/2552, λ = 1/10, α = 1, γ = 1, K = 256, and

online parameters |Ct| = 1000, t0 = 10, κ = 0.75. We truncated iMLFM to 256 states. For all methods,

we set σ using the method from [LTO13]; for TV we found the regularization parameter that resulted

in this empirical noise variance. For the stochastic algorithms, we train using 500 iterations, which

was enough for convergence; thus the number of patches seen during inference was equivalent to two

passes through the entire dataset. To quantify the recovery quality, we show the peak signal-to-noise

ratio (PNSR) and the structured similarity (SSIM) performance measures [WBSS04].

We show the result on various images using different noise standard deviations in Table 3.1. As

a baseline performance measure, we use the original noisy image. We can see that iMLFM often

performs better than BPFA and has results comparable to K-SVD. In the images ’Barbara’ and ’Peppers’,

iMLFM performs better than K-SVD. We also show the average number of features occupied by each

Figure 3.5: The four images used in our experiments.
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patch in Table 3.1. iMLFM is sparser than K-SVD when σ is small, which is a matter of balancing

predictive gain and extra cost of growing paths in our greedy sparse coding step. For the running

time, MLFM takes about 4 minutes to converge, which is similar to K-SVD and BPFA.

Finally, we show some qualitative result on the ’Barbara’ image in Figure 3.4. We show the graph

learned by iMLFM using a similarity-preserving 2-d embedding, where edges having probabilities

above a threshold are displayed between dictionary elements. Since iMLFM learns a directed graph,

we show the direction of edges according to the larger transition probability between two elements.

For the ease of visualization, we only show the latent features that contain stripes. On the LHS of

Figure 3.4, we see that the direction of stripes varies, but stripes with similar directions have greater

connectivity. The graph also has a global structure as the similarity-preserving embedding shows. For

example, the direction of stripes changes from the direction ‘\’ in the right area, to ‘|’ in the center

area, and to ‘/’ in the left area.

On the RHS of Figure 3.4, we display the feedback map of dictionary elements in the six regions

defined on the LHS. As we can see, some groups of features give a local feedback that has semantic

meanings. For example, Region 1 (9 features) can be interpreted as the scarf; Region 3 (20 features) is

the right leg; Region 4 (12 features) is the left leg; Region 5 (5 features) is the tablecloth. Above we show

the ground truth image, the noisy input and the denoised output for the corresponding experiment.

We presented a Markov latent feature model (MLFM) using a simple sequential construction and

connected this construction to the requisite Markov property of the stochastic process. The key is

through the Markov exchangeability constraint, which allows for a mixing measure to be defined for

easy variational inference. This procedure for constructing latent features models allows for feature

correlations to be learned from the data, and so in a sense we have presented a “correlated IBP”-

type model. However, MLFM pre-determines the number of parameters asK2 it use for correlation

modeling, and thus a rigid model. In the next chapter, we present a more flexible alternatives by

modeling the feature allocation matrix Ẑ as a discrete random measure.



CHAPTER 4. RANDOM FUNCTION PRIORS FOR CORRELATION MODELING 40

Chapter 4

Random Function Priors for

Correlation Modeling

In this chapter, we formalize LFMs as 2d arrays Z withN rows andK columns, where each row Zn is a

non-negative factor loading vector withK entries where Znk indicates the strength of a hidden feature

θk used to express object Xn. Thus likelihood can be written as p(Xn|Zn, θ), where θ := (θk)k∈[K] is a

collection of hidden features shared across objects. In this chapter, we introduce random function priors

for Zn for modeling correlations among itsK dimensions Zn1 through ZnK , which we call population

random measure embedding (PRME). Our model can be viewed as a generalized paintbox model [BPJ+13]

using random functions, and can be learned efficiently with neural networks via amortized variational

inference. We derive our Bayesian nonparametric method by applying a representation theorem on

separately exchangeable discrete random measures.

Let X = [X1, . . . , XN ] be a group of exchangeable high dimensional observations, where Xn ∈ Rd.

In this chapter, we assume X is generated by the model

p(X) =

∫
p(X,Z, θ) dZdθ

=

∫
p(Z)p(θ)

∏
n∈[N ]

p(Xn|Zn, θ) dZdθ, (4.1)

where p(Xn|Zn, θ) is a likelihood model conditioned on latent features θ := (θk)k∈[K] that are shared

across the population. Zn := [Zn1, . . . , ZnK ] is a non-negative vector for the nth observation, where

Znk determines the extent to which θk is used to express Xn. For example, in topic models [BNJ03b],
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Zn is a discrete distribution over topics, where Znk represents the proportion of words in document n

sampled from topic k. In sparse factor models [GG11], Zn is a binary vector such that latent feature

θk contributes to the likelihood if and only if Znk = 1. We generically refer to Zn as a “non-negative

feature loading vector." For exchangeable X , it is often assumed the Zn are exchangeable as well. If

we take Z as a feature loading matrix with Zn as its rows, then Z is row exchangeable. By de Finetti’s

theorem, we can represent

p(Z) =

∫ ∏
n∈N

p(Zn|ζ)p(ζ)dζ, (4.2)

for some random object ζ. (We let N = ∞ in order to apply de Finetti’s theorem.) The goal of this

chapter is to model complex correlations among entries of Zn. Following a common practice, we put

an independent prior on θ, p(θ) =
∏
k p(θk) and focus on modeling p(Z).

A straightforward way to model correlation structure is to let p(Zn|ζ) be a parametric exponential

family model. By defining the mean/natural parameters for the model, one can handle correlations to

various degrees. For example, Zn may follow a log-normal distribution [LB06], where correlations

are modeled through a covariance matrix. However, exponential family models [WJ+08] can be rigid,

since the number of free parameters is fixed for a certainK. To get a more flexible model, it is tempting

to consider higher-order moments E[Z⊗Mn ] for a largeM up toK, where u⊗M denotes an M-th order

outer product of a vector u. but in this case the number of free parameters increases exponentially,

leading to intractable inference.

In this chapter, we use an alternative Bayesian nonparametric method to model Zn as an outcome

of random functions, which can handle complex correlations even when K and M go to infinity.

Moreover, those random functions can be learned efficiently through inference/decoder networks

via amortized variational inference [KW13]. In principle, arbitrarily complex neural networks can be

applied to model correlations in our setting.

To give intuition why random function priors are powerful, we first show in Figure 4.1 an existing

feature paintbox model for binary Zn that illustrates how to model arbitrarily complex correlations

using binary random functions [BPJ+13]. For simplicity, let K = 3. First, select a compact set S

in Euclidean space, on which we can define a uniform distribution. For example let S = [0, 1]2.

Then randomly partition S into eight regions. Each partition represents a possible value for Zn =

[Zn1, Zn2, Zn3], as shown in Figure 4.1. Given the partition, we uniformly sample a point un ∼ U(S)

and assign Zn be the value defined by the region in which un falls. Thus, we translate the problem of
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Figure 4.1: Example of two equivalent representations: (left) Paintbox model for [Zn1, Zn2, Zn3] by partitioning
a unit square into eight regions, one for each distinct value. (right) Factorize the paintbox into three feature
paintboxes, one each for a latent feature. Three examples of un that determine Zn are demonstrated as dots in the
partition paintbox, and as lines across feature paintboxes.

modeling distributions on Zn to modeling the random partition of S. Following the classic analogy, we

call this a partition paintbox model [Kin78, Pit06]. One can further factorize the partition paintbox

into “feature paintboxes" [BPJ+13]. According to Figure 4.1, each feature paintbox for the k-th feature

is randomly partitioned into two regions denoted as Sk (black) and Sck (white). Let Znk = 1(un ∈ Sk).

One can check that the feature paintbox model is the equivalent to the partition paintbox model for

arbitrary finiteK. (Note that here Zn is a random indicator function.)

The feature paintbox model is redundant but flexible. The arbitrary order moment E[
∏
k∈J Znk] =

E[vol(∩k⊂JSk)] for any J ⊂ [K] can be modeled once we have enough freedom for Sk. We summarize

the generative process for the feature paintbox model in Algorithm 4 for arbitraryK, includingK =∞.

We propose a model that can be treated as a generalization of the feature paintbox model from

binary to non-negative Z according to a function Znk = fn(ϑk). There are two key differences between

our model and the feature paintbox model. First, we use data-specific random functions fn, instead of

points un, to represent each observation. Second, we use points ϑk from a Poisson process, instead of

Sk, to index each latent feature. A nice property of our model compared to the paintbox model is that

we can use deep learning to model fn through inference and decoder networks [KW13], allowing for

efficient amortized variational inference.

Inwhat follows, Section 4.1 sets up the problemofmodlingZ froma randommatrix point of view. In

Section 4.2, we embed Z as a randommeasure and derive the functional form of Znk = fn(ϑk) through

a representation theorem. In Section 4.3, we present a concrete example for Bayesian nonparametric

topic modeling together with its amortized variational inference algorithm, and show empirical results

in Section 4.4. Finally, we discuss related work in Section 4.5.
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Algorithm 4 Feature paintboxes model
1: for k ∈ [K] do
2: Generate a random subset Sk ⊂ S.
3: end for
4: Guarantee that

∑
k∈[K] vol(Sk) <∞ almost surely.

5: for n = 1, 2, . . . do
6: Independently generate un ∼ U(S).
7: Let Zn=[Zn1, . . . , ZnK ]. Set Znk=1(un ∈ Sk).
8: end for
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Figure 4.2: Decoupling a separately exchangeable discrete random measure ξ into two parts.

4.1 Z as a random matrix?

We will rely on representation theorems to derive the functional form of our models. This usually

works out by finding an infinite dimensional random object paired with an exchanegability assumption

on that random object. The choice of random objects is the key step, and we will see below that it can

be hard to derive an interesting model when choosing a bad random object.

Consider modeling Z as a random matrix. Equation (4.2) above is one example that derives a

mixture representation by assuming row exchangeability of Z. However, Equation (4.2) is uninfor-

mative in that, first, it does not tell us what random object ζ is, and second, it does not determine

the connection between Zn and ζ through p(Zn|ζ). Our discussion in Section 1 will show that this

provides too much freedom to choose ζ and p(Zn|ζ).

We further restrict Z by assuming it is column exchangeable as well. This requires allowing both N

andK to equal infinity. We call Z separately exchangeable if it is both row and column exchangeable.

Once K = ∞, we need to guarantee series convergence for rows. That is,
∑
k∈N Znk < ∞ with

probability 1, for any n ∈ N. Row sum convergence is always considered necessary. (For example,

in a topic model we want to normalize Zn.) However, the following proposition says that when Z is

separately exchangeable, we will get an empty model even for a binary Z.

Proposition 5. An infinite binary matrix Z (i) is separately exchangeable, and (ii) has finite row sums almost
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surely, if and only if Z = 0 almost surely.

Proof (Sketch). One can prove that Z is a graphon model if it is separately exchangeable [Hoo79, Ald85,

OR15b]. A graphon model satisfies finite row sums if and only if Z = 0.

When choosing a bad random object, one can either get a vacuous or an empty model through

representation theorems. In the next section, we fix this problem by introducing a nice random object

ξ generated by embedding Z as a random measure. Then we apply representation theorems on ξ.

4.2 Z as a random measure

4.2.1 Population random measure embedding

In this section, we embed the random matrix Z as a discrete random measure ξ =
∑
n,k Znkδτn,σk on an

infinite strip [0, 1]× R+, where (τn)n∈N ⊂ [0, 1] distinguishes objects and (σk)k∈N ⊂ R+ distinguishes

latent features. Both (τn)n∈N and (σk)
k∈N are random as well, and are not necessarily ordered. Note

that ξ preserves the matrix structure as demonstrated in Figure 4.2; the intersection points of hori-

zontal/vertical dashed lines indexed by (τn)n∈N and (σk)k∈N form an “equivalent class" of matrix Z

up to a re-ordering of rows and columns. The infinite strip is an abstract space introduced solely for

applying representation theorems.

Next, we assume ξ is separately exchangeable. That is, ξ(T1(A) × T2(B)) =d ξ(A × B) for any

measure-preserving transformations T1, T2 on [0, 1] and R+ separately for arbitrary Borel sets A,B.

Even though the notion of separate exchangeability is different for ξ than for random matrix Z, they

are conceptually similar, since interchanging row/column indices will not affect the joint distribution.

It turns out that we can represent ξ precisely as follows:

Proposition 6. A discrete random measure ξ on [0, 1]× R+ is separately exchangeable if and only if

ξ =
∑
n,k

fn(ϑk)δτn,σk +
∑
m,k

gm(ϑk)δρmk,σk , (4.3)

almost surely for some random measurable functions fn, gm ≥ 0 on R2
+, a unit rate Poisson process {(ϑk, σk)}

on R2
+, and independent U(0, 1) arrays (τn) and (ρmk).

Proof. This follows from the general representation theorem for separately exchangeable random

measures on [0, 1]× R+ [Kal06] by removing the non-atomic parts. Details are given in the appendix.
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We briefly look at the two parts of this representation:

1.
∑
n,k fn(ϑk)δτn,σk : This is the part we are interested in. Correlations are learned through cou-

pling of random functions fn with a Poisson process.

2.
∑
m,k gm(ϑk)δρmk,σk : This part is less important since the double index in ρmk means each row

(object) slice ξ({ρmk}, ·) contains at most one atom. We drop this part in our model.

Thus, we can represent ξ =
∑
n,k fn(ϑk)δτn,σk as a coupling of a 2d Poisson process (ϑk, σk) and

random functions fn. As mentioned in Section 1, we derive Znk = fn(ϑk). Since we model the entire

population through Z by a random measure embedding, we call our model population random measure

embedding (PRME).

4.2.2 Construction via completely random measures

Once we have a representation for Znk, we still need to guarantee series convergence
∑
k Znk =∑

k fn(ϑk) < ∞. This is not obvious, since ϑk spans uniformly on R+. One remedy is to introduce

a transformation ϑ̃k = T (ϑk) that maps almost every ϑ̃k close to zero, leaving only finite number of

ϑ̃k above any positive threshold. The method to introduce such a transformation T is via completely

random measures (CRM) [Kin67]. In the appendix, we show the construction of T via CRMs. In

addition, we show that the well-known Indian buffet process [GG06, GG11], its extensions [TG09],

hierarchical Dirichlet processes (HDP) [TJBB05] and the discrete infinite logistic normal distribution

(DILN) [PWB+12] are instances of population random measure embeddings. However, these models

have restrictions in their model capacity. For example, [PWB+12] relies on a linear kernel to model

correlations and there is no obvious extension to complex kernels. As we will show, a PRME can be

more flexible by using nonlinear object-specific functions fn such as deep neural networks.

4.3 An illustration on topic modeling

4.3.1 The model

In a topic model, we use Zn to represents an un-normalized discrete distribution over topics, where

Znk is the strength of topic k for document n. We use a PRME to model Znk, with the following
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construction,

Znk ∼ Gamma(βpk, exp(f(hn, `k))),

pk = Vk

k−1∏
k′=1

(1− Vk′), Vk ∼ Beta(1, α),

hn ∼ N (0, aI), `k ∼ N (0, bI),

f(hn, `k) ∼ N (µf (hn, `k), σ2
f (hn, `k)). (4.4)

We now explain how Equation (4.4) relates to the original PRME equation Znk = fn(ϑk), via four

steps.

1. fn(ϑk) → f(hn, ϑk)

We use a parametric function f(hn, ·) to represent fn(·), where f is a random function, and hn

is an observation-specific random vector. This decomposition is necessary, since we model f

as a normal distribution parameterized by decoder networks µf , σ2
f , and hn as the output of an

inference network.

2. f(hn, ϑk) → f(hn, ϑ̃k)

We transform ϑ̃k = T (ϑk) by transforming the original Poisson process (θk, σk) to a hierarchical

Gamma process [TJBB05, WPB11b]. Then we use a stick-breaking construction over ϑ̃k [Set94b],

where ϑ̃k ∼ Gamma(βpk, 1). β is a hyperparameter and pk is generated by the second line of

Equation (4.4).

3. f(hn, ϑ̃k) → f(hn, ϑ̃k, `k)

We augment ϑ̃k to (ϑ̃k, `k) to introduce extra randomness via `k. This operation is equivalent to

augmenting the original 2d Poisson process (θk, σk) to a higher dimensional Poisson process

(θk, σk, `k).

4. f(hn, ϑ̃k, `k) → ϑ̃k · exp(f(hn, `k))

We represent f(hn, ϑ̃k, `k) as ϑ̃k ·exp(f(hn, `k)) and assign priors for hn and `k (line 3 in Equation

(4.4)). We get Equation (4.4) by absorbing exp(f(hn, `k)) into the Gamma scale parameter.

In our construction, series convergence
∑∞
k=1 Znk <∞ can be achieved by bounding µf and σ2

f

through a truncation layer in the decoder network. Given Zn, we sample words in a document, Xnm

form ∈ [Mn], by first sampling its topic assignment Cnm∼Disc( Zn·∑
k Znk

), and then sampling the word
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from that topic, Xnm∼Disc(θCnm), with topic prior θk∼Dir(γ0).We recall that in topic models, θk

(topic k) is a discrete distribution over the vocabulary.

XCZh

f

V ℓ

g θ
NMn

Figure 4.3: (a) Graphical representation of our proposedmodel. Solid arrows represent the generative process and
dashed arrows show the VAE part of the posterior. We organize local parameters that belong to a document/word
into boxes and remove all sub-indices. We use stochastic natural gradient ascent for θ and use stochastic gradient
ascent for [`, V, g, f ].

4.3.2 Amortized variational inference

Assume we have N documents and the posterior is truncated toK topics. The joint likelihood is

p(`, V, θ, h, Z,C,X) =

K∏
k=1

p(`k)p(Vk)p(θk)

N∏
n=1

[
p(hn)

K∏
k=1

p(Znk|V, hn, `k)

Mn∏
m=1

p(Cnm|Zn)p(Xnm|Cnm, θ)

]
. (4.5)

We use variational inference to approximate the model posterior by optimizing the variational objective

function

max
q
L = max

q
Eq
[

ln
p(`, V, θ, h, Z,C,X)

q(`, V, θ, h, Z,C)

]
, (4.6)

where we restrict q to the factorized family

…
…

bow(Xn )

h n ℓk

μf (h n , ℓk ) σ 2
f (h n , ℓk )

g

f

…

MLP MLP+Batchnorm

…

ResNet

…

+

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

{
{

ResNet+Batchnorm

…

+

ReLU

ReLU

linear layer batch normalization

Figure 4.4: (b) Left: The architecture we used in our experiments. Right: Various layer designs.
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q(`, V, θ, h, Z,C) =

K∏
k=1

q(`k)q(Vk)q(θk)

N∏
n=1

[
q(hn|Xn)

K∏
k=1

q(Znk)

Mn∏
m=1

q(Cnm)

]
. (4.7)

Further, for global variables we let

q(`k) = δ̂̀
k
, q(Vk) = δV̂k , q(θk) = Dir(γk). (4.8)

For local variables, we introduce an inference network g and let q(hn|Xn) = δg(Xn). For the remaining

variables

q(Znk) = Gam(ank, bnk), q(Cnm) = Disc(φnm). (4.9)

We use coordinate ascent to update q. Each of these updates is guaranteed to improve the objective

when the gradient descent step size is small enough [Nes13]. More details are given in the appendix.

For q(Znk), we maximize a lower bound for L similar to [PWB+12], giving updates

ank = βp̂k +

Mn∑
m=1

φnm(k),

bnk = 1/
(
E
[

exp(−f(hn, `k))
]

+
Mn

εn

)
, (4.10)

where εn =
∑K
k=1 E[Znk].

For q(Cnm) and q(θ), we have respective updates

φnm(k) ∝ exp
(
E[ln θk,Xnm ] + E[lnZnk]

)
, (4.11)

γkd = γ0 +

N∑
n=1

Mn∑
m=1

φnm(k) · 1(Xnm = d). (4.12)

For [`, V, g, f ], we do gradient ascent on L. Batch variational inference can be done via coordinate

ascent by iteratively updating the above variables. Dependencies among variables are shown in Figure

4.3.

For stochastic inference, in each global iteration we sample a subset Nt ⊂ [N ] and compute the

noisy variational objective

Lt = E
[

ln p(`, V, θ)
]
+

N

|Nt|
∑
n∈Nt

E
[

ln p(hn, Zn, Cn, Xn)
]

+ H
[
q(θ)

]
+

N

|Nt|
∑
n∈Nt

H
[
q(Zn, Cn)

]
. (4.13)

Optimizing local variables Z,C can be done via closed-form updates exactly as in the batch case.
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Algorithm 5 Stochastic inference algorithm
1: for t = 1, 2, . . . do
2: Sample a subset Nt ⊂ [N ]
3: Update local variables
4: while not converge do
5: Closed-form update q(Zn) for n ∈ Nt. Eq. (4.10)
6: Closed-form update q(Cn) for n ∈ Nt. Eq. (4.11)
7: end while
8: Update global variables
9: Noisy natural gradient step for q(θ). Eq. (4.14)
10: Noisy gradient step for `, V, g, f . Eq. (4.15)
11: end for

Table 4.1: Perplexity result for text data sets with different dictionary sparsity levels controlled by γ0.

Model New York Times 20Newsgroups NeurIPS
γ0 =0.2 γ0 =0.4 γ0 =0.6 γ0 =0.8 γ0 =0.2 γ0 =0.4 γ0 =0.6 γ0 =0.8 γ0 =0.2 γ0 =0.4 γ0 =0.6 γ0 =0.8

HDP 2436.51 2464.74 2482.61 2501.82 5317.68 5845.90 6294.68 6665.68 1973.39 1962.90 1981.83 2009.58
DILN 2231.16 2295.12 2418.16 2509.24 5164.93 5732.12 6143.64 6389.99 1853.89 1902.88 1944.90 1947.94
PRME 2203.00 2247.25 2299.60 2338.38 5102.08 5531.04 5878.39 5975.12 1753.61 1850.37 1917.21 1953.85

For the other parameters we use stochastic gradient methods. Let ρ(t) ∝ (t0 + t)−κ be the step size

with some constant t0 and κ ∈ (0.5, 1]. We apply the stochastic natural gradient method [HBWP13b]

for θ

γ̃
(t)
kd = γ0 +

∑
n∈Nt

Mn∑
m=1

φnm(k) · 1(Xnm = d),

γ
(t)
kd = (1− ρ(t))γ

(t−1)
kd + ρ(t)γ̃

(t)
kd . (4.14)

and stochastic gradient method for the rest,

[`, V, g, f ](t) = [`, V, g, f ](t−1)+ρ(t)∇[`,V,g,f ]Lt. (4.15)

Since in each iteration we only do one gradient step, the cost is low. Note that through the varia-

tional autoencoder (VAE) [KW13] we transfer local updates for hn to global update for g, which will

significantly speed-up inference. We summarize the stochastic inference algorithm in Algorithm 5.

4.3.3 Network architectures

The flexibility of our model comes from the inference and decoder networks g and f . As we show in

the experiments, these allow us to learn complex non-linear “paintboxes" in order to capture complex

topic correlations. Since optimizing over deep neural networks is still a challenging problem in theory,

we design our networks with architectures that work well in practice. Rather than directly applying
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Table 4.2: Dataset description.

Corpus # train # test # vocab # tokens
New York Times 5,000 500 8,000 1.4M
20Newsgroups 11,269 7,505 53,975 2.2M

NeurIPS 2,183 300 14,086 3.3M

multilayer perceptrons [RHW85], we instead use more complex layer designs such as batch normal-

ization [IS15] and deep residual networks (ResNet) [HZRS16] to speed-up training. For inference

network g, we use the bag-of-words representation of Xn as the input feature. For decoder network f ,

we concatenate hn = g(Xn) and `k as inputs. Detailed architecture design is shown in Figure 4.4.

4.4 Experiments

Table 4.3: Network layer configurations for New York Times dataset.

Depth Inference Network Decoder Network

2 layers [8000× dh]
[(dh + d`)× 80]

[80× 2]

4 layers [8000× 1000]
[1000× dh]

[(dh + d`)× 80]
[80× 80]
[80× 2]

6 layers
[8000× 1000]
[1000× 1000]
[1000× dh]

[(dh + d`)× 80]
[80× 80]
[80× 80]
[80× 2]

8 layers

[8000× 1000]
[1000× 1000]
[1000× 1000]
[1000× dh]

[(dh + d`)× 80]
[80× 80]
[80× 80]
[80× 80]
[80× 2]

4.4.1 Batch experiments

We show empirical results on three text datasets: a 5K subset of New York Times, 20Newsgroups, and

NeurIPS. Their basic statistics are shown in Table 4.2. For each test document Xn, we do a 90%/10%

split into training words Xn,TR and testing words Xn,TS . The perplexity is calculated based on the

prediction of Xn,TS given the model and Xn,TR,

perplexity=exp
(
−

∑
m∈Xn,TS

ln p(Xnm|Xn,TR)

|Xn,TS |

)
. (4.16)
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Table 4.4: Perplexity result for various network depths.

Depth MLP MLP+BN ResNet ResNet+BN
2 layers 2325.84 2327.81 N/A N/A
4 layers 2228.62 2203.00 2214.02 2195.72
6 layers 2219.06 2184.44 2202.79 2194.74
8 layers 2196.35 2195.68 2199.07 2184.56

Table 4.5: Perplexity result for various size of hn/`k.

Hidden Size MLP MLP+BN ResNet ResNet+BN
dh=d`=2 2287.40 2258.97 2265.53 2256.84
dh=d`=5 2245.43 2243.26 2231.54 2225.64
dh=d`=10 2220.82 2217.65 2227.04 2199.73
dh=d`=20 2228.62 2203.00 2214.02 2195.72

Lower perplexity means better predictive performance.

In Table 4.1, we compare three Bayesian nonparametric models: hierarchical Dirichlet process

(HDP) [TJBB05], discrete infinite logistic normal (DILN) [PWB+12], and our population random

measure embedding (PRME) using 4-layer MLP with batch normalization.1

We tune γ0 and fix the truncation level K = 100 and set the a = 1, b = 1, α = 1, β = 5 for

fair comparisons. All gradient updates are done via Adam [KB14] with learning rate 10−4. As

Table 4.1 shows, PRME consistently perform better than HDP and DILN. Where DILN was designed

to outperform HDP by learning topic correlation structure, PRME improves upon DILN by learning a

more complex kernel structure.

Since PRME encodes complex correlation patterns with a neural network, we further consider the

influence of network architecture on perplexity for the New York Time dataset. We compare four

layer designs: multilayer perceptron (MLP), MLP with batch normalization (MLP+BN), ResNet, and

ResNet with batch normalization (ResNet+BN); see Figure 4.4 for details. In Table 4.4 and Table 4.5, we

separately tune the depth of each network and the hidden size of h/` while holding other parameters

fixed. The details of layer sizes can be found in Table 4.3. We observe that the perplexity result tend to

be better when we scale up the network depth/width. Batch normalization and ResNet both improve

performance.

1The number of layers includes inference network and decoder network. We ignore the last layer of the decoder network.
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“Blasts Kill 21 at a Cafe in North Iraq” 

BAGHDAD — Two bombers wearing suicide vests  
blew themselves up in a popular cafe crowded with  
young people … 

embedding via  
inference network 

“NBA League Pass Fans Think They’re Paying More  
for Less” 

Thanks to the N.B.A. lockout, the regular season is 20 
percent shorter this season. As part of the new collective 
bargaining agreement … 

embedding via  
inference network 

“Any Novel can be Shaped into a Movie” 

''The English Patient'' proves that any novel can be  
successfully filmed, though it isn't easy. Much of the  
novel focuses on Hana, whose father has been killed  
in the war, … 

embedding via  
inference network 

Figure 4.5: A paintbox demonstration of salient topics learned from the one million New York Times dataset. In
each paintbox on the LHS, pixel (x, y) represents the topic strength Z(x,y),k as a function of h(x,y) for a particular
topic k. We also show embeddings of three articles in the same space, as well as their projection onto selected
paintboxes. Each article is connected to its most-used topics.

4.4.2 Online experiments

For the larger one million New York Times dataset, we show “topic paintboxes" learned with stochastic

PRME in Figure 4.5.2 In Figure 4.5, each paintbox corresponds to one topic whose top words are

displayed inside the box. The color of a pixel (x, y) in the k-th paintbox ranges from blue (small value)

to red (large value) and represents mean topic strength E[Z(x,y),k] = βp̂kE[exp(f(h(x,y), `k))] as a

function of h(x,y) for topic k. To define h(x,y) for 2d visualization, we collect the empirical embeddings

H = [h1, . . . , hN ]> = [g(X1), . . . , g(XN )]> on a subset of data, subtract their mean mh, and use the

SVD to select the two most informative directions h̃1, h̃2 with singular values s1, s2. Then we plot

each paintbox as the function value E[Z(x,y),k] = βp̂kE[exp(f(mh + xs1h̃1 + ys2h̃2, `k))] by tuning

(x, y) ∈ [−0.2, 0.2]2.

The correlation between topics can be read out from the paintboxes. Those paintboxes that have

overlapping salient regions tend to bemore correlated. For example, topic 13 [music, concert, orchestra],

topic 20 [film, movie, films], and topic 47 [book, books, publishing] share a salient region, which gives

2We set t0 = 100, κ = 0.75 and use a 6-layer MLP.
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a third-order positive correlations over those topics. In principle, the paintbox can explain arbitrary

order correlations as the neural network complexity increases. We observe that each paintbox in Figure

4.5 consists of multiple contiguous salient regions. This is due to the smoothness of neural networks,

since g(Xn1) ≈ g(Xn2) when Xn1 and Xn2 share similar words. Also, the various “modes" in each

paintbox demonstrate the greater flexibility of neural networks in explaining different contexts of a

topic.

In Figure 4.5, we also display three documents with their embeddings hn projected onto the 2d

paintbox space. Each embedding hits salient regions of several paintboxes. Thus, each document can

be interpreted as a mixture of these corresponding topics. We again note that we only display the

paintbox in 2d via post-processing, but the actual paintbox is in 20 dimension; a higher-dimensional

paintbox can be more complex than what is shown.

We can compare the difference between paintboxes for PRME in Figure 4.5 and paintboxes for

binary random measures in Figure 4.1. First, the paintbox for PRME is real-valued, so it is natural

to use smooth functions to model it. In the binary case the paintbox is zero/one valued; in this case

one can apply a threshold function over the PRME paintbox to binarize it. Second, in contrast to the

binary paintbox, each PRME paintbox is unbounded. We control the area of this salient region through

regularization.

Figure 4.6(a) demonstrates the perplexity of DILN and PRME with various decay speed κ on a

held-out test set of size 3K. PRME converges after seeing one million documents, and it performs better

than DILN. Also, online learning is much more efficient than batch learning with various training data

size, as shown in Figure 4.6(b). In Figure 4.6(c), we compare run times for updating local parameters

([Z,C] for PRME) and global parameters ([θ, `, V, g, f ] for PRME) with batch size 500. Since the cost is

very imbalanced between local and global, for demonstration purpose we compare the cost between

five local iterations and one global iteration. In our experiments, local updates requires around 20

iterations to converge. Compared with DILN, PRME costs much less in local and costs more in global

updates, since it uses the VAE to transfer local updates for hn into global updates for g. The extra

global cost (∼0.35s) is significantly smaller than the reduced local cost (∼4s), even when using a deep

network architecture. Finally, Figure 4.6(d) demonstrates the usage proportion for all topics. PRME

tends to use a subset of the 100 available topics in the truncated posterior, indicating use by the model

of this nonparamteric feature.
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Figure 4.6: (a) Online performance comparisons between DILN and PRME. (b) Online versus batch. (c) Time cost
comparison between updating local and global variables. (d) Ranked topic usage proportions in the posterior,
indicating nonparametric functionality.

4.5 Discussion

4.5.1 Connections with other random objects

Another view is to treat (Znk)n∈[N ],k∈[K] as a bipartite graph over objects [N ] and atoms (features) [K]

with edge strength Znk. An important topic in random graph theory is to study the total strength of

edges |E| =
∑
n∈[N ],k∈[K] E[Znk] asymptotically as a function of N . There has been extensive work

on random graphs, networks, and relational models [RT+08, MJG09, Car12, LOGR12, VR15, CCB16,

LJC16, CD17, CR17, CF17], but these methods mainly focus on dense graphs where |E| ∼ O(N2),

and sparse graphs where |E| ∼ O(N1+α) with 0 < α < 1 or |E| ∼ O(N logN). Our method

offers a new solution to extremely sparse hidden graphswhere |E| ∼ O(N), by coupling random func-

tions and a Poisson process. Our solution cannot be trivially derived from previous representa-

tions in sparse/dense graphs. There is a developed probability theory building connections be-

tween exchangeable binary random measures and functions on combinatorial structures among

atoms [Pit95, Pit06, BPJ+13, BMPJ15, HR+16, CCB+18].

Our topic model construction is motivated by previous research on dependent random mea-

sures [ZYS+11, PWB+12, CRBT13, FFRW13, ZP15b, ZP16]. Our focus is to place mild exchangeability

assumptions on a population random measure ξ and derive a very general random function model

through representation theorems. Hence our use of neural networks to achieve this task. We mention

that our method can also be adapted to non-exchangeable settings.

4.5.2 Deep hierarchical Bayesian models

One can scale up model capacity by stacking multiple one-layer Bayesian nonparametric models

such as Dirichlet processes [TJBB05], beta processes [TJ07], and Gamma processes [ZCC15, Zho18].
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Figure 4.7: Decouple separately exchangeable random measure ξ into four parts.

Population random measure embedding uses a different strategy by constructing random measures

as a coupling of random functions with a single Poisson process. In this way, we transfer all the model

complexity into random functions fn. Using amortized variational inference, we transfer posterior

inference of discrete random measures into optimizing neural networks, which is much more efficient.

4.5.3 Posterior inference bottleneck

Efficient posterior inference is essential in Bayesian nonparametric methods where conjugacy often

does not hold [BWJ14, ZGP16b]. In principle, one can apply a simple prior on Z and still rely on

accurate posterior inference to resolve the structure. However, posterior inference for randommeasures

is not simple because complex correlations among atoms leads to slowMCMCmixing. Instead, one can

approximate the posterior using variational methods [BKM17] and try to learn a q distribution with

good approximation quality [PBJ12, HB15, RTB16, TRB17]. Our method introduced a structured prior

to regularize variational inference. Empirical results showed that we get an interpretable posterior.

Appendix

Proof of Proposition 5.

Proof. From [Ald85, Hoo79, OR15b], we can represent every separately exchangeable infinite binary

matrix Z = (Znk) if and only if it can be represented as follows: There is a random function W :
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[0, 1]2 → [0, 1] such that

(Znk)
d
= (1(Rnk < W (Un, Vk))). (4.17)

Thus, one can reconstruct Z by first sample W, (Un), (Vk) and then sample Znk| W, (Un), (Vk) ∼

Bernoulli(WUnVk) through independent coin flips. It is straightforward to prove that the finite row

sum assumption can only be satisfied when
∫

[0,1]2
W (u, v)dudv = 0. When that happens, Z = 0 almost

surely.

Proof of Proposition 6.

Proof. The representation theorem in Proposition 6 is immediate from a more general result of sepa-

rately exchangeable random measures. We temporarily reload notations hk, βn.

Theorem 3 [Kal06]. A random measure ξ on [0, 1]×R+ is separately exchangeable if and only if almost surely

ξ =
∑
n,k

fn(ϑk)δτn,σk +
∑
m,k

gm(ϑk)δρmk,σk︸ ︷︷ ︸
point masses

+
∑
k

hk(ϑk)(λ⊗ δσk) +
∑
n

βn(δτn ⊗ λ)︸ ︷︷ ︸
line measures

+ γλ2︸︷︷︸
diffuse measure

, (4.18)

for some measurable functions fn, gm, hk ≥ 0 on R2
+, a unit rate Poisson process {(ϑk, σk)} on R2

+, some

independent U(0, 1) arrays (τn) and (ρmk), an independent set of random variables βn, γ ≥ 0, and the Lebesgue

measure λ. The latter can then be chosen to be non-random if and only if ξ is extreme.

The representation theorem consists of three parts: point masses, line measures, and a diffuse

measure. We select the point masses part for discrete separately exchangeable random measures.

Decomposition of the entire measure ξ is demonstrated in Fig 4.7.

Discussion on Section 4.2.2. Existing models as special cases of PRME model.

Let ξ =
∑
n,k fn(ϑk)δτn,σk be our PRME model. We focus on a specific object n, remove the redundant

τn, and directly work on random measures on Θ. This transformation let us be on the same page of

other research on completely random measures.
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We have ξn =
∑
k fn(ϑk)δθk be a population random measure embedding model, where (ϑk, θk) is

a Poisson process on R+ ×Θ with mean measure p(θ)dϑdθ. The according CRM is λ =
∑
k ϑ̃kδθk with

LÃľvy measure ν(dϑ̃, dθ) = µ(ϑ̃)p(θ)dϑ̃dθ. Assume the tail function T (ϑ̃) = ν((ϑ̃,∞),Θ) is invertible.

One can do a transformation between atoms by (ϑk, θk) → (T−1(ϑk), θk) = (ϑ̃k, θk). The following

examples are just special cases of this transformation, as we shall see.

IBP and extensions

The Indian buffet process (IBP) take a particular form ξn =
∑
k f ◦T−1(ϑk)δθk , where f are independent

Bernoulli random variables with success rate T−1(ϑk). IBP uses a particular transformation T−1(ϑk) =

e−ϑk [TJ07]. [TG09] gives a power-law extension of IBPwith three parameters (3IBP)with an application

in language models. However, 3IBP does not enjoy an analytical form for T−1. But we can safely work

on the CRM directly, given the generality of the existence of T−1 [OW11]. One can observe that the

sampling function f ◦ T−1 does not change with n. This is the main limitation for IBP and 3IBP. A

MCMC sampling solution can be found in [GG11, TG09].

Correlated random measures

The key restrictions of IBP and 3IBP is that E[ξn({θk1
}) · ξn({θk2

})|ϑ̃] = E[ξn({θk1
})|ϑ̃] · E[ξn({θk2

})|ϑ̃].

In order tomodel feature correlations, [PWB+12]model fn(ϑk) as exchangeable random functions. The

extra randomness besides ϑ̃ can be modelled by augmenting the Poisson process (ϑ̃k, θk) on R+×Θ to

higher dimension (`k, ϑ̃k, θk) on Rd ×R+ ×Θ with mean measure ν(d`, dϑ̃, dθ) = p(`)µ(ϑ̃)p(θ)d`dϑ̃dθ.

The discrete infinite logistic normal distribution (DILN) [PWB+12] further proposes an example ξn =∑
k Znk(βϑ̃k, exp(−hn(`k)))δσk,τn , where hn(·) ∼ GP(m(·),K(·, ·)) and Znk is a gamma distribution

parameterized by its shape and scale parameters. However, DILN is restricted to use linear kernels,

which is very restrictive. [RB18] proposed general correlated random measures with examples for the

binary, discrete, and continuous cases.

Section 4.3. Detailed derivations.

The variational objective function can be decoupled as

L =

K∑
k=1

E
[

ln p(`k) + ln p(Vk) + ln p(θk)
]
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+

N∑
n=1

E
[

ln p(hn)
]

+

N∑
n=1

K∑
k=1

E
[

ln p(Znk|V, hn, `k)
]

+

N∑
n=1

Mn∑
m=1

E
[

ln p(C(m)
n |Zn) + ln p(X(m)

n |C(m)
n , θ)

]
+ H

[
q(`, V, θ, h, Z,C)

]
. (4.19)

We expand each term in Eq. (4.19) as follows.

E[ln p(`k)] = ln p(̂̀k) = −r` ln(2πb)

2
−
̂̀>
k
̂̀
k

2b
. (4.20)

E[ln p(Vk)]=ln p(V̂k)=lnα+ (α− 1) ln(1− V̂k). (4.21)

E[ln p(θk)] = ln Γ(Dγ0)−D ln Γ(γ0) +

D∑
d=1

(γ0 − 1)E[ln θkd], where E[ln θkd] = ψ(γkd)− ψ(

D∑
d=1

γkd).

(4.22)

E[ln p(hn)] = ln p(ĥn) = −rh ln(2πa)

2
− ĥ>n ĥn

2a
. (4.23)

E[ln p(Znk|V, hn, `k)]=− ln Γ(βp̂k)−βp̂kE[f(hn, `k)] + (βp̂k − 1)E[lnZnk]− E[Znk]E[exp(−f(hn, `k))],

where E[f(hn, `k)] = µf (ĥn, ̂̀k),

E[exp(−f(hn, `k))]=exp
(
−µf (ĥn, ̂̀k)+

1

2
σ2
f (ĥn, ̂̀k)

)
,

E[lnZnk] = ln(bnk) + ψ(ank), E[Znk] = ankbnk. (4.24)

E[ln p(Cnm|Zn)]=

K∑
k=1

φnm(k)E
[
lnZnk−ln

K∑
k′=1

Znk′
]
. (4.25)

E[ln p(Xnm|Cnm, θ)] =

K∑
k=1

φnm(k)E[ln θk,Xnm ], where E[ln θk,Xnm ] = ψ(γk,Xnm)− ψ(

D∑
d=1

γkd).

(4.26)

H[q(`k)] = 0. (4.27)

H[q(Vk)] = 0. (4.28)

H[q(θk)] =

D∑
d=1

ln Γ(γkd)− ln Γ(

D∑
d=1

γkd)−
D∑
d=1

(γkd − 1)E[ln θkd]. (4.29)

H[q(hn)] = 0. (4.30)

H[q(Znk)] = ank + ln(bnk) + ln Γ(ank) + (1− ank)ψ(ank). (4.31)

H[q(Cnm)] = −
K∑
k=1

φnm(k) lnφnm(k). (4.32)
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Variational inference for `k, Vk and network parameters can be done by directly plug-in and take

gradients. Updating q(θk) and q(Cnm) follows the general variational update rule. Updating q(Znk)

requires lower-bounding L.

For `, we use gradient ascent:

∇`L =

K∑
k=1

∇`E
[

ln p(`k)
]

+

N∑
n=1

K∑
k=1

∇`E
[

ln p(Znk|V, hn, `k)
]
. (4.33)

For V , we use gradient ascent:

∇V L =

K∑
k=1

∇V E
[

ln p(Vk)
]

+

N∑
n=1

K∑
k=1

∇V E
[

ln p(Znk|V, hn, `k)
]
. (4.34)

For θ, we have a closed-form update:

γkd = γ0 +

N∑
n=1

Mn∑
m=1

φnm(k) · 1(Xnm = d) (4.35)

For hn, we update the inference network g:

∇gL =

N∑
n=1

∇gE
[

ln p(hn)
]

+

N∑
n=1

K∑
k=1

∇gE
[

ln p(Znk|V, hn, `k)
]

(4.36)

For Znk, we maximize a lower bound for L similar as [PWB+12]. Related terms in L are:

L(q(Znk)) = (βp̂k − 1 +

Mn∑
m=1

φnm(k))E[lnZnk]

− E[Znk]E[exp(−f(ĥn, ̂̀k))]

−MnE
[

ln

K∑
k′=1

Znk′
]

+ H[q(Znk)]. (4.37)

The term that make closed-form update intractable is E[ln
∑K
k′=1 Znk′ ]. We use the bound:

E[ln

K∑
k′=1

Znk′ ] ≤ ln εn +

∑K
k′=1 E[Znk′ ]− εn

εn
. (4.38)

This bound is correct for any εn > 0, and here we precompute εn =
∑K
k=1 E[Znk] and treat εn as a

constant in the above equation. After Plugging-in the bound and some algebra, we solve q(Znk) as:

ank = βp̂k +

Mn∑
m=1

φnm(k),
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1/bnk = E
[

exp(−f(hn, `k))
]

+
Mn

εn
. (4.39)

For decoder network f :

∇fL =

N∑
n=1

K∑
k=1

∇fE
[

ln p(Znk|V, hn, `k)
]
. (4.40)

For Cnm, we have a closed-form update:

φnm(k) ∝ exp
(
E[ln θk,Xnm ] + E[lnZnk]

)
. (4.41)
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Part III

Composing Deep Learning and

Bayesian Nonparametric Methods in

Time-Series Modeling
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Chapter 5

Deep Bayesian Nonparametric

Tracking

In this chapter and the following one, we present two applications of Bayesian nonparametric models

to handle discrete patterns. Moreover, we observe that these models can work well with deep neural

networks. Thus we are able to get the best of both worlds: train accurate models and at the same time

figure out discrete patterns.

The first example is to handle time-series data often exhibit irregular behavior, making them hard

to analyze and explain with a simple dynamic model. For example, information in social networks may

show change-point-like bursts that then diffuse with smooth dynamics. Powerful models such as deep

neural networks learn smooth functions from data, but are not as well-suited (in off-the-shelf form)

for discovering and explaining sparse, discrete and bursty dynamic patterns. Bayesian models can do

this well by encoding the appropriate probabilistic assumptions in the model prior. We propose an

integration of Bayesian nonparametric methods within deep neural networks for modeling irregular

patterns in time-series data. We use Bayesian nonparametrics to model change-point behavior in

time, and a deep neural network to model nonlinear latent space dynamics. We compare with a non-

deep linear version of the model also proposed here. Empirical evaluations demonstrates improved

performance and interpretable results when tracking stock prices and Twitter trends.
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5.1 Motivations

Irregular behaviors such as bursts and nonlinearity repeatedly show up in time-series data. For

example, the past decades have seen several crashes of the stock market, in which a latent continuous-

like process is interrupted by a change-point-like event [AM07]. Another example is information

diffusion in social media, which exhibits initial bursts followed by smoother diffusion [GHFZ13,

LBK09]. Traditional tracking models such as the linear Kalman filter [BW+01] are not ideally-suited

for these tasks, in part because of their incompatibility with bursts and underlying nonlinearity [DJ09,

ADH10]. More complex machine learning techniques such as deep neural networks [LBH15] usually

fit smooth nonlinear functions to the data, and require more thought when handling bursty patterns

in dynamic data.

On the other hand, Bayesian methods are good at handling discrete and bursty latent structures in

data through explicit probabilistic modeling. Typical examples such as learning latent features [GG11]

and latent state transitions [FSJW11] have proven useful in multiple applications. Moreover, Bayesian

nonparametric (BNP) methods are naturally suited for large scale learning problems due to their infi-

nite dimensional nature. Recent inference techniques such as online learning [HBWP13b], streaming

learning [BPJ+13], and parallelization [GCWG15] further scale up these methods. To model com-

plex and nonlinear structures, recent probabilistic generative models mimic the behavior of neural

networks [RTCB15, SWZ16]. However, these models require carefully designed inference methods.

Currently ongoing research largely focus on generalizing the scope of these models [RTB16, TRB17].

Other methods incorporate the power of neural networks in Bayesian models, such as the variational

auto-encoder (VAE) [KW13]. However, in contrast to traditional Bayesian methods, which are good at

learning interpretable patterns through latent variables, VAE’s sacrifice interpretability for inference

tractability.

In this chapter, we aim to integrate the merits of Bayesian models and neural networks when

analyzing irregular time-evolving data. Our strategy is to modeling streaming data at two different

resolution levels by proposing a dynamic change-point model. To be precise, we partition the entire

time horizon into mini-batches and model the bursty dynamics between mini-batches through BNP

methods. We model nonlinearity within each mini-batch through deep neural networks. In this way

we are able to capture bursts and nonlinearity while also achieving interpretable results.

In Section 5.2 we introduce the modeling idea. In Section 5.3 we discuss a variational inference
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X2X1 X4X3 XT-2 XTXT-1
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≈ ×Wt HtXt

(a) (b)

Figure 5.1: (a) Partitioning sequential data into time blocks. (b) Each block is modeled as a dynamic matrix
factorization, where the left matrix uses a gamma process for change-point detection, and the right matrix is
Brownian motion. Both matrices are time-evolving: the left matrix across blocks (using a jump process) and the
right matrix within each block.

method. Section 5.4 and 5.4.2 introduce extensions and predictive distributions. Section 5.5 demon-

strates empirical results on stock and Twitter data.

5.2 The Model

Basic linear tracking models such as the Kalman filter can be formulated as a matrix factorization

problem X ≈ WH , in which the left matrixW remains fixed and the column sequence of the right

matrix H is modeled as dynamically evolving. WhenW is defined by the underlying physics of the

problem, this is natural. But for streaming data such as stock or text data, both matrices are unknown

and sequential evolution may be expected in both. In this section, we discuss our approach to the

modeling problemX ≈ f(WH), in whichW is modeled by a jump process that detects change-points

in the “global” structure, while H is continuously evolving to model “local” temporal variations. We

present two models: the first based on a more traditional BNP approach for which f(·) is the identity

function, which we then extend to a neural network in a straightforward way.

5.2.1 Basic setup: Dynamic matrix factorization

In principle, our dynamic model is a continuous-time model. For practical application, we will group

the data into blocks, where Xt is aM ×Nt matrix of data at time block t. Each row could correspond

to a stock or a word, and the columns contain the measured time-sequence atNt points in block t (e.g.,

hourly measurements in week t). Our basic matrix factorization model is of the form Xt ≈ f(WtHt),

whereWt is evolving in t and the columns of Ht are evolving (see Figure 5.1). In this sense, an entire

data matrix X can be viewed as being factorized where H is one process evolving along the columns
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discretize

discretize

discretize

variance gamma  
processes W

gamma 
subordinators γ

discretized variance 
gamma processes

discretized gamma 
subordinators Brownian motion Hdecoder network observations X

Figure 5.2: A rank-one example of the deep BNP tracking model for three data streams. A continuous-time
variance gamma process is discretized into time blocks at finer resolutions than the large jumps in the process. A
single Brownian motion multiplies with these variance gamma processes and is passed into a neural network,
which parameterizes the mean and covariance of the observed data streams.

andHt only selects the relevant submatrix of this process. The entire matrixW is changing depending

on what column subset of X is being modeled, but also evolving according to a dynamic process in t.

In Section 5.2.2 we discuss the process forW as an infinitely divisible continuous-time jump process,

then discuss the discrete time analog that we use for inference. We discuss the process forH in Section

5.2.3, which results in our proposed non-deep BNP tracking model (for which f(A) = A). We make a

deep extension in Section 5.2.4.

5.2.2 Variance gamma process onW

In the continuous-time setting, we define the matrixWt to be a Brownian motion subordinated to a

gamma process. LetR = (Rt) be a gamma process on state space R+ with shape rate a and scale c, and

Z = (Zs) be a standard Brownian motion (in matrix form) with state space RM×K . ThenWt = ZRt is

obtained by subordinating Z to R. Since both Z and R are Lévy processes,W is also a Lévy process,

and thus can be represented as summation of independent increments and evaluated at discrete time

points through simple marginalization. The gamma process is a pure jump process with occasional

large jumps, and therefore the Brownian motion is also a jump process with little motion interrupted

by occasional large jumps [Çın11]. We use this process as a change-point model forWt, which will

allow it to remain nearly fixed over a period of time, with occasional large jumps representing a shock

in the dynamic system (e.g., caused by a market event) [MCC98].
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Mathematically, if we partition X into time blocks t, then Lévy process theory provides a simple

generative process forWt. Let ∆st be the time lapse between block t − 1 and t. Then Rt − Rt−1 ∼

Gam(a∆st, c). Using a new variable for this difference, the discrete time evolution ofWt can be simply

represented as

Wt ∼ N (Wt−1, γtI), γt ∼ Gam(a0, c), (5.1)

where a0 = a∆st, assuming a constant time shift. (We’ve also overloaded the normal distribution.)

When the partition is over a small window of time compared with the dynamics of the process, a0

will be small and therefore γt will likely be small and Wt will have little change. However, γt will

occasionally be large, which will allow for a change in the system. As written, we assume one gamma

process; generalization to row-specific gamma processes is straightforward andwill allow for each data

stream (e.g., stock) to have its own change-points. The BNP aspect is in inferring these change-points

from the data. An example of this row-specific process forW is illustrated in the left column of Figure

5.2 for a rank-one factorization.

5.2.3 Temporal tracking in H and data generation

For the local tracking model ofH we use discretized Brownian motion. IfHt,j is the jth column ofHt,

then we model its dynamics and resulting data generation as

Ht,j ∼ N (Ht,j−1, λI), Xt ∼ N (WtHt, σ
2I), (5.2)

where λ represents the time interval between data points (assumed constant), and Ht,1 uses the last

point in Ht−1. We’ve again overloaded notation of the second Gaussian distribution. The columns of

Ht follow a continuous process and therefore only allows “smooth” change, although the process is

nowhere differentiable.

5.2.4 Extension: A deep likelihood model

In the previous sections we proposed a linear Gaussian matrix factorization model for tracking. We

next extend this to a deep model in a simple way. Here we use the variational autoencoder framework

to motivate the model development, and the inference algorithm discussed later [KW13, KSS15]. We

use a neural network, denoted by its parameters φ, to define the decoder model pφ(Xt|Wt, Ht) for



CHAPTER 5. DEEP BAYESIAN NONPARAMETRIC TRACKING 67

block t as a Gaussian additive noise model,

Xt ∼ N (µφ(WtHt),Σφ(WtHt)) . (5.3)

Here we have again overloaded the Gaussian notation. In this likelihood model, we define a multivari-

ate Gaussian on the jth column ofXt with mean and covariance a neural network that is a function of

the jth column ofWtHt. The benefit of this formulation can be seen in the inference step, where we

are able to easily handle the stochastic gradient of φ [KW13]. We discuss the design of networks µφ

and Σφ in Section 5.3.2. We illustrate this deep model in Figure 5.2.

5.3 Variational inference

5.3.1 Linear Gaussian observational model

We derive variation inference algorithms for the two models proposed in Section 5.2. We first discuss

inference for the simpler linear Gaussian model. By our choice of q distributions, the algorithm nearly

reduces to an EM algorithm in which one component is the traditional Kalman filter. To approximate

the full posterior, we use the factorized q distribution of the form

q(γ,W,H) =

T∏
t=1

q(γt)δ(Wt)q(Ht). (5.4)

Note that within a time block, we do not further factorize q(Ht). Our q on Wt is a delta function,

meaning we actually learn a point estimate of this variable. As a result, the conditional posterior

p(γ,H|W,X) = p(H|W,X)
∏
t p(γt|Wt). Our only approximation is therefore in the factorization∏

t q(Ht), which only breaks dependence in the transition across time blocks. The variational lower

bound is,

L = Eq
[

ln
p(γ,W,H,X)

q(γ,W,H)

]
= LH + LW,γ . (5.5)

The H portion is LH =
∑T
t=1 L

(t)
H , where

L(t)
H =

Nt∑
j=1

E
[

ln
p(Xt,j |Wt, Ht,j)p(Ht,j |Ht,j−1)

q(Ht,j |Ht,j−1)

]
. (5.6)
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Figure 5.3: Left: Encoder network using an LSTM. Right: Re-parameterization and sequential sampling from
qθ(Ht,j+1|Xt,1:j).

TheW,γ portion is LW,γ =
∑T
t=1 L

(t)
W,γ , where

L(t)
W,γ = E

[
ln
p(γt)p(Wt|Wt−1, γt)

q(γt)

]
. (5.7)

We use coordinate ascent to iterative between the following closed-form updates. All expectations are

with respect to q.

Update q(γt): The conditional posterior of γt is a generalized inverse Gaussian. Thus q(γt) =

GIG(at, bt, pt), where at = 2c, bt = ‖Wt −Wt−1‖2F , pt = a0 −Md/2.

UpdateWt: This is a closed-form update,

Wt =

(
M1 +

XtE[H>t ]

σ2

)(
M2 +

E[HtH
>
t ]

σ2

)−1

, (5.8)

M1 =E[γt]Wt−1 + E[γt+1]Wt+1,M2 =(E[γt] + E[γt+1])I .

Update q(Ht): This is the classic Kalman filtering problem using the current value of Wt. The

standard forward-backward (filtering-smoothing) algorithm is used to solve this linear dynamic

system [GH96b].

5.3.2 Extension: Variational auto-encoder model

In Section 5.2.4 we introduced a neural network based likelihood model pφ(Xt|Wt, Ht) with nonlinear

dependencies on the productWtHt. Variational inference for this model is non-trivial because of the

clear non-conjugacy. We apply the variational auto-encoder by introducing a variational posterior
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Algorithm 6 Sampling from qθ(Ht|Xt)

1: Get St by passing Xt to an LSTM.
2: (Figure 5.3 blue part)
3: Sample Ĥt,1 from an initial distribution.
4: for j = 2, . . . , Nt do
5: Get parameters (µt,j , (Σ

1/2
t,j )) for Ht,j by passing (Ĥt,j−1, St,j−1) to a feed-forward network.

6: (Figure 5.3 red part)
7: Sample Ĥt,j = µt,j + Σ

1/2
t,j ε, ε ∼ N (0, I).

8: (Figure 5.3 red part)
9: end for

conditioning on the context X ,

q(γ,W,H|X) =
T∏
t=1

q(γt)δ(Wt)qθ(Ht|Xt). (5.9)

Note that qθ(Ht|Xt) is a neural network encoder model for the decoder pφ(Xt|Wt, Ht). To match the

posterior structure to the prior one, we further factorize

qθ(Ht|Xt) =

Nt∏
j=1

qθ(Ht,j |Ht,j−1, Xt). (5.10)

Encoder design. To exploit the sequential structure of the data, we use LSTM [HS97] to encode Xt.

The pipeline of this encoder network is shown in Figure 5.3. In particular, we introduce another hidden

layer St as the LSTM output. Then we sample Ht,j sequentially by conditioning on (St,j−1, Ht,j−1).

In this case we concatenate (St,j−1, Ht,j−1) into a single vector and pass that vector to two feed-

forward neural networks to obtain the Gaussian parameters µθ(St,j−1, Ht,j−1),Σθ(St,j−1, Ht,j−1) as

outputs1. Finally we sample from the distribution given above. The entire process is summarized in

Algorithm (6).

Decoder design. As previously discussed, we define

pφ(Xt,j |W,H) = N (µφ(WtHt,j),Σφ(WtHt,j)), (5.11)

where parameters µφ(WtHt,j),Σφ(WtHt,j) are modeled by separate feed-forward neural networks.

As we will see, we can exploit this structure to simplify inference using re-parameterization.

1In our experiments we restrict Σφ to be a diagonal matrix and use neural networks to model the logarithm of each diagonal
entries. We use this trick for both the encoder network and the decoder network to refrain from doing an additional projection
steps, which can be time-consuming.
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Variational inference. Since the variational auto-encoder model is defined locally, we have a similar

learning framework. We can again re-write L = LH + LW,γ , where LH =
∑T
t=1 L

(t)
H and LW,γ =∑T

t=1 L
(t)
W,γ . While L(t)

W,γ is as in Equation (5.7), the local bound is slightly different:

L(t)
H =

Nt∑
j=1

E
[
ln
pφ(Xt,j |Wt, Ht,j)p(Ht,j |Ht,j−1)

qθ(Ht,j |Ht,j−1, Xt)

]
. (5.12)

Update q(γt): The same as the linear likelihood model.

UpdateWt: This time we do not have a closed-form solution since we can only get samples for the

hidden variables in the neural network. Instead we will use SGD, where

∇WtL ≈ ∇Wt

1

M

Nt∑
j=1

M∑
m=1

ln pφ(Xt,j |Wt, Ĥ
(m)
t,j ) + (5.13)

∇Wt
E[ln p(Wt|Wt−1, γt) + ln p(Wt+1|Wt, γt+1)],

and Ĥ(m)
t,j are i.i.d. samples of Ht,j ,m = 1, . . . ,M . We observe that the first line is approximated by

Monte Carlo, while the second is in closed form.

Update qθ(Ht|Xt): We again use SGD,

∇θL =

Nt∑
j=1

∇θE
[
ln

p(Ht,j |Ht,j−1)

qθ(Ht,j |Ht,j−1, Xt)

]
. (5.14)

To estimate this gradient, we observe that we are able to move the gradient inside the integral through

the re-parameterization trick. By samplingHt according to Algorithm 6, we are able to get an unbiased

estimation of the gradient. In this case we found that using only one sample Ĥt is enough to get an

estimation of this direction with reasonable variance.

Update pφ(Xt|Wt, Ht): We again use SGD to approximate∇φL in a nearly identical way as updating

qθ(Ht|Xt).

5.4 Further discussion

We briefly discuss a straightforward motion modeling extension that can better capture latent trajecto-

ries, modeling data with missing values, and also the prediction equations we use for our experiments.



CHAPTER 5. DEEP BAYESIAN NONPARAMETRIC TRACKING 71

5.4.1 Modeling velocity and acceleration of drift

The Brownian motion Ht discussed above cannot project future trajectories in the latent space. We

augment the model with standard tracking methods that imposes “Earth’s physics” upon this space.

Therefore, we augment Ht by tripling the number of rows and modeling the drift ∆s into the future

using the kinematic equations as follows,

H
(pos)
t,j = H

(pos)
t,j−1 + ∆s ·H(vel)

t,j−1 +
∆s2

2
·H(acc)

t,j−1,

H
(vel)
t,j = H

(vel)
t,j−1 + ∆s ·H(acc)

t,j−1,

H
(acc)
t,j = e−α∆s ·H(acc)

t,j−1. (5.15)

α > 0 is a damping factor. In this way we are able to explicitly model the evolving position, velocity

and acceleration ofH according to basic physics properties. By introducing two deterministic matrices

G1 =

[
I ∆s·I 1

2 ∆s2·I
0 I ∆s·I
0 0 e−α∆s·I

]
, G2 =

[
I 0 0

]
, (5.16)

we can rewrite the transitions and observations as

Ht,j∼N (G1Ht,j−1, λI), Xt∼N (WtG2Ht, σ
2I). (5.17)

We see that G1 projectsHt,j−1 into the future. (The velocity and acceleration are directly learned from

data.) G2 picks out the current position to generate the observation. The above inference algorithms

can be easily modified by inserting G1 and G2 at the appropriate places.

Xt ∼ N (AtWtG2Ht, σ
2diag(At)I) (5.18)

Nothing change with the remaining parts.

5.4.2 Prediction

There are two scenarios. The first one is “in-matrix” prediction, which aims at predicting missing

values in Xt. The second is “sequential prediction,” which predicts the next columns of Xt given

previous column. For in-matrix prediction,

we have information from both the past and the future.

Given q, for model with drift, we select the position from H with G2 and set X̂t,j = WtG2Eq[Ht,j ].
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The missing values in Xt are filled with the corresponding value in X̂t. For sequential prediction, for

model with drift we project into the future with G1 and then select the position from H with G2, and

predict Xt,j = WtG2G1Eq[Ht,j−1].

5.5 Experiments

5.5.1 Methods and evaluations

We empirically evaluate several approaches to this matrix factorization tracking problem. We summa-

rize their acronyms in Table 5.1. One immediate comparison is with amodel that uses Brownianmotion

to model bothW andH— in other words the linear model of this chapter without the gamma process,

but a fixed variance onWt. We refer to this model as the collaborative Kalman filter (CKF) [GP14].

Furthermore, we can incorporate the dynamics of Section 5.4.1 on Ht, and also use the VAE approach

discussed above with the CKF.

Table 5.1: Methods evaluated in our experiments.

Notation Description
Interp Piecewise linear interpolation
CKF Collaborative Kalman filter
CKF-drift CKF with velocity and acceleration
CKF-VAE CKF-drift, nonlinear VAE version
VGP Variance gamma process model
VGP-drift VGP with velocity and acceleration
VGP-VAE VGP-drift, nonlinear VAE version

Table 5.2: Linear likelihood model predictive results for stock data set.

Method In-matrix RMSE Sequential RMSE
d=5 d=10 d=15 d=20 d=30 d=50 d=5 d=10 d=15 d=20 d=30 d=50

CKF 0.7815 0.7483 0.7198 0.6960 0.6830 0.7124 0.7103 0.5456 0.5295 0.5030 0.4933 0.4874
CKF-drift 0.7618 0.7325 0.7001 0.6672 0.6620 0.6853 0.6853 0.5395 0.5291 0.4982 0.4915 0.4839
VGP 0.7777 0.7216 0.7038 0.6678 0.6342 0.6241 0.6874 0.5356 0.5205 0.5013 0.4955 0.4845
VGP-drift 0.7416 0.7210 0.6727 0.6463 0.6247 0.6077 0.6760 0.5321 0.5191 0.4999 0.4933 0.4820
Interp 0.6704 0.4983

Table 5.3: Deep likelihood model predictive results for stock data, using various LSTM latent unit sizes.

Method In-matrix Sequential
CKF-VAE-50 0.6108±0.0245 0.4824±0.0122
CKF-VAE-200 0.5934±0.0205 0.4735±0.0082
VGP-VAE-50 0.5846±0.0132 0.4742±0.0217
VGP-VAE-200 0.5364±0.0153 0.4628±0.0102
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(a) (b)
Figure 5.4: The jumps learned by our deep VGP-VAE model. (a) Summation of posterior means for all stocks∑
m E[γt,m]. This demonstrates a significant jump in the market corresponding to the crash of 2008-2009. (b) the

stock price for three companies and their corresponding gamma processes. Spikes indicate large jumps of their
relevant locations in the row space ofWt (not shown).

We also consider three approaches from this chapter: the variance gamma process linear model,

that model adding dynamics, and a VAE approach to the model with dynamics. For our experiments,

we allow each row ofW to have its own associated gamma process, which represents the fact that items,

such as stocks or words, do not share the same change-points. For notation simplicity we presented

the algorithm for a single variance gamma process onW , but in our experiments we use row-specific

variance gamma processes with straightforward modifications to account for q(γt) =
∏M
m=1 q(γt,m).

As a baseline, we compare with piece-wise linear interpolation, which predicts the next value to be

the current value, or locally averages two adjacent values. For all methods, we use root-mean-square

error (RMSE) as our performance metric using the predictions discussed in Section 5.4.2. For each

method we run five experiments with random initialization.

5.5.2 Stock market crash and recovery, 2008-2012

We present quantitative and qualitative evaluation of our model on stock market data that measures

daily stock prices at opening and closing times forM = 1429 companies from the AMEX exchange,

NASDAQ, and NYSE, giving 2.86 million total measurements from 2008-2012.2 In particular, we

partition the entire time horizon into four-week blocks. This gives T = 50 segments in total. Within

each block we have Nt = 40 measurements for each stock.

For the CKF models, we set the transition variance λ = 0.1 and the likelihood variance σ2 = 1. For

models with drift, we set the damping parameter α = 0.1. For VGP models, we set γt,m∼iidGam(1, 1),

meaning c = 1 and the integral of the Lévy measure over four weeks equals 1. For the encoder

part of VAE models (see Figure 5.3), we set the LSTM latent dimension to be 200. We set the output

part of the encoder network (see the red box in Figure 5.3) to be one feed-forward layer followed

2Data source: http://ichart.finance.yahoo.com/

http://ichart.finance.yahoo.com/
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Table 5.4: In-matrix prediction results for encoder/decoder choices.

Decoder
ff recur conv

Encoder
ff 0.592 0.735 >1

recur 0.536 0.584 >1
conv >1 >1 >1

Table 5.5: In-matrix prediction results for various choices of decoder.

f(Wt, Ht) f(Wt ·Ht) f(Wt, g(Ht)) f(Wt · g(Ht))
0.673 0.536 >1 >1

by a RELU unit [NH10a] before splitting the outputs for µ and Σ. The decoder part contains two

feed-forward layers with RELU units. For optimization we use Adam [KB14] with learning rate 10−4.

In the experiments we find inference it takes around one hour of coordinate ascent for the linear

models; the VAE models converge more slowly (approximately one day), but the result is significantly

improved.

In order to quantitatively compare those models, we show the in-matrix prediction performance

and sequential predictive performance, described in Section 5.4.2. For in-matrix prediction we crop

1/5 of the data for testing and use the rest for training. And for sequential prediction we use stock

prices from 2008 to 2012 for training and predict stock prices sequentially in 2013.

Linear likelihood models. We show the predictive performance in Table 5.2 as a function of the

factorization rank. The VGP-based models have superior performance over the models driven only

by Brownian motion. We can also see an improvement in RMSE when we explicitly model the latent

trajectory in H . This indicates that the latent motion trend in the market is helpful for prediction. We

note that the CKF model is even slightly worse than the linear interpolation method, indicating that

the stock market is very hard to track with a linear model. For sequential prediction, the performance

gap is not as large as the in-matrix prediction since observations ahead of time and correlations among

stocks are informative for a precise prediction.

Deep VAE models. Next we show empirical performance for VAEs. We recall that the linear models

WtHt is fed into the encoder network in our implementation. (We will compare with other approaches

later.) The result is shown in Table 5.3, where we can see that the VAE significantly improves perfor-

mance of both CKF-drift and VGP-drift models. VGP-VAE is the best among all models by exploiting
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both latent jumps and nonlinearity to model the data. Moreover, we observe that VAE models get

better results when using a larger number of LSTM latent units S.

VAE network design. We find that the choice of encoder/decoder networks will affect the result.

First, we compare three network settings for both the encoder and decoder: feed-forward (ff), recurrent

(recur), and convolutional (conv). For recurrent networks we use LSTM for our experiments, and for

the decoder convolutional network we use transposed convolution layers (i.e., deconvolution). We

tune all networks for various layer widths and depths. Table 5.4 shows the best result we get for each

encoder/decoder network pair. We find that using LSTM as encoder and feed-forward as decoder has

the best result. This is because LSTM can exploit the sequential properties within data and effectively

encode the observations intoH . Since we also assume a sequential structure in qθ(Ht|Xt), the decoder

can be done in a straightforward way through a feed-forward network.

We also note that our decoder can be generalized as a function ofWt and Ht. In this case, we have

multiple choices of the functional form for our decoder network. For example, we can first concatenate

Wt andHt and then feed them into a neural network (denoted as f(Wt, Ht)), or we can multiply them

before feeding into the network (denoted as f(Wt ·Ht), the method we’ve used thus far). The fact that

Ht itself has a sequential structure means we can potentially exploit this by first feeding H into an

LSTM (denoted as g(Ht)) before considering how it interacts withWt. Table 5.5 shows the quantitative

results for those choices. We find that feeding the linear modelWtHt directly into the neural network

has the best performance. This indicates our initial BNP linear approach still has value when combined

with a deep model.

Qualitative results. We also present a qualitative evaluation of the VGP-VAE model. Figure 5.4

shows the variance gamma process. In the left plot, we show the posterior mean of the subordinator

gamma process E[γt,m] summed over all stocks, showing amount of “jumpiness” in the stocks learned

by our model. We note that this should not be sparse, since in any time frame we expect a subset

of stocks to have fundamental changes. However, our model does detect a significant global jump

around October in 2008, which corresponds to the most recent stock crush.

In the three right plots, we show the jumps learned from three individual stocks: Abbott Labora-

tories (Medical & Health), Caterpillar (Energy, Industry), and Coca-Cola (Consumer Staples), in the

lower gray subplots. As expected, their learned gamma processes are sparse. From the stock prices,
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Figure 5.5: Top plots show raw counts for 6 different words. We can see the word frequency is very noisy in the
entire period. Lower shaded plots show posterior mean of the gamma process E[γt,m] showing the jumps in word
embedding locations learned by our model. Note that (i) the resolution of the plots are different, the top being
hourly and the bottom per-day; (ii) the learned spikes show jumps of latent row vectors inWt through a variance
gamma process (not shown). So our method is essentially different from sparse recovery algorithms, such as
soft-thresholding [Don95].

we can see all the three stocks experienced a similar drop during the market crash. The variance

gamma process does not detect stable, gradual changes in stock price because these parts can be

tracked accurately by H and the VAE. The gamma process is intended to detect change-points, where

fundamental changes occur (i.e., as modeled by jumps in the latent embedding space). For example, in

July 2011, Caterpillar agreed to pay a Clean Air Act penalty, which seems to have affected its location

relative to other stocks in the row space ofWt.

5.5.3 NFL tweets

Another typical example where burst happens naturally is in social media. Here we aim to ana-

lyze 377,164 NFL-related tweets (e.g., labeled with an #nfl hashtag) posted during the 2011-2012

season [SDGS13]. All the data were partitioned into T = 122 mini-batch, one per day. And for each

day, we aggregate all tweets into bag-of-words by hour. Thus Nt = 24. We remove all stop words and

pick the topM = 5000 words by their document level tf-idf rank [SB88]. That is, our observation is a

5, 000 by (24× 122) time-series matrix.

Quantitative results. We use the first 4/5 of data for training and the rest for testing. We set

λ = 0.3, σ2 = 1, α = 0.1, and the prior γt,m∼iidGam(1, 1). For VAE models we set the LSTM latent

dimension to be 40 and the learning rate for Adam to be 10−4. The result is shown in Table 5.6. For

CKF models we show the best result when tuningK ∈ {5, 10, 15, 20, 30, 50}. Again we see that VAE

models have the best predictive performance due to its ability to model bursts through a Bayesian

nonparametric jump process and nonlinearity through neural networks.

Qualitative results. In Figure 5.5 we show the counts of various words and their learned gamma

process E[γt] for the VGP-VAE model. The first three plots shows results for various teams: Patriots,

Titans, and Raiders. The appearance of those words is very informative and bursty, and the gamma
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Table 5.6: Sequential predictive results for NFL tweets.

Method Sequential RMSE
Interp 0.481
CKF 0.478± 0.002
CKF-drift 0.475± 0.002
CKF-VAE 0.470±0.001
VGP 0.477± 0.002
VGP-drift 0.471± 0.003
VGP-VAE 0.463±0.002

process captures the big changes that aren’t able to be modeled by changes in H . Clearly we can see

only a few spikes in the plot for most teams, and often there are two adjacent spikes, which indicates a

very short change that doesn’t persist.

The last three plots show results for four less informative words: ‘nfl’, ‘go’, and ‘fans’. We can still

learn some spikes in these words. However, the spikes are less informative and they are at a relatively

smaller scale than the spikes learned from first three words.

Sensitivity results. Finally, we show sensitivity analysis for the VGP model in the predictive

performance as a function of block window size3. The result is shown in Figure 5.6, where we can

clearly see that when the window size is very small we are unable to get good predictive results. In this

case, theH has difficulty accurately capturing the basic dynamics becauseWt is updated so frequently

and many local optima exist. On the other hand, when we use very large batch size, we are still have

decent predictive results. However, in this case our variance gamma process model is very coarse, so

that we do not have interpretable results of change-points.

5.6 Conclusion

In this chapter, we introduce a new method to integrate Bayesian nonparametrics and deep neural

networks for time-series data. We treat a collection of data sequences, such as stock prices, as a matrix

factorization problem in which there are temporal dynamics in both matrices of the factorization.

For the left matrix, we use a variance gamma (jump) process to model change-points in what should

otherwise be a fixed latent embedding. Columns of the right matrix follow a Brownian motion. We

then extend this linear Gaussian basic model to a neural network and use the variational auto-encoder

for approximate posterior inference. Our method benefits from both BNP methods (jump processes

3We observe a similar result in the VGP-VAE model.
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Figure 5.6: Sensitivity result on nfl tweet data set with various time windows. To get both good predictive and
interepretable results, the best choice is to choose an intermediate discretization.

for change-point detection and explainable latent representations) and deep neural networks (non-

linearity for generalized linear modeling). We empirically evaluated our method on two data sets,

demonstrating predictive power and interpretability.



CHAPTER 6. FULLY SUPERVISED SPEAKER DIARIZATION 79

Chapter 6

Fully Supervised Speaker Diarization

In this chapter, we propose a fully supervised speaker diarization approach, named unbounded

interleaved-state recurrent neural networks (UIS-RNN). Given extracted speaker-discriminative embed-

dings (a.k.a. d-vectors) from input utterances, each individual speaker is modeled by a parameter-

sharing RNN, while the RNN states for different speakers interleave in the time domain. This RNN is

naturally integrated with a distance-dependent Chinese restaurant process (ddCRP) to accommodate

an unknown number of speakers. Our system is fully supervised and is able to learn from examples

where time-stamped speaker labels are annotated. We achieved a 7.6% diarization error rate on NIST

SRE 2000 CALLHOME, which is better than the state-of-the-art method using spectral clustering.

Moreover, our method decodes in an online fashion while most state-of-the-art systems rely on offline

clustering.

6.1 Motivations

Aiming to solve the problem of “who spokewhen”, most existing speaker diarization systems consist of

multiple relatively independent components [SGR15, GRSS+17, WDW+18], including but not limited

to: (1) A speech segmentation module, which removes the non-speech parts, and divides the input

utterance into small segments; (2) An embedding extraction module, where speaker-discriminative

embeddings such as speaker factors [CCD+08], i-vectors [DKD+11], or d-vectors [WWPM18] are

extracted from the small segments; (3) A clustering module, which determines the number of speakers,

and assigns speaker identities to each segment; (4) A resegmentation module, which further refines
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the diarization results by enforcing additional constraints [SGR15].

For the embedding extraction module, recent work [GRSS+17, WDW+18, ZHM17] has shown

that the diarization performance can be significantly improved by replacing i-vectors [DKD+11] with

neural network embeddings, a.k.a. d-vectors [WWPM18, HMBS16]. This is largely due to the fact that

neural networks can be trained with big datasets, such that the model is sufficiently robust against

varying speaker accents and acoustic conditions in different use scenarios.

However, there is still one component that is unsupervised in most modern speaker diarization

systems— the clusteringmodule. Examples of clustering algorithms that have been used in diarization

systems include Gaussian mixture models [ZHM17, SDDG13], mean shift [SKSD14], agglomerative

hierarchical clustering [GRSS+17, SGR14], k-means [WDW+18, DF17], Links [WDW+18, MWD+18],

and spectral clustering [WDW+18, NLTH06].

Since both the number of speakers and the segment-wise speaker labels are determined by the

clustering module, the quality of the clustering algorithm is critically important to the final diarization

performance. However, the fact that most clustering algorithms are unsupervised means that, we will

not able to improve this module by learning from examples when the time-stamped speaker labels

ground truth are available. In fact, in many domain-specific applications, it is relatively easy to obtain

such high quality annotated data.

In this chapter, we replace the unsupervised clustering module by an online generative process

that naturally incorporates labelled data for training. We call this method unbounded interleaved-state

recurrent neural network (UIS-RNN), based on these facts: (1) Each speaker is modeled by an instance

of RNN, and these instances share the same parameters; (2) An unbounded number of RNN instances

can be generated; (3) The states of different RNN instances, corresponding to different speakers,

are interleaved in the time domain. Within a fully supervised framework, our method in addition

handles complexities in speaker diarization: it automatically learns the number of speakers within

each utterance via a Bayesian non-parametric process, and it carries information through time via the

RNN.

The contributions of our work are summarized as follows:

1. Unbounded interleaved-state RNN, a trainable model for the general problem of segmenting

and clustering temporal data by learning from examples.

2. Framework for a fully supervised speaker diarization system.
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Figure 6.1: The baseline system architecture [WDW+18].

3. New state-of-the-art performance on NIST SRE 2000 CALLHOME benchmark.

4. Online diarization solution with offline quality.

6.2 Baseline system using clustering

Our diarization system is built on top of the recent work by Wang et al. [WDW+18]. Specifically, we

use exactly the same segmentation module and embedding extraction module as their system, while

replacing their clustering module by an unbounded interleaved-state RNN.

As a brief review, in the baseline system [WDW+18], a text-independent speaker recognition

network is used to extract embeddings from sliding windows of size 240ms and 50% overlap. A simple

voice activity detector (VAD) with only two full-covariance Gaussians is used to remove non-speech

parts, and partition the utterance into non-overlapping segments with max length of 400ms. Then

we average window-level embeddings to segment-level d-vectors, and feed them into the clustering

algorithm to produce final diarization results. The workflow of this baseline system is shown in Fig.

6.1.

The text-independent speaker recognition network for computing embeddings has three LSTM

layers and one linear layer. The network is trained with the state-of-the-art generalized end-to-end loss

[WWPM18]. We have been retraining this model for better performance, which will be later discussed

in Section 6.4.1.
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6.3 Unbounded interleaved-state RNN

6.3.1 Overview of approach

Given an utterance, from the embedding extraction module, we get an observation sequence of embed-

dings X = (x1,x2, . . . ,xT ), where each xt ∈ Rd. Each entry in this sequence is a real-valued d-vector

corresponding to a segment in the original utterance. In the supervised speaker diarization scenario,

we also have the ground truth speaker labels for each segmentY = (y1, y2, . . . , yT ). Without loss of

generality, letY be a sequence of positive integers by the order of appearance.

For example, Y = (1, 1, 2, 3, 2, 2) means this utterance has six segments, from three different

speakers, where yt = k means segment t belongs to speaker k.

UIS-RNN is an online generative process of an entire utterance (X,Y), where1

p(X,Y) = p(x1, y1) ·
T∏
t=2

p(xt, yt|x[t−1], y[t−1]). (6.1)

To model speaker changes, we use an augmented representation

p(X,Y,Z)=p(x1, y1)·
T∏
t=2

p(xt, yt, zt|x[t−1], y[t−1], z[t−1]), (6.2)

where Z = (z2, . . . , zT ), and zt = 1(yt 6= yt−1) ∈ {0, 1} is a binary indicator for speaker changes. For

example, ifY = (1, 1, 2, 3, 2, 2), then Z = (0, 1, 1, 1, 0). Note that Z is uniquely determined byY, butY

cannot be uniquely determined by a given Z, since we don’t know which speaker we are changing to.

Here we leave z1 undefined, and factorize each product term in Eq. (6.2) as three parts that separately

model sequence generation, speaker assignment, and speaker change:

p(xt, yt, zt|x[t−1], y[t−1], z[t−1]) = p(xt|x[t−1], y[t])︸ ︷︷ ︸
sequence generation

· p(yt|zt, y[t−1])︸ ︷︷ ︸
speaker assignment

· p(zt|z[t−1])︸ ︷︷ ︸
speaker change

. (6.3)

For the first entry of the sequence, we let y1 = 1 and there is no need to model speaker assignment

and speaker change. In Section 6.3.2, we introduce these components separately.

1We denote an ordered set (1, 2, . . . , t) as [t].
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6.3.2 Details on model components

6.3.2.1 Speaker change

We assume the probability of zt ∈ {0, 1} follows:

p(zt = 0|z[t−1],λλλ) = gλλλ(z[t−1]), (6.4)

where gλλλ(·) is a function paramaterized by λλλ. Since zt indicates speaker change at time t, we have

p(yt = yt−1|zt, y[t−1]) = 1− zt. (6.5)

In general, gλλλ(·) could be any function, such as an RNN. But for simplicy, in this work, we make

it a constant value gλλλ(z[t−1]) = p0 ∈ [0, 1]. This means {zt}t∈[2,T ] are independent binary variables

parameterized by λλλ = {p0}:

zt ∼iid. Binary(p0). (6.6)

6.3.2.2 Speaker assignment process

One of the biggest challenges in speaker diarization is to determine the total number of speakers for

each utterance. To model the speaker turn behavior in an utterance, we use a distance dependent

Chinese restaurant process (ddCRP) [BF11], a Bayesian non-parametric model that can potentially

model an unbounded number of speakers. Specifically, when zt = 0, the speaker remains unchanged.

When zt = 1, we let

p(yt = k|zt = 1, y[t−1]) ∝ Nk,t−1,

p(yt = Kt−1 + 1|zt = 1, y[t−1]) ∝ α. (6.7)

Here Kt−1 = max y[t−1] is the total number of unique speakers up to the (t − 1)-th entry. Since

zt = 1 indicates a speaker change, we have k ∈ [Kt−1] \ {yt−1}. In addition, we let Nk,t−1 be the

number of blocks for speaker k in y[t−1]. A block is defined as a maximum-length subsequence of

continuous segments that belongs to a single speaker. For example, if y[6] = (1, 1, 2, 3, 2, 2), then there

are four blocks (1, 1)|(2)|(3)|(2, 2) separated by the vertical bar, with N1,5 = 1, N2,5 = 2, N3,5 = 1.

The probability of switching back to a previously appeared speaker is proportional to the number of

continuous speeches she/he has spoken. There is also a chance to switch to a new speaker, with a
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probability proportional to a constant α. The joint distribution of Y given Z is

p(Y|Z, α) =
αKT−1

∏KT
k=1 Γ(Nk,T )∏T

t=2(
∑
k∈[Kt−1]\{yt−1}Nk,t−1 + α)1(zt=1)

. (6.8)

6.3.2.3 Sequence generation

Our basic assumption is that, the observation sequence of speaker embeddings X is generated by

distributions that are parameterized by the output of an RNN. This RNN has multiple instantiations,

corresponding to different speakers, and they share the same set of RNN parameters θθθ. In our work, we

use gated recurrent unit (GRU) [CVMG+14] as our RNNmodel, to memorize long-term dependencies.

At time t, we define ht as the state of the GRU corresponding to speaker yt, and

mt = f(ht|θθθ) (6.9)

as the output of the entire network, which may contain other layers. Let t′ = max{0, s < t : ys = yt}

be the last time we saw speaker yt before t, then:

ht = GRU(xt′ ,ht′ |θθθ), (6.10)

where we can assume x0 = 0 and h0 = 0, meaning all GRU instances are initialized with the same

zero state.

Based on the GRU outputs, we assume the speaker embeddings are modeled by:

xt|x[t−1], y[t] ∼ N (µµµt, σ
2I), (6.11)

where µµµt = (
∑t
s=1 1(ys = yt))

−1 · (
∑t
s=1 1(ys = yt)ms) is the averaged GRU output for speaker yt.

6.3.2.4 Summary of the model

We briefly summarize UIS-RNN in Fig. 6.2, where Z and λλλ are omitted for a simple demonstration.

At the current stage (shown in solid lines) y[6] = (1, 1, 2, 3, 2, 2). There are four options for y7: 1, 2, 3

(existing speakers), and 4 (a new speaker). The probability for generating a new observation x7 (shown

in dashed lines) depends both on previous label assignment sequence y[6], and previous observation

sequence x[6].
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Figure 6.2: Generative process of UIS-RNN. Colors indicate labels for speaker segments. There are four options
for y7 given x[6], y[6].

6.3.3 MLE Estimation

Given a training set (X1,X2, . . . ,XN ) containingN utterances togetherwith their labels (Y1,Y2, . . . ,YN ),

we maximize the following log joint likelihood:

max
θθθ,α,σ2,λλλ

N∑
n=1

ln p(Xn,Yn,Zn| θθθ, α, σ2,λλλ). (6.12)

Here we include all hyper-parameters, and each term in Eq. (6.12) can be factorized exactly as

Eq. (6.2).

The estimation of λλλ depends on how gλλλ(·) is defined. When we simply have gλλλ(z[t−1]) = p0, we

have a closed-form solution:

p∗0 =

∑N
n=1

∑Tn
t=2 1(yn,t = yn,t−1)∑N
n=1 Tn −N

, (6.13)

where Tn denotes the sequence length of the nth utterance.

For θθθ and σ2, there is no closed-form update. We use stochastic gradient ascent by randomly

selecting a subset B(τ) ⊂ [N ] of |B(τ)| = b utterances. For θθθ, we update:

θθθ(τ) =θθθ(τ−1)+
Nρ(τ)

b

∑
n∈B(τ)

∇θθθ ln p(Xn|Yn,Zn, θθθ,−), (6.14)

since θθθ is independent of (Yn,Zn). Eq. (6.15) also applies to σ2 by replacing θθθ with σ2. For α, we
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Algorithm 7 Online greedy MAP decoding for UIS-RNN.
Data: Xtest = (xtest1 ,xtest2 , . . . ,xtestT )
Result: Y∗ = (y∗1 , y

∗
2 , . . . , y

∗
T )

initialize x0 = 0,h0 = 0
for t = 1, 2, . . . , T do

(y∗t , z
∗
t ) = arg max(yt,zt)

(
ln p(zt) Eq. (6.6)

+ ln p(yt|zt, y∗[t−1]) Eq. (6.5, 6.7)
+ ln p(xt|x[t−1], y

∗
[t−1], yt)

)
Eq. (6.11)

update Nk,t−1 and GRU hidden states
end for

update

α(τ) =α(τ−1)+
Nρ(τ)

b

∑
n∈B(τ)

∇α ln p(Yn| Zn, α,−), (6.15)

where p(Yn| Zn, α,−) is given in Eq. (6.8). In our experiments, we run multiple iterations with a

constant step size ρ(τ) = ρ until convergence.

6.3.4 MAP Decoding

Since we can decode each testing utterance in parallel, here we assume we are given a testing utterance

Xtest = (x1,x2 . . . ,xT ) without labels. The ideal goal is to find

Y∗ = arg max
Y

ln p(Xtest,Y). (6.16)

However, this requires an exhaustive search over the entire combinatorial label space with complexity

O(T !), which is impractical. Instead, we use an online decoding approach which sequentially performs

a greedy search, as shown in Alg. 7. This will significantly reduce computational complexity to O(T 2).

We observe that in most cases the maximum number of speakers per-utterance is bounded by a

constant C. In that case, the complexity will further reduce to O(T ). In practice, we apply a beam

search [MCF+77] on the decoding algorithm, and adjust the number of look-ahead entries to achieve

better decoding results.
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Table 6.1: Speaker verification EER of the three speaker recognition models. en-ALL represents all English locales.
The EER=3.55% for d-vector V1 on en-US phone data is the same as the number reported in Table 3 of [WWPM18].

Model EER (%) on en-US EER (%) on en-ALL
phone data phone + farfield data

d-vector V1 3.55 6.14
d-vector V2 3.06 2.03
d-vector V3 3.03 1.91

6.4 Experiments

6.4.1 Speaker recognition model

We have been retraining the speaker recognition network with more data and minor tricks (see next

few paragraphs) to improve its performance. Let’s call the text-independent speaker recognition model

in [WDW+18, WWPM18, JZW+18] as “d-vector V1”. This model is trained with 36M utterances from

18K US English speakers, which are all mobile phone data based on anonymized voice query logs.

To train a new version of the model, which we call “d-vector V2” [WMW+18], we added: (1)

non-US English speakers; (2) data from far-field devices; (3) public datasets including LibriSpeech

[PCPK15], VoxCeleb [NCZ17], and VoxCeleb2 [CNZ18]. The non-public part contains 34M utterances

from 138K speakers, while the public part is added to the training process using the MultiReader

approach [WWPM18].

Another minor but important trick is that, the speaker recognizer model used in [WDW+18] and

[WWPM18] are trained on windows of size 1600ms, which causes performance degradation when we

run inference on smaller windows. For example, in the diarization system, the window size is only

240ms. Thus we have retrained a new model “d-vector V3” by using variable-length windows, where

the window size is drawn from a uniform distribution within [240ms, 1600ms] during training.

The speaker verification Equal Error Rate (EER) of the three models on two testing sets are shown

in Table 6.1. On speaker verification tasks, adding more training data has significantly improved the

performance, while using variable-length windows for training also slightly further improved EER.

6.4.2 UIS-RNN setup

For the speaker change, as we have stated in Section 6.3.2.1, we assume {zt}t∈[2,T ] follow independent

identical binary distributions for simplicity.

Our sequence generation model is composed of one layer of 512 GRU cells with a tanh activation,

followed by two fully-connected layers each with 512 nodes and a ReLU [NH10b] activation. The two
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fully-connected layers corresponds to Eq. (6.9).

For decoding, we use beam search of width 10.

6.4.3 Evaluation protocols

Our evaluation setup is exactly the same as [WDW+18], which is based on the pyannote.metrics library

[Bre17]. We follow these common conventions of other works:

• We evaluate on single channel audio.

• We exclude overlapped speech from evaluation.

• We tolerate errors less than 250ms in segment boundaries.

• We report the confusion error, which is usually directly referred to as Diarization Error Rate

(DER) in the literature.

6.4.4 Datasets

For the evaluation, we use 2000 NIST Speaker Recognition Evaluation (LDC2001S97), Disk-8, which

is usually directly referred to as “CALLHOME” in literature. It contains 500 utterances distributed

across six languages: Arabic, English, German, Japanese, Mandarin, and Spanish. Each utterance

contains 2 to 7 speakers.

Since our approach is supervised, we perform a 5-fold cross validation on this dataset. We randomly

partition the dataset into five subsets, and each time leave one subset for evaluation, and train UIS-RNN

on the other four subsets. Then we combine the evaluation on five subsets and report the averaged

DER.

Besides, we also tried to use two off-domain datasets for training UIS-RNN: (1) 2000 NIST Speaker

Recognition Evaluation, Disk-6, which is often referred to as “Switchboard”; (2) ICSI Meeting Corpus

[JBE+03]. We first tried to train UIS-RNN purely on off-domain datasets, and evaluate on CALLHOME;

we then tried to add the off-domain datasets to the training partition of each of the 5-fold.

6.4.5 Results

We report the diarization performance results on 2000 NIST SRE Disk-8 in Table 6.2. For each version

of the speaker recognition model, we compare UIS-RNN with two baseline approaches: k-means and
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Table 6.2: DER on NIST SRE 2000 CALLHOME, with comparison to other systems in literature. VB is short for
Variational Bayesian resegmentation [SGR15]. The DER=12.0% for d-vector V1 and spectral clustering is the same
as the number reported in Table 2 of [WDW+18].

d-vector Method Training data DER (%)

V1

k-means — 17.4
spectral — 12.0
UIS-RNN 5-fold 11.7
UIS-RNN Disk-6 + ICSI 11.7
UIS-RNN 5-fold + Disk-6 + ICSI 10.6

V2

k-means — 19.1
spectral — 11.6
UIS-RNN 5-fold 10.9
UIS-RNN Disk-6 + ICSI 10.8
UIS-RNN 5-fold + Disk-6 + ICSI 9.6

V3

k-means — 12.3
spectral — 8.8
UIS-RNN 5-fold 8.5
UIS-RNN Disk-6 + ICSI 8.2
UIS-RNN 5-fold + Disk-6 + ICSI 7.6
Castaldo et al. [CCD+08] 13.7
Shum et al. [SDDG13] 14.5

Senoussaoui et al. [SKSD14] 12.1
Sell et al. [SGR15] (+VB) 13.7 (11.5)

Garcia-Romero et al. [GRSS+17] (+VB) 12.8 (9.9)

spectral offline clustering. For k-means and spectral clustering, the number of speakers is adaptively

determined as in [WDW+18]. For UIS-RNN, we show results for three types of evaluation settings: (1)

in-domain training (5-fold); (2) off-domain training (Disk-6 + ICSI); and (3) in-domain plus off-domain

training.

From the table, we see that the biggest improvement in DER actually comes from upgrading the

speaker recognition model from V2 to V3. This is because in V3, we have the window size consistent

between training time and diarization inference time, which was a big issue in V1 and V2.

UIS-RNN performs noticeably better than spectral offline clustering, when using the same speaker

recognition model. It is also important to note that UIS-RNN inference produces speaker labels in

an online fashion. As discussed in [WDW+18], online unsupervised clustering algorithms usually

perform significantly worse than offline clustering algorithms such as spectral clustering.

Also, adding more data to train UIS-RNN also improved DER, which is consistent with our

expectation – UIS-RNN benefits from learning from more examples. Specifically, while large scale

off-domain training already produces great results in practice (Disk-6 + ICSI), the availability of

in-domain data can further improve the performance (5-fold + Disk-6 + ICSI).
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6.5 Conclusions

In this chapter, we presented a speaker diarization system where the commonly used clustering

module is replaced by a trainable unbounded interleaved-state RNN. Since all components of this

system can be learned in a supervised manner, it is preferred over unsupervised systems in scenarios

where training data with high quality time-stamped speaker labels are available. On the NIST SRE

2000 CALLHOME benchmark, using exactly the same speaker embeddings, this new approach, which

is an online algorithm, outperforms the state-of-the-art spectral offline clustering algorithm.

Besides, the proposed UIS-RNN is a generic solution to the sequential clustering problem, with

other potential applications such as face clustering in videos. One interesting future work direction is

to directly use accoustic features instead of pre-trained embeddings as the observation sequence for

UIS-RNN, such that the entire speaker diarization system becomes an end-to-end model.
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Part IV

Inference for Bayesian Nonparametric

Models
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Chapter 7

Stochastic Variational Inference for

the HDP-HMM

In this chapter, we derive a variational inference algorithm for the HDP-HMM based on the two-level

stick breaking construction. This construction has previously been applied to the hierarchical Dirichlet

processes (HDP) for mixed membership models, allowing for efficient handling of the coupled weight

parameters. However, the same algorithm is not directly applicable to HDP-based infinite hidden

Markov models (HDP-HMM) because of extra sequential dependencies in the Markov chain. In this

chapter we provide a solution to this problem by deriving a variational inference algorithm for the

HDP-HMM, as well as its stochastic extension, for which all parameter updates are in closed form. We

apply our algorithm to sequential text analysis and audio signal analysis, comparing our results with

the beam-sampled iHMM, the parametric HMM, and other variational inference approximations.

7.1 Motivations

The hierarchical Dirichlet process (HDP) [TJBB06b] is a Bayesian nonparametric prior for generating

multiple random measures on the same countably infinite collection of atoms. This property of the

HDP makes it a natural tool for modeling groups of data that share hidden components with different

mixing proportions. The most well-known application of the HDP is for handling exchangeable

data through mixed membership modeling [ABEF14], as well as nonexchangeable data with hidden
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Figure 7.1: Comparison between the transition structure of the HMM and the stick-breaking construction of
HDP-HMM. Each Gi represents a transition distribution from state i, and the color of a stick corresponds to one
state. Left: In the HMM the state and the column index are one-to-one. Right: For the stick-breaking construction
of the HDP-HMM, multiple sticks in each row may point to the same state (same color) and there is no one-to-one
mapping between column and row. For example, a transition from state 3 to 5 takes place if s = 5 or s = 6. By
holding the sequence sd fixed and changing a DP indicator ckm for a selected stick (i.e., changing the color of
a stick), the state transitions for all subsequent states may change. This presents an inference challenge for the
HDP-HMM not faced by [WPB11a].

Markov models (HDP-HMM) [FSJW08, TJBB06b].

The hierarchical structure of the HDP makes inference a significant problem. For example, various

sampling strategies have been developed for these models to improve efficiency: For the mixed

membership model, a Chinese restaurant franchise [TJBB06b] sampling method was proposed, while

for the HDP-HMM a beam sampling strategy was introduced to enable forward-backward sampling

via slice sampling [Nea03] over a dynamic, truncated stick-breaking construction [VGSTG08].

Variational inference provides another promising strategy for inference in Bayesian hierarchi-

cal models by restricting the posterior to a simpler form that is able to be deterministically opti-

mized [JGJS99]. Moreover, stochastic variational inference (SVI) allows for efficient inference over large

datasets, and has been applied successfully on locally exchangeable data [HBB10, HBWP13a, WPB11a]

and nonexchangeable data [FXLF14, JW14a]. For the HDP mixed membership model, batch and

stochastic variational inference algorithms have been derived using a two-level stick breaking con-

struction [WPB11a]. However, these algorithms are not immediately transferable to the HDP-HMM

because of sequential dependencies in the local variables. Alternative, fully conjugate nonparametric

priors for the HMM have also been proposed [PC09a].

Previouswork has focused on SVI for hiddenMarkovmodels [FXLF14], but is not directly applicable

to the HDP-HMM. A recent SVI approach to the HDP-HMM is based on a point estimate strategy
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to avoid non-conjugacy [LPJK07b, JW14a]. In this chapter we address posterior inference for the

HDP-HMM over all variables by deriving batch and stochastic variational algorithms using the fully

conjugate representation of [WPB11a] rather than the representation by [JW14a], with which we

compare.

In Section 7.2, we present the construction of the HDP-HMM we use for inference, and derive

batch and stochastic variational inference algorithms in Section 7.3. We then apply our model to

both artificial data and real data in Section 7.4, including a sequential text dataset and a large-scale

audio dataset. Empirical results demonstrate the effectiveness of our method when compared with

the beam-sampled iHMM [VGSTG08], the HDP-HMM with simpler direct assignment variational

approximations [LPJK07b, JW14a] and its split-merge variation [BS12], as well as the parametric batch

and stochastic HMM [Bea03, FXLF14].

7.2 The HDP-HMM

The HDP-HMM uses the hierarchical Dirichlet process for Bayesian nonparametric inference over

the number of states in a hidden Markov model. To review, let G be a top-level Dirichlet process,

written G ∼ DP(a0µ), with a0 > 0 and µ a non-atomic probability measure. Since G is a.s. discrete,

we can write G =
∑
k η0kδθk . The HDP uses G as the base distribution of a possibly infinite number of

second-level Dirichlet processes, written Gk ∼iid DP(τ0G).

In the context of the HDP-HMM,Gk is the transition distribution for state k. To generate a sequence

of data, one generates a sequence of parameters (θ′1, . . . , θ
′
n) by first sampling θ′1 from an initial-state

distributionG0 followed by the rest of the sequence. To this end, we introduce the state index zi, which

equals k if θ′i = θk. The next parameter in the Markov chain is then generated from the DP indexed

by zi, θ′i+1 ∼ Gzi . The observed sequence (x1, . . . , xn) is generated using these parameters, where

xi ∼ p(x|θ′i). In this chapter, we will focus on the discrete HMM.

7.2.1 Stick-breaking construction

Our inference method is based on the stick-breaking construction for the HDP [Set94a], which we

briefly review. To generate the top-level DP, we let

G =
∑∞
k=1 ζk

∏k−1
j=1 (1− ζj)︸ ︷︷ ︸
≡ η0k

δθk ,
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ζk
iid∼ Beta(1, a0), θk

iid∼ Dir(b01). (7.1)

The infinite number of second-level DP’s are then drawn

Gk =
∑∞
m=1 εkm

∏m−1
j=1 (1− εkj)︸ ︷︷ ︸
≡ ηkm

δφkm ,

εkm
iid∼ Beta(1, τ0), φkm

iid∼ G. (7.2)

Since G is discrete almost surely, there is a mapping from φkm to θi, and many φkm will map to

the same θi. This introduces additional complexity during inference that makes learning parameters

more complicated than for the parametric HMM [Bea03].

For inference we introduce the indicator vector ckm, which indexes the top-level atom picked for

φkm. Therefore ckm,k′ = 1 if φkm = θk′ and ckm ∼ Mult(η0).1 It turns out that for the HDP mixed

membership model these indicator variables are especially important for closed-form updates in

variational inference [WPB11a]. [WPB11a] draw from Gk by first drawing a stick indicator s and then

mapping to the top-level atom associated with the chosen stick as indicated by cks.

We will use this auxiliary variable for the HDP-HMM as well. First, for the dth observed sequence,

we sample sd,i|{zd,i−1 = k} ∼ Disc(ηk) and then set zd,i = k′ if cksd,i,k′ = 1 to index the next state (see

Figure 7.1). This two-step process of first selecting the stick and then mapping to the top level atom

works easily for the HDP in the mixed membership setting, but this algorithm is not directly applicable

to the HDP-HMM because of the non-exchangeability of the sequence. That is, given a sequence of

stick indicators sd, if we change the value of ckm we may affect the path of the entire Markov chain zd.

This problem of indicators pointing to indicators constitutes the challenge of variational inference for

the HDP-HMM, which we illustrate in Figure 7.1.

In the next section we derive a variational inference algorithm that works with the marginal

distribution (integrating out sd) to perform forward-backward on zd, and then reintroduces sd as an

auxiliary variable to perform local variational inference [Bis06].

1We will work only with ckm and ignore φkm from now on.
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Algorithm 8 An outline of VI for the HDP-HMM
Iterate the below updates to the variational distributions
q(zd): Forward-backward (appendix) with Eq. (7.6) approx.
q(θk): See appendix for discrete HMM case.
q(sd|zd): See Eq. (7.9). This is used in following updates.
q(ckm): See Eq. (7.10) and appendix for expectations.
q(εkm) and q(ζi): See appendix.

7.3 Variational inference for the HDP-HMM

The variational objective function is formed by integrating over the model variables in the log joint

likelihood using an approximation to the posterior distribution. Since we model each sequence as

independent, the joint likelihood of the HDP-HMM can be factorized as

p(x, θθθ, ζζζ, ε, c, z) = p(θθθ)p(ζζζ)p(ε)p(c|ζζζ) (7.3)

×
∏
d p(zd|ε, c)

∏
i p(xdi|θθθ, zdi),

with additional factorizations on all variables in p(ζζζ), p(ε), p(c|ζζζ) and p(θθθ). We approximate the

posterior of these random variables with the distribution

q(θθθ, ζζζ, ε, c, z) = q(θθθ)q(ζζζ)q(ε)q(c)q(z) (7.4)

=
∏
k

q(θk)q(ζk)
∏
k,m

q(εkm)q(ckm)
∏
d

q(zd).

We set each variational distribution to be in the same family as the prior (see below for the explicit

form). The goal is then to maximize the objective function

L = Eq[ln p(w, θθθ, ζζζ, ε, c, z)]− Eq[ln q]

over the parameters of q to minimize the KL-divergence between q and the posterior [JGJS99].

In the following batch inference algorithm, we work directly with L to update q(zd) and q(θk).

Using L for the remaining q distributions is more difficult, and so we introducing the latent variables

sd and variational distributions q(sd|zd) to locally lower bound L. This allows for closed-form updates

of q(ζζζ), q(ε) and q(c). We focus on the novel aspects of our inference algorithm in the following

subsections. The parts of our algorithm that overlap with other HMM inference algorithms are given

in the appendix. We sketch one batch iteration in Algorithm 1.
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7.3.1 The state transition matrix

The first issue we address is the state transition matrix, which we use to update q(zd) and q(θk). Let

Akk′ be the probability of transitioning from state k to k′.

The challenge here is in the term

Eq lnAkk′ = Eq ln
∑
m

ckm,k′ηkm (7.5)

where ηkm = εkm
∏
j(1− εkj). We recall that this is the sum over all sticks that have been assigned to

atom θk′ for the stick-breaking construction of atom θk (i.e., state k). We must account for the possible

assignment of each stick to θk′ since the distribution on ckm is discrete almost surely. This expectation

is not tractable, and so we form a lower bound and an approximation as follows,

Eq ln
∑
m ckm,k′ηkm ≥ Eq ln

∑
m

ckm,k′e
Eq ln ηkm (7.6)

≈ ln
∑
m

Eq[ckm,k′ ]eEq ln ηkm ,

We observe that, since we only need the expectation Eq ln
∑
m ckm,k′ηkm for forward-backward, we

could also have sampled ckm and ηkm from their variational q distributions and formed an unbiased

approximation. This resulted in a somewhat slower algorithm and we did not empirically observe

any difference in performance. We report results with the approximation in Eq. (7.6) in this chapter.

We empirically observed that q(ckm) was nearly deterministic in general, so the approximation to the

bound was good.

Making this approximation, we run forward-backward to find q(zd) and then use this to update

q(θk). These are found as in the parametric HMM (see the appendix).

7.3.2 A local lower bound using q(sd|zd)

Updating the remaining q distributions on ε, c and ζζζ is difficult because our approximation of the

expected log state transition probabilities in Eq. (7.6) does not yield tractable variational parameter

updates for these variables. We address this with a local lower bounding using the sequence sd. We

recall that this latent sequence interacts with zd and ckm as follows: The pair (zd,i−1 = k, sdi = m)

indicates that the next state zdi can be found by choosing the mth stick of the kth DP, and setting

zdi = k′ if ckm,k′ = 1.

In the variationalHMM, the state transition from zd,i−1 to zdi is captured by themarginal q(zd,i−1, zdi),
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which is calculated using the output of the forward-backward algorithm. For the variational HDP-

HMM,we insteadmodel this transition via the triple (zdi, sd,i+1, czdi,sd,i+1
). Introducing these variables

creates the local lower bound

Eq1(zd,i−1 = k, zdi = k′) ln
∑
m

ckm,k′ηkm (7.7)

≥ Eq
∑
m

ckm,k′1(zd,i−1 = k, sdi = m) ln ηkm.

We then define the joint variational distribution

q(sd, zd) = q(sd|zd)q(zd) = q(zd)
∏
i q(sdi|zd),

where q(zd) is already calculated using forward-backward.

The RHS of Eq. (7.7) involves three separate expectations because of the factorization of q. The

expectation of η is discussed in the appendix. One novelty introduced by our construction of the

HDP-HMM is the term

q(zd,i−1 = k, sdi = m) = Eq1(zd,i−1 = k, sdi = m)

≡ ξdi(k,m), (7.8)

which is the variational marginal probability of picking the mth stick from the kth DP in step i of

sequence d. This value serves a similar purpose as the marginal state transition probability in the

parametric HMM, only it is not a distribution between states, but between a state and a stick that must

be mapped to a top-level DP state. We find ξdi by calculating

ξdi(k,m) ∝ exp{Eq ln p(xd, zd,i−1 = k, sdi = m,−)},

and normalizing (“−” indicates all other variables). Similar to the variational HMM, this requires the

forward αd and backward βd calculations found when updating q(zd) (see the appendix). As a result,

we update the marginal

ξdi(k,m) ∝ αd,i−1(k) exp{Eq ln ηkm}× (7.9)

∏
k′ [exp{Eq[ln θk′,xdi ]}βdi(k′)]

ϕkm,k′ .

ϕkm is the variational multinomial parameter for ckm derived later. The difference between this term

and the corresponding term for the HMM is the product over the assignment of stick m (which is
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Table 7.1: Methods compared with in our experiments. Top half are batch methods and bottom half are stochastic
methods.

Method Notation Reference
Batch variational HMM HMM [Bea03]
Beam sampling HDP-HMM Beam [VGSTG08]
Direct assignment variational HDP-HMM HDPHMM-p [LPJK07b]
Direct assignment variational HDP-HMM + mean-field assumption HDPHMM-p-mf [LPJK07b]
Two-level stick breaking for variational HDP-HMM HDPHMM-sb Our method
Stochastic variational HMM oHMM [FXLF14]
Direct assignment stochastic variational HDP-HMM oHDPHMM-p [JW14a]
Direct assignment stochastic variational HDP-HMM + split-merge oHDPHMM-sm [BS12]
Two-level stick breaking for stochastic variational HDP-HMM oHDPHMM-sb Our method

known a priori in that model). We obtain ξdi(k,m) by normalizing this matrix.

7.3.3 Mapping atoms between DP levels

For ckm, being the indicator of the atom associated with themth stick in the kth DP, we let q(ckm,k′ =

1) ≡ ϕkm,k′ where

ϕkm,k′ ∝ exp{Eq ln η0,k′ +
∑
d,i ξdi(k,m)Eq ln θk′,xdi}. (7.10)

We give the expectations in the appendix. A similar calculation appears in the HDPmixedmembership

model [WPB11a].

7.3.4 Stochastic variational inference

For computationally intensive scenarios in which we have a large collection of sequences over which

to learn q, the proposed inference algorithm can be scaled with stochastic variational inference

[HBWP13a]. SVIworks in this context by subsampling a set of sequencesxd, where d ∈ Bt ⊂ {1, . . . , D}

at iteration t. It then optimizes the q distributions for these sequences and takes a weighted step in the

direction of the natural gradient of the global variational parameters.2

Since stochastic inference for q(θk) and q(εkm) are common calculations, we discuss them in the

appendix. The stochastic update for q(ckm) requires the following new SVI derivation. First, we restrict

the scaled variational objective function to Bt and terms involving ϕkm,

L(t)
ckm

=
∑
k′

ϕkm,k′Eq ln η0,k′ − ϕkm,k′ lnϕkm,k′ + ϕkm,k′
D
|Bt|

∑
d∈Bt,i

ξdi(k,m)Eq ln θk′,xdi . (7.11)

2We note that our algorithm will scale with the number of sequences, not the length of the sequence as in [FXLF14]. We
compare with SVI for the parametric HMM in this many short sequences setting, but still reference [FXLF14] in this case.
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The natural parameter of q(ckm) is lnϕkm (taking element-wise logarithm), and so the natural gradient

update is

lnϕkm ← lnϕkm + ρtM
−1
km∇lnϕkmL(t)

ckm
, (7.12)

Mkm = Eq
[
d ln q(ckm)

d lnϕkm

d ln q(ckm)

d lnϕTkm

]
= diag(ϕkm). (7.13)

Next, we observe from Eq. (7.10) that we can write the update of this multinomial distribution in the

form

q(ckm,k′ = 1) = ϕkm,k′ ∝ exp{λkm,k′}. (7.14)

Swapping in this representation, we find that the natural gradient step over the scale term λ followed

by the restriction to the simplex gives the update

ϕkm,k′ ∝ exp{λ(t)
km,k′}, (7.15)

where λ(t)
km,k′ is the typical weighted average

λ
(t)
km,k′ = (1− ρt)λ(t−1)

km,k′ + ρt λ
′
km,k′ (7.16)

λ′km,k′ = Eq ln η0,k′ +
D

|Bt|
∑
d∈Bt,i

ξdi(k,m)Eq ln θk′,xdi

7.4 Experiments

We perform experiments on artificial data, batch inference experiments using the “Alice” dataset and

large-scale experiments using discretized audio sequences. We list the methods we compare with in

Table 7.1.

7.4.1 Artificial data

In this subsection we demonstrate the effectiveness of our variational HDP-HMM on artificial data.

We generate discrete training data of length 1,000 from two four-state HMMs with transition matrices

Apos, Aneg and emission matrix B set to,

Apos =

[
.99 .01 0 0
0 .99 .01 0
0 0 .99 .01
.01 0 0 .99

]
, Aneg =

[
.01 .99 0 0
0 .01 .99 0
0 0 .01 .99
.99 0 0 .01

]
, B =

1

3

[
1 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 0

]
.
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For each scenario we ran 20 experiments with a newly generated sequence and average the results.

For the variational HDP-HMM, we truncate the posterior to 10 states and set a0 = 1, τ0 = 1, b0 = 1.

For beam sampling we use the same setting, and we randomly assign each observation to an initial

state between 1 and 10. We initialize the variational parameter (see appendix) to θ̂k/100 ∼ Dir(10× 1).

For larger state truncations the results were the same, but converged over a longer timescale.

We analyze the convergence of both methods using their respective approximations of the log

marginal likelihood on the top of Figure 7.2. For this small-scale problem, the variational method

converges in less than 2.5 seconds (∼0.03s per iteration) while beam sampling converges in a longer

time (∼0.02s per iteration). Since beam sampling requires multiple samples after the burn-in phase, it

requires significantly more computation time. However, the constrained posterior q distribution is

restrictive for variational inference, while beam sampling learns a slightly better model in terms of the

log marginal likelihood.

We also compare the accuracy of the number of posterior states recovered by both methods. For
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Figure 7.2: Top: Log likelihood for our variational HDP-HMM and beam sampling. Bottom: Number of posterior
states inferred by variational HDP-HMM and beam sampling. Results are averaged over 20 random experiments.
“pos” indicates Apos and “neg” indicates Aneg was used.
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Figure 7.3: Posterior variational bound for each chapter (×104). The black plots represents results for HMM
with various number of states. The red, blue, green bars separately show the average result for the HDP-HMM,
HDP-HMM with direct assignment, and HDP-HMM with direct assignment and fully-factorized mean-field
assumption in variational posterior, all with a truncation level of 50. The standard deviation is shown on the
left hand side, for each HDP-HMM model. The dashed lines are the number of states used in the posterior of
according models averaged over multiple runs.

variational inference we count the minimum number of occupied states k to cover 99.5% of the data.

For beam sampling we record the number of states used per iteration. On the bottom of Figure 7.2,

we can see that it takes more than 2,000 iterations (∼40 seconds) for beam sampling to find the true

number of states. For variational inference, this requires less than 100 iterations (∼3 seconds).

7.4.2 Alice’s Adventures in Wonderland

We also compare our HDP-HMM algorithm with the parametric HMM and the direct assignment

approach to the HDP-HMM.We recall that the direct assignment learns a point estimate of the top-level

truncated DP and represents each second level with a finite Dirichlet distribution.

We consider a sequential text analysis problem in which we collect 12 chapters in “Alice’s Ad-

ventures in Wonderland” and filter out all the symbols other than the 26 characters and whitespace.

We use these symbols as codewords giving a codebook of size of 27. The entire text sequence was

encoded as a sequence of these codewords. For each chapter, we truncate the entire sequence into

small chunks of size 200. This gave 663 sequences in total and 55 sequences per chapter on average.

We pick 537 sequences for training and hold out the remaining 126 for testing, modeling each chapter

separately. For the HMM we use variational inference [Bea03] and tried various number of states

K ranging from 5 to 50 with the transition Dirichlet parameter set to 5/K. For the HDP-HMM we
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Figure 7.4: (a). Comparison between stochastic HMM and stochastic HDP-HMM. (b). Comparison between
stochastic HDP-HMM and beam sampling. (c). Comparison between the two-level stick-breaking stochastic HDP-
HMM with the direct assignment stochastic HDP-HMM with and without split-merge updates. (d). Comparison
of time cost per iteration among various methods. (e). Comparison among our stochastic HDP-HMM with
various learning rate. (f). Comparison among our stochastic HDP-HMMs with various mini-batch sizes and batch
HDP-HMMs trained with 10k sequences.

truncate the posterior to 50 states and set the first-level scale parameter a0 = 5 and second-level scale

parameter τ0 = 3. For all models we set the emission Dirichlet scale parameter b0 = 1/27. We ran 20

trials for each experiment. For the performance criterion, we use the predictive variational bound on

the test data (using sampling in Eq. (7.5) rather than lower bound).

In Figure 7.3 we show the predictive variational bounds for the HMM (black lines) as a function

of state number, and for our HDP-HMM (red lines). For all experiments we show both the mean

and standard deviation. From the figure we can see that when the model grows too large, the HMM

may overfit the training data, resulting in a drop in predictive performance. For different chapters,

the best performance in the HMM varies, which makes model selection more time consuming. For

every chapter, our HDP-HMM out performs HMM in predictive performance and learns roughly the

ideal number of states according to the HMM. We mark the average number of occupied states in our

HDP-HMM posterior with a red vertical line. The number of states varies from 21.4 (Chap. 3) to 26.4

(Chap. 8), which shows flexibility when the data complexity varies.

We also show the result for the HDP-HMM with direct assignment (blue lines). In general, our

algorithm converges to a better solution that uses slightly fewer states, indicating the benefit of our

representation. In addition to the direct assignment model, we also made a mean-field assumption
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in which q(zd) =
∏
i q(zdi) (green lines). This factorization is required in the split-merge stochastic

model we compare with [BS12] in the next section. We see that a mean-field assumption on q(zd)

significantly overestimates the number of states.

7.4.3 Million Song dataset

We also conduct large-scale experiments on discretized audio sequences extracted from the Million

Song dataset. We first extract audio features from 371K songs and learn a codebook of size 256 using

K-means. We split all the sequences into small chunks of length 50 and learn a single HMM on all

sequences.

We compare with the beam-sampled iHMM [VGSTG08], for which we initialized all experiments

by randomly assigning observations to one of 500 hidden states, and trained with the same parameter

setting as the variational HDP-HMM. For the stochastically-learned parametric HMMmodels [FXLF14]

we set the transition Dirichlet parameter to 20/K and the emission Dirichlet parameter to b0 = 0.1. For

the HDP-HMM models, including ours and [JW14a], we truncated to 500 states and set a0 = 20, τ0 =

3, b0 = 0.1.

In addition, we comparewith the stochastic HDP-HMMusing a direct assignment and a split-merge

strategy during online learning [BS12]. The split-merge method, originally introduced for stochastic

variational HDP, can adaptively create (split) new states or merge old states during each learning

iteration in a data-driven manner. In practice we can start with a few states and let the algorithm

gradually learn more states. We adapt this method to the HDP-HMM and compare with our method.

For all experiments we ran the algorithms for 3× 105 seconds (∼3.5 days), during which stochastic

HDP-HMM can process around 1 million sequences. We also held out 634 sequences for testing

and use the predictive log marginal likelihood on this test set as a performance measure. We use

ρt = (100 + t)−0.6 as the learning rate and |Bt| = 256 as mini-batch size.

In Figure 7.4(a) we show the comparison between the parametric stochastic HMM and the non-

parametric stochastic HDP-HMM. The predictive log marginal likelihood for stochastic HMM will

stop increasing at around 200 to 250 states. The performance for stochastic HDP-HMM is roughly

equal to the best of the stochastic HMM.

In Figure 7.4(b) we also compare the stochastic HDP-HMM with beam sampling. Since there is no

stochastic solution for beam sampling, we performed batch inference with various amounts of data

and present experiments as a function of time in order to compare the efficiency of the algorithms. As
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shown, stochastic HDP-HMM outperforms beam sampling because it uses more data. When beam

sampling is trained with a limited amount of data (for example, 1K sequences) it will converge more

quickly, but the performance will suffer. On the other hand, using too much data for beam sampling

will be computationally inefficient. For instance, if we use 10K sequences for training, beam sampling

can only draw 70 samples in three days. Beam sampling also did not efficiently infer the number

of states. In our experiments, beam sampling will use more than 500 states, while the HDP-HMM

occupies around 250 states in its posterior.

In Figure 7.4(c) we compare our stochastic HDP-HMM with the direct assignment method and the

split-merge methods. The predictive likelihood for our method outperforms the direct assignment

method. For the split-merge method we do three trials by starting with {50, 100, 300} states. All

three of these cases converged to around 270 states. However, split-merge is restricted to using the

fully factorized mean-field assumption over q(zd) as discussed previously. Also, we cannot try all

split-merge candidates during each online iteration, otherwise split-merge will be computationally

prohibitive.3 Considering all these factors, the split-merge method performs slightly better than the

direct assignment method without split-merge, but still worse than our method.

In Figure 7.4(d) we show the time per iteration as a function of state number. HMM is the fastest.

Direct assignment also performs fast for large numbers of states since the point estimate of the top-level

DP significantly reduces the complexity during learning. Our two-level stick-breaking method is

slightly slower than the direct assignment method because of the additional of the posterior complexity.

The split-merge method is clearly the slowest, even when we reduce the computation by not checking

all possible split-merge moves (green solid). When checking all split-merge options, the algorithm is

much slower (green dashed line).

In Figure 7.4(e) we compare our stochastic HDP-HMM as a function of learning rate. For batch

size |Bt| = 256, we set ρt = (100 + t)−κ with κ ∈ {0.6, 0.75, 0.9}. When κ = 0.6, the learning rate

decays more slowly, which gives the best result in our experiments. In Figure 7.4(f) we compare our

stochastic HDP-HMM with various batch sizes |Bt| ∈ {64, 256, 1024} and κ = 0.6, as well as the batch

HDP-HMM trained with 10K sequences. Similar to beam sampling, batch HDP-HMM is inefficient in

processing large amounts of data. For stochastic algorithms, choosing small mini-batch sizes will result

in fast convergence. On the other hand, choosing larger mini-batch sizes can give better performance,

3The split-merge strategy requires more computation in addition to the direct assignment method by applying a “restricted
iteration” for the split part, and a checking overK(K − 1)/2 potential candidates (K is the number of states) for the merge
part. For details, see [BS12].
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but with slower convergence speed.

7.5 Conclusion

Wehave presented a scalable variational inference algorithm for theHDP-HMM.Using a two-level stick-

breaking construction, we were able to infer approximate posteriors of all model variables with closed

form updates. We compared our algorithm with beam sampling of the HDP-HMM, the parametric

HMM, and the direct assignment methods, showing that our inference algorithm is competitive in

batch inference settings, and often better in large scale settings using stochastic variational inference.

We observe that this algorithm can be applied more generally to extend other latent Markov modeling

frameworks to the nonparametric setting [ZP15a].

7.6 Appendix

Updating q(zd) and q(θk): For the forward-backward algorithm we define

p̃(xdi|θk) = exp{Eq ln p(xdi|θk)}, (7.17)

Ãkk′ = exp{Eq lnAkk′}. (7.18)

For discrete HMMs we let q(θk) = Dir(θ̂k). In this case we have the same variational expectation as for

the parametric model, Eq ln p(xdi|θk) = ψ(θ̂k,xdi)−ψ(
∑
j θ̂k,j). For Eq. (7.18) we use the approximation

in Sec. 7.3.1. We recall that for the variational forward-backward algorithm, αdi(k) is the variational

joint probability of zdi = k and the sequence xd up to step i, and βdi(k) is the variational probability

of the sequence xd after step i conditioned on zdi = k [Bea03]. We then iterate forward over αdi and

backward over βdi as follows,

αdi(k) = p̃(xdi|θk)
∑∞
j=1 αd,i−1(j)Ãjk, (7.19)

βdi(k) =
∑∞
j=1 Ãkj p̃(xd,i+1|θj)βd,i+1(j). (7.20)

Having these values, we can make the following update to the marginal of zdi for q(zd),

γdi(k) =
αdi(k)βdi(k)∑
j αdi(j)βdi(j)

. (7.21)
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The variational marginal on the state transition (zdi, zd,i+1) used for the parametric HMM is not used

by our algorithm. Given each γdi, we can update θ̂k,v in q(θk) = Dir(θ̂k) exactly as in the parametric

HMM,

θ̂k,v = b0 +
∑
d,i γdi(k)1(xdi = v). (7.22)

Updating q(c), q(ε) and q(ζ): The update of q(c) uses Eq ln η0,k′ = Eq ln ζk′ +
∑
j<k′ Eq ln(1 − ζj).

Using the variational distribution q(ζk) = Beta(ck, dk), these expectations are

Eq ln ζk = ψ(ck)− ψ(ck + dk),

Eq ln(1− ζj) = ψ(dj)− ψ(cj + dj). (7.23)

Also, Eq ln ηkm = Eq ln εkm +
∑
j Eq ln(1 − εkj) used elsewhere is similarly calculated as above,

only using q(εkm) = Beta(akm, bkm).

To update q(εkm) = Beta(akm, bkm), we have

akm = 1 +
∑
d,i ξdi(k,m), (7.24)

bkm = τ0 +
∑
d,i

∑
m′>m ξdi(k,m

′). (7.25)

As is evident, given the allocations ξdi (defined in Eq.(7.8)), this is simply the expected counts used for

updating exchangeable stick-breaking mixture models [BJ06].

Finally, we have the top-level stick-breaking construction update q(ζk) = Beta(ck, dk). We have

ck = 1 +
∑
k′,m ϕk′m,k, (7.26)

dk = a0 +
∑
k′,m

∑
j>k ϕk′m,j . (7.27)

where ϕk′m,k = Eqck′m,k.

Stochastic inference: For the HDP-HMM, the global q distributions (whose parameter updates are

linked to the data size) are on ckm, θk and εkm. Though ζk is also a global parameter, it is conditionally

independent of the data given c, and so stochastic inference isn’t necessary for this q distribution.

The stochastic updates for q(θk) and q(εkm) are the same as those used by similarmodels [HBWP13a].

First, form the scaled closed form updates restricted toBt, denoted θ̂′k,v , a′km and b′km, and then average
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with the previous variational parameters,

q(θk) : θ̂
(t)
k,v = (1− ρt)θ̂(t−1)

k,v + ρtθ̂
′
k,v, (7.28)

q(εkm) : a
(t)
km = (1− ρt)a(t−1)

km + ρta
′
km,

b
(t)
km = (1− ρt)b(t−1)

km + ρtb
′
km. (7.29)
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