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RESEARCH ARTICLE

A Bayesian Allocation Model Based Approach to Mixed 
Membership Stochastic Blockmodels
Çağlar Hızlı a and Serap Kırbız b

aComputer Engineering Department, Boğaziçi University, İstanbul, Turkey; bElectrical and Electronics 
Engineering Department, Mef University, İstanbul, Turkey

ABSTRACT
Although detecting communities in networks has attracted con-
siderable recent attention, estimating the number of commu-
nities is still an open problem. In this paper, we propose 
a model, which replicates the generative process of the mixed- 
membership stochastic block model (MMSB) within the generic 
allocation framework of Bayesian allocation model (BAM) and 
BAM-MMSB. In contrast to traditional blockmodels, BAM-MMSB 
considers the observations as Poisson counts generated by 
a base Poisson process and marks according to the generative 
process of MMSB. Moreover, the optimal number of commu-
nities for BAM-MMSB is estimated by computing the variational 
approximations of the marginal likelihood for each model order. 
Experiments on synthetic and real data sets show that the 
proposed approach promises a generalized model selection 
solution that can choose not only the model size but also the 
most appropriate decomposition.
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Introduction

Complex interaction structures among individual components are com-
monly represented using networks or graphs. They provide a mathematical 
framework to study relational data sets to define relations such as human 
interactions in sociometry, protein–protein interactions in biology, and 
computer interactions in information technology. As relational data sets 
have grown tremendously, the need to understand and interpret the proper-
ties of large, complex networks has emerged. Network analysis aims to 
discover latent structures in large relational data sets in order to determine 
elements with similar properties based on the observed and modeled rela-
tionships (Goldenberg et al. 2010). A fundamental tool for discovering latent 
structures in large relational data sets is to decompose a complex network 
into its building blocks called communities (Peixoto 2017). In order to find 
the communities in complex networks, several methods have been proposed. 
Methods that optimize the cost function of a given metric, such as mod-
ularity (Newman 2006b) suffer from being only heuristically motivated 
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(Gerlach, Peixoto, and Altmann 2018). Probabilistic generative models pro-
vide rigorous methods for model selection based on statistical evidence 
(Riolo et al. 2017).

Compared to the amount of work on community detection, there is little 
work on the model selection problem, which corresponds to selecting the 
optimal number of communities. Generative models provide principled like-
lihood-based approaches exploiting Bayesian model selection procedures. 
Recent studies in the literature are based on estimation of the marginal 
likelihood using variational approximations (Fosdick et al. 2019; Latouche, 
Birmele, and Ambroise 2012), Bayesian Information Criterion-based 
approximations (Peixoto 2015), spectral models (Le and Levina 2019) and 
non-parametric methods (Geng, Bhattacharya, and Pati 2019; Riolo et al. 
2017).

For relational data, one of the most popular generative models is the 
stochastic blockmodel (SBM) (Holland, Blackmond Laskey, and Leinhardt 
1983; Newman and Reinert 2016). It is a random graph model that defines 
a mixture of Bernoullis over relational data. Its generative process assigns 
each node i to a block zi and accordingly, the edges are drawn indepen-
dently conditioned on their block memberships. For each node pair fi; jg, 
the probability of an edge fi; jg is equal to Bzi;zj where B is a K � K block 
matrix containing the connection probabilities of K blocks.

The generative process of SBM produces non-overlapping communities 
with homogeneous Poisson degree distributions within the blocks under the 
assumption that a single object belongs to a single community. In real- 
world networks, objects generally belong to several communities. Some 
extensions of SBMs, such as overlapping (Latouche, Birmele, and 
Ambroise et al. 2011), mixed membership stochastic blockmodel (MMSB) 
(Airoldi et al. 2008) and degree corrected SBMs (Brian and Newman 2011) 
have been proposed to address overlapping structures in networks. Among 
these, MMSB is a mixed-membership model similar to Latent Dirichlet 
Allocation (LDA) (Blei, Ng, and Jordan 2003) but defined for relational 
data. The generative process of MMSB associates each node with multiple 
blocks through a membership vector, which allows for non-overlapping 
communities.

Many distinct generative models have been proposed for relational data in 
different contexts such as LDA (Blei, Ng, and Jordan 2003), Principal 
Component Analysis (W. Buntine 2002), and factor model (Canny 2004). 
Although they are different models, their relevance to each other is explained 
in (Buntine, Wray, and Jakulin 2006; Cemgil et al. 2019) In this regard, the 
Bayesian allocation model (BAM) (Cemgil et al. 2019) proposes a dynamical 
model that is able to replicate other discrete generative processes within 
a generic allocation framework. In particular, BAM allocates the observations 
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to latent variables that respect a given factorization implied by a domain- 
specific directed graphical model G ¼ ðV; EÞ, where V and E denote the nodes 
and the edges, respectively.

In this paper, we propose to model mixed-membership stochastic block-
models as an instance of BAM. This choice is motivated by the fact that BAM 
provides a generic allocation framework for discrete observations (Hızlı, 
Taylan Cemgil, and Kırbız 2019). Furthermore, BAM allows for a principled 
Bayesian model selection procedure. Although we only perform model order 
selection in this paper, we believe that the generic allocation perspective of 
BAM promises a generalized model selection solution where we can both 
select the model order and choose the best factorization. Moreover, the 
variational inference algorithm is also extended to handle the missing data 
problem.

The rest of the paper is organized as follows. In Section 2, we review 
the modeling elements for text and graphs. In Section 3, the proposed 
model is described in detail. Section 4 represents the inference algorithms. 
Section 5 displays the model selection performance of the proposed algo-
rithm compared to MMSB both under synthetic and benchmark networks. 
Finally, we conclude the paper and give some future work.

Background Information

In this section, we will give a brief description of probabilistic generative 
models, such as Stochastic Blockmodel, Mixed-Membership Stochastic 
Blockmodel and Bayesian Allocation Model, which give the building motiva-
tion for the proposed method.

Stochastic Blockmodel

SBM is a mixture model defined for relational data. We assume that the 
vertices V of a graph G ¼ ðV; EÞ are clustered into K blocks and try to 
find the K blocks of a network consisting of similar nodes in terms of 
their connectivity patterns. For a graph with N nodes, K blocks, and the 
adjacency matrix Y 2 f0; 1gN�N , the connectivity pattern Ci of node i can 
be formalized as (Goldenberg et al. 2010): Ci;fYði; j 2 kÞ : "k 2 ½K�g;
where j 2 k iterates over each node in block k. The connectivity pattern 
Ci represents how node i connects to the nodes belonging to each k 2
½K�;f1; � � � ;Kg given the nodes and their corresponding blocks. If nodes i 
and r connect to the same set of nodes with similar probabilistic mea-
sures, Ci � Cr, they are stochastically equivalent (Holland, Blackmond 
Laskey, and Leinhardt 1983).
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The generative process of SBM produces stochastically equivalent nodes within 
the categories they belong to. The updated generative process is described as 
follows:

(1) For each block pair ðk; lÞ 2 K � K:
(a) Choose interaction probability, Bkl,Bðakl; bklÞ.
(2) Choose block proportions, π,DðαÞ, where π; α 2 R K

(3) For each node i 2 V:
i. Choose block membership, zi,MðπÞ.
(4) For each node pair ði; jÞ 2 N � N: [i.]
i. Choose interaction, Yij,BEðBzizjÞ.
In this process, B;D;M;BE correspond to Beta, Dirichlet, Multinomial, 

and Bernoulli distributions, respectively. The joint probability distribution is 
obtained as: 

pðY;B;Z; πÞ ¼ pðπjαÞ �
Y

kl
pðBkljakl; bklÞ �

Y

i
pðzijπÞ �

Y

ij
pðYijjBzizjÞ:

(1) 

In real-world networks, blocks or communities are not mutually exclusive. 
Since SBMs follow a hard clustering methodology by assigning each node as 
a member of one block strictly, SBMs are unable to model this.

Mixed-Membership Stochastic Blockmodel

A possible extension to SBM is proposed for overlapping communities: MMSB 
(Airoldi et al. 2008). MMSB considers each membership vector θi 2 R K of 
node i as a Dirichlet distribution, i.e., a point on K � 1 simplex. Each point on 
K � 1 simplex represents K non-negative weights whose sum is equal to 1. The 
MMSB offers a realistic type of soft clustering using the following generative 
process:

(1) For each block pair ðk; lÞ 2 K � K:
(a) Choose interaction probability, Bkl,Bðakl; bklÞ.
(2) For each node i 2 V:
(a) Choose a mixed membership vector, πi,DðαKÞ.
(3) For each node pair ði; jÞ 2 N � N:
(a) Choose membership for source, zi!j,MðπiÞ.
(b) Choose membership for destination, zi j,Mð~πjÞ.
(c) Choose interaction, Yij,BEðzT

i!jB zi jÞ.
The main difference between MMSB and SBM is that zi and zj vectors of 

MMSB are not one-of-N vectors but are probability distributions and the sum 
of their elements is equal to one. Then, the joint probability becomes: 

pðY;Z;B; πÞ ¼
Y

kl
pðBkljakl; bklÞ

Y

i
pðπijαÞ

Y

ij
pð~zi!jjπiÞpð~zi jjπjÞpðYijj~zT

i!jB~zi jÞ:
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Another feature of MMSB is that it is built as a mixed-membership model, 
which has a close relation with the generalized allocation scheme of BAM. 
From the generalization perspective, although it is possible to infer the latent 
variables directly from the generative process above, we choose to model 
MMSB as an instance of BAM. In this way, we aim to exploit the flexible 
framework of BAM.

Bayesian Allocation Model

BAM builds up a generic generative model framework for discrete count 
data. It is composed of two processes:

(1) Generation: It defines a base Poisson process, which is expected to 
generate T number of tokens equal to the total number of observations 
at timestamps 0< t1; t2; . . . ; tT < 1.

(2) Allocation: At each timestamp, each token is marked as a member of 
a specific Poisson process indexed by i1:N where each index in represents 
a discrete random variable with In many states. Then, the index collection i1:N 
represents the set of all possible indices for 

Q
n In possible values of state 

combinations.
Allocation process produces 

Q
n In different Poisson processes, which 

can be viewed as indices of an allocation tensor, S. Hence, it is insightful 
to think of each process Sði1:NÞ as a box, each generated token at time-
stamp τ as balls and allocation tensor S as the collection of boxes filled 
with balls. The allocation process during the lifespan of S can be sum-
marized as follows: [ � ]

° S is empty at t ¼ 0.
° Base process generates T balls with the time-

stamps 0< t1; t2; . . . ; tT < 1.
° Each ball is marked to an index of Sði1:NÞ with probability θði1:NÞ

independently.
° Each joint probability θði1:NÞ can be factorized into conditional probability 

tables (CPT) implied by the given Bayesian network G of the domain-specific 
model.

° At t ¼ T, the total of T balls is marked and allocated to the allocation 
tensor S.

The joint distribution of the assignments becomes a high-dimensional array 
for discrete models where i1:N corresponds to the likeliness of a specific 
configuration. The probability tensor θ 2 R N obeys a given factorization 
implied by a Bayesian network G, representing conditional dependence 
assumptions of the domain-specific model. In box analogy, each entry θi1:N 
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tells us how likely it is for a ball to be marked with color i1:N and placed into the 
box i1:N . Based on the factorization implied by G, the probability of a ball being 
marked with the color i1:N is: 

θði1:NÞ ¼
Y

n
θnjpaðnÞðin; ipaðnÞÞ (2) 

where ipaðnÞ are the parent nodes of in. The hyperparameter α for the probability 
tensor θ contains Dirichlet measures with entries αði1:NÞ. Furthermore, it is 
important to keep the measures of each Dirichlet random variable consistent 
(Cemgil et al. 2019). To impose structural constraints consistently on implied 
factorizations, the following contractions are needed: 

αnjpaðnÞðin; ipaðnÞÞ ¼
X

i:faðnÞ

αði1:NÞ

where i:faðnÞ are the nodes, which are not in the family of in and 
αnjpaðnÞðin; ipaðnÞÞ represents Dirichlet measures for the Dirichlet random vari-
able θnjpaðnÞðin; ipaðnÞÞ: 

θnjpaðnÞð:; ipaðnÞÞ,DðαnjpaðnÞð:; ipaðnÞÞ Þ

Then, we can summarize the generative process of BAM as follows; 

λ,GAða; bÞ θnjpaðnÞð:; ipaðnÞÞ,Dð αnjpaðnÞð:; ipaðnÞÞ Þ

Sði1:NÞ,POðλ
YN

n¼1
θnjpaðnÞð:; ipaðnÞÞÞ XðiVÞ ¼

X

i�V

Sði1:NÞ

where iV and i�V denote for the observed and the latent index set, respectively. 
A natural choice for hλi ¼ a=b is the expected number of tokens observed 
until time t ¼ 1. By defining Sþ ¼

P
i1:N

Si1:N , the scale parameter can be 
chosen b,a=Sþ (Cemgil et al. 2019).

MMSB as an Instance of BAM

MMSB is a hierarchical latent model defined on discrete network data that can 
be realized through BAM. This is due to the fact that BAM provides a generic 
allocation framework for discrete observations. In particular, BAM allows for 
allocating discrete observations to latent classes with respect to any given 
factorization implied by a directed graphical model G. Thanks to its inherent 
flexibility, BAM promises a generalized solution where we not only select the 
model order but also choose the most appropriate model for a given empirical 
network.
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To be able to see the relation, let us define the following indicators to encode 
events for token τ 2 ½Sþ� where Sþ is the total number of tokens 
and ½Sþ�;f1; � � � ; Sþg:

• ciτ: token τ selects source i.
• djτ: token τ selects destination j.
• z!kτ : token τ selects source block k.
• z lτ : token τ selects destination block l.
• tsτ: token τ selects interaction s;
Similar to the generative process of MMSB described in Section 2.2, we can 

define a hierarchical Dirichlet-Multinomial model over the indicators. The 
generative process for the indicators is as follows: 

γ:,DðηγÞ ϕ:,DðηϕÞ

c:τ,Mðγ:; 1Þ d:τ,Mðϕ:; 1Þ

π:i,Dðηπi
Þ π:j,Dðηπj

Þ

z!:τ jc:τ,
Y

i
Mðπ:i; 1Þciτ z :τ jd:τ,

Y

j
Mðπ:j; 1Þdjτ 

β:kl,DðηβÞt:τjz!:τ ; z :τ ,
Y

k

Y

l
Mðβ:kl; 1Þ

z!kτ z lτ 

BAM visualizes this sequential index selection through its graphical model 
notation. Each generated token selects an index set of the form fi; k; s; l; jg
while the observed index set is V ¼ fi; s; jg and latent index set is �V ¼ fk; lg. 
This notation is simpler than the traditional plate representation used to show 
graphical patterns of indexed data as illustrated in Figure 1. Then, each index 
of the joint indicator becomes 

sτ
ikslj ¼ ciτ ^ z!kτ ^ tsτ ^ z lτ ^ djτ; (3) 

where ^ is the logical AND operator. This implies that the joint indicator is 
categorically distributed with sτ,Mðθ; 1Þ with each cell having an assignment 
probability; 

θikslj ¼ γi � πki � βskl � πlj � ϕj ¼ θi � θkji � θsjk;l � θljj � θj 

Note that, notation θsjk;l is preferred in place of θsjk;lðs; k; lÞ for simplicity. The 
random variable index s is added to the random variable indices k; l; i; j of 
MMSB because BAM is defined on Poisson counts in contrast to Bernoulli 
random variables representing relational data in the generative model of 
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MMSB. The added index s allows for an equivalent representation in the form 
of count data when the sum 

P
s Sikslj of each Sik:lj fiber is constrained to 1. This 

setup is described in detail in Section 5.
Continuing with the generative process of BAM, each index of the alloca-

tion tensor S is defined as the collection of all tokens occurring at times 
τ : Sikslj ¼

P
τ sτ

ikslj. Accordingly, conditioned on the sum 
Sþ ¼

P
ikslj
P

τ sτ
iksjl, the allocation tensor S is multinomially distributed: 

S,Mðθ; SþÞ. Therefore, the generative process of BAM can be seen through 
the interplay between a multinomial distribution and N independent Poisson 
random variables. The joint distribution of N independent Poisson random 
variables whose sum equals to Sþ can be factorized into the product of (i) 
a Poisson random distribution over the total sum Sþ and (ii) a Multinomial 
distribution over N random variables conditioned on the total sum Sþ: 

IfSþ ¼
X

ikslj
Siksjlg �

Y

iksjl
POðSiksjl; λθiksjlÞ ¼ POðSþ; λÞ �MðS; Sþ; θÞg (4) 

The identity I in (4) allows us to transform Dirichlet-Multinomial model over 
the selection indicators to the generative process of BAM as follows:

(1) Draw tokens from a base Poisson Process PPðλÞ where λ,GAða; bÞ
(2) Mark each token according to the graphical model G, implied by MMSB: 

θi,DðαiÞ; θj,DðαjÞ; θkji,DðαkjiÞ; θljj,DðαljjÞ; θsjk;l,Dðαsjk;lÞ

Figure 1. Comparison of MMSB graphical models: (a) Traditional (b) Graphical model in BAM 
notation.
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(3) Allocate the marked tokens to the allocation tensor, S: 

Sikslj,POðλθiθkjiθsjk;lθljjθjÞ

(4) The observations Xijs are equal to specific contractions of the allocation 
tensor S where we integrate out the latent variables k; l: 

Xijs ¼
X

k;l
Sikslj 

We refer to this generative model as BAM-MMSB.

Inference

In this section, we develop an inference method for the proposed BAM- 
MMSB model. We will focus on a latent variable model where the 
observations have the form XðiVÞ ¼

P
i�V

Sði1:NÞ and i�V are not observed. 
In latent variable models, the main inference problem is to compute the 
posterior of latent variables given the observed ones. Intuitively, this 
operation can be viewed as reversing the generative process of the pro-
posed model in order to find out the most likely configuration of both the 
hyperparameters and the latent variables that could produce the observed 
variables (Blei 2014). In this section, we will explore the variational 
inference (VI) and the model selection.

Variational Inference

VI is a method where the intractable posterior distribution pðZjXÞ is approxi-
mated by a fully factorized variational distribution qðZÞ. VI is applicable in the 
full Bayesian setting where each parameter is considered as a random variable. 
In this case, the set of latent variables becomes: Z ¼ fS; θ; λg. Using the 
importance sampling proposal trick (Kingma and Welling 2019), we can 
write the following equality for the marginal distribution pðXjΦÞ: 

log pðXjΦÞ ¼ LðqÞ þ DKL qðZÞjjpðZjX;ΦÞð Þ; (5) 

LðqÞ ¼
ð

Z
dZqðZÞ log

pðX;ZÞ
qðZÞ

� �

(6) 

DKLðqðZÞjjpðZjXÞÞ ¼ �
ð

Z
dZ qðZÞ log

pðZjXÞ
qðZÞ

� �

(7) 
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where LðqÞ is the variational lower bound (ELBO) and DKL term is the 
Kullback–Leibler (KL) divergence between the variational distribution 
and the true posterior. Since the KL divergence is non-negative, ELBO 
provides a natural lower bound for the marginal log likelihood.

The posterior distribution pðZjX;ΦÞ ¼ pðS; θ; λjX;ΦÞ does not have 
a closed form solution. As a result, it is not possible to find out a tight 
lower bound and our aim is to find a convenient proposal for qðZÞ. The 
mean-field approach proposes a variational distribution qðZÞ that can be 
fully decomposed into its factors: 

qðS; θ; λÞ ¼ qðSÞ � qðθÞ � qðλÞ

Equation (5) implies that maximizing the ELBO LðqÞ with respect to qðSÞ, qðθÞ
and qðλÞ is equivalent to minimizing the KL divergence between fully factor-
ized qðZÞ and posterior pðZjYÞ. The idea is to find the local maxima of the 
lower bound LðqÞ with respect to each variational factor qðSÞ, qðθÞ and qðλÞ. 
When we follow a KL divergence-based derivation similar to (Bishop 2006), 
the expressions for the variational distributions are as follows: 

qðSÞ / expðEqðθÞ;qðλÞ½log pðX; S; θ; λÞ�Þ;

qðθÞ / expðEqðSÞ;qðλÞ½log pðX; S; θ; λÞ�Þ;

qðλÞ / expðEqðSÞ;qðθÞ½log pðX; S; θ; λÞ�Þ:

Following the optimization steps, We obtain the update equations for qðSÞ, qðθÞ
and qðλÞ as 

qðSÞ /
Y

i;j;s
MðSk;lji;s;j; Xijs; pk;lji;s;jÞ; (8) 

qðθÞ / DðEqðSÞ½SnjpaðnÞ� þ αnjpaðnÞÞ; (9) 

qðλÞ / GAðEqðSÞ½Sþ� þ a; bþ 1Þ; (10) 

where pk;lji;s;j / Eqðθ;λÞ½logðλθsjk;lθkjiθljjθiθjÞ� and EqðSÞ½SnjpaðnÞ� is defined as 
follows: 

EqðSÞ½SnjpaðnÞ� ¼
X

i0:faðnÞ

EqðSÞ½Sði01:NÞ�: (11) 

In Equation (11), :faðnÞ denotes the indices excluding index n and its parents 
with respect to the graphical model in Figure 1b. Then, EqðSÞ½SsjpaðsÞ� becomes: 

EqðSÞ½Ssjk;l�ðsjk; lÞ ¼
X

ij
EqðSÞ½Sikslj�:
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Following factorization of the form; pðX; S; θ; λÞ ¼ pðXjSÞpðθjSÞpðλjSÞpðSÞ, 
the evidence lower bound LðqÞ can be written as follows: 

LðqÞ ¼
X

S

ð

θ;λ
qðS; θ; λÞ logð

pðX; S; θ; λÞ
qðS; θ; λÞ

Þ

¼ Eq½pðXjSÞ� þ Eq½pðθjSÞ� þ Eq½pðλjSÞ� þ Eq½pðSÞ�

� Eq½qðSÞ� � Eq½qðθÞ� � Eq½qðλÞ�:

Handling Missing Data

The update equations of variational inference can be adapted to missing data. 
Similar to the fully observed case, the latent variable set Z ¼ fS; θ; λg is defined 
such that it contains both missing and observed indices of the data tensor 
X 2 N I�J�S. Let us partition the data matrix X into two sets: X ¼ fXo;Xmg

where Xo and Xm represent observed and missing indices, respectively. Then, 
the same operation can also be performed on the allocation tensor S: S ¼
fSo; Smg such that the contractions of So and Sm are equal to Xo and Xm 

respectively. This partition leads to the following variational distribution: 

qðS; θ; λÞ ¼ qðSoÞ � qðSmÞ � qðθÞ � qðλÞ

In this setup, the update equations for the observed part of the allocation 
tensor So, the probability tensor θ ,and the rate parameter λ remain 
unchanged. The key observation for the missing part of the allocation tensor 
Sm is that when the conditioning variables Xijs are missing, the variational 
factor qðSmÞ is no longer multinomially distributed. For the missing indices 
ðijsÞ 2 Xm, qðSmÞ is a Poisson distribution. Following the same steps as the 
observed version, we obtain the following update equations: 

qðSoÞ /
Y

i;j;s:ðijsÞ2Xo

MðSk;lji;s;j; Xo
ijs; pk;lji;s;jÞ; (12) 

qðSmÞ /
Y

ikslj:ðijsÞ2Xm

POðSikslj; τiksljÞ; (13) 

qðθÞ / DðEqðSÞ½SnjpaðnÞ� þ αnjpaðnÞÞ; (14) 

qðλÞ / GAðEqðSÞ½Sþ� þ a; bþ 1Þ; (15) 

where p and EqðSÞ½SnjpaðnÞ� are already derived in Equation (11), and τikslj is 
defined as follows.. 
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τikslj ¼ EqðθÞ;qðλÞ½logðλθsjk;iθkjiθljjθiθjÞ� (16) 

Notice that the expectations of the allocation tensor S need to be updated for 
Poisson indices: 

Eq½Sikslj� ¼
Xijs � pikslj; for ðijsÞ 2 Xo

τikslj; for ðijsÞ 2 Xm

�

Computing ELBO
Following factorization of the form:

pðX; S; θ; λÞ ¼ pðXjSÞpðθjSÞpðλjSÞpðSÞ, the evidence lower bound LðqÞ can 
be written as follows: 

LðqÞ ¼
X

S

ð

θ;λ
qðS; θ; λÞ logð

pðX; S; θ; λÞ
qðS; θ; λÞ

Þ

¼ Eq½pðXjSÞ� þ Eq½pðθjSÞ� þ Eq½pðλjSÞ� þ Eq½pðSÞ�

� Eq½qðSoÞ� � Eq½qðSmÞ� � Eq½qðθÞ� � Eq½qðλÞ�

Model Selection

For a given latent variable model, the model selection problem corresponds to 
selecting the dimensionality of the latent space. In the case of blockmodels, the 
dimensionality of the latent space is equal to the number of communities. 
Moreover, it is a more challenging task than inferring the block structure given 
the correct number of communities K: According to (Murphy 2012), the 
model selection problem can be solved by:

(1) Comparing log-likelihoods of different models on a test set via cross 
validation.

(2) Computing Bayes factors of models m 2 M while approximating the 
marginal likelihood of each model log pðDjmÞ by its variational approxima-
tion (Latouche, Birmele, and Ambroise 2012).

(3) Applying annealed importance sampling (AIS) (Neal 2001) for estimating the 
marginal likelihood.

(4) Applying Bayesian nonparametric methods (Riolo et al. 2017).
Although the gold standard is applying AIS, we compare Bayes factors of 

variational approximations since it is much more simple and efficient to 
implement, yet it still provides a principled likelihood-based approach. More 
formally, the goal is to compute the posterior of each model given the observed 
data.. 
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pðmjDÞ / pðDjmÞpðmÞ;

where m and D correspond to the model and the observed data, respectively. 
When there is no prior knowledge about the models, it is convenient to choose 
a uniform prior for pðmÞ. Then, 

pðmjDÞ / pðDjmÞpðmÞ / pðDjmÞ � LðqjD;mÞ;

where LðqjD;mÞ is the ELBO corresponding to a specific number of commu-
nities Km. This inequality shows that the evidence lower bound provides 
a simple, yet principled approach for the model selection problem.

Simulation Results

In this section, we first describe an experimental setup where we investigate 
convenient count representations for relational data, initialization strategies, 
and hyperparameter choices. Next, we perform experiments on both synthetic 
and real-world benchmark networks to assess our model in terms of (i) 
interpretability of the model output, (ii) block recovery performance, and 
(iii) the model selection performance.

Count Representations for Relational Data

BAM-MMSB is defined on Poisson counts in contrast to Bernoulli trials that 
are commonly used for representing a binary adjacency matrix. Therefore, we 
aim to come up with an equivalent count representation for the adjacency 
matrix Y of a given network. Consider an adjacency matrix where each 
element Yij is a Bernoulli trial parametrized by the parameter ϕ. Then, the 
probability distribution for Y is: 

pϕðYÞ ¼
Y

ij
BEðϕijÞ:

The binary variables can also be encoded as two independent Poisson variables 
whose sum equals to 1. Conditioned on their sum, two Poisson random 
variables are distributed as a binomial distribution where the probability of 
selecting a category is proportional to the normalized Poisson rate. The 
argument in equality (4) can be adapted to the adjacency matrix by consider-
ing a count tensor X 2 N I�J�S 

Y

ij
ðIYij ¼

X

s
Xijsg �

Y

s
POðXijs; λijsÞÞ

¼
Y

ij
POðYij; λijþÞ �MðXij:; Yij; pλij:Þg
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where pλij: ¼ ð
λij0

λij0þλij1
;

λij1
λij0þλij1

Þ and we extend the adjacency matrix Y by an 
additional index s. The index s represents the possible categories of the 
observed data. For example, the fibers ðs ¼ 1Þ and ðs ¼ 0Þ denote the positive 
(1s) and negative (0s) samples of the adjacency matrix, respectively. This 
representation is illustrated in Figure 2 and the preprocessing steps are 
summarized below.

(1) A binary adjacency matrix Y 2 f0; 1gI�J is observed.
(2) A dimension is added, and its corresponding count tensor X 2 N I�J�S is 

created where jsj ¼ 2 for the binary case.
(3) The observations are placed in X with respect to the 

rule: Xijs ¼ IfYij ¼ sg.

Initialization and Hyperparameters of BAM-MMSB

For each parameter configuration in the experiments, the variational inference 
step is performed several times (from 35 to 100 initializations). The one which 
provides maximum ELBO is chosen. However, empirically, we show that the 
algorithm requires a large number of runs to converge to a local maximum if 
started with random initializations. For this reason, we use k-means or spectral 
clustering for initialization purposes.

The hyperparameters of BAM are initialized according to (Cemgil et al. 
2019). The allocation tensor S is expected to be sparsely allocated. Thus, the 
hyperparameter is chosen as αði1:NÞ 2 f0:05; 0:25g to induce sparsity in the 
allocation tensor S. If prior information is not provided, it is reasonable to 
choose uniform values for αði1:NÞ ¼ α ¼ aQ

n
In

. Furthermore, the parameter λ 

controls the prior expectation of the total number of tokens. Since the Gamma 
expectation is E½λ� ¼ aλ

bλ
, the scale hyperparameter can be chosen as 

Figure 2. Count tensor representation of a binary adjacency matrix.
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bλ ¼ aλ=Sþ. Correspondingly, the shape parameter can be chosen as aλ ¼

ðð
Q

n InÞ � αÞ so that the allocation tensor S is encouraged to be sparse through 
the parameter α.

Model Selection Performance

For a given latent variable model, the model selection problem corresponds to 
choosing the optimal number of blocks Kopt that explains the latent structure 
in the observed data best. Bayesian statistics provides a principled likelihood- 
based approach for this task. The aim is to choose the model, which produces 
the largest marginal likelihood of the observed data X. However, the marginal 
of X is often intractable. Therefore, we choose to approximate the marginal by 
its mean-field variational approximation similar to the work of Latouche et al. 
(Latouche, Birmele, and Ambroise 2012).

First, we perform experiments on synthetic networks. Next, the model 
selection performance is evaluated for real-world benchmark networks.

Synthetic Networks
To assess model selection performance in synthetic networks, we use the 
assortative network topology. Assortative networks have simple connectivity 
patterns where nodes from the same blocks connect with a probability 2 , 
nodes from different blocks connect with a probability ρ and 2 > ρ. The block 
matrix structure is as follows: 

B ¼

2 ρ . . . ρ
ρ 2 ρ
..
. . .

. ..
.

ρ ρ . . . 2

0

B
B
B
@

1

C
C
C
A

The blocks of synthetic networks have balanced number of nodes among each 
other. Let us denote the set of blocks as fk1; . . . ; kKg. Balanced blocks have 
equal number of nodes with jktj � jVj=K;"t 2 ½K�, where jVj is the number 
of nodes in the network. This effect is achieved in the MMSB generative model 
by drawing the membership vectors πi 2 R K for each node i from uniform and 
sparse Dirichlet distributions as πi,Dð0:01 � 1KÞ.

In the experiments, ρ is set to 0.01 and three different values are used for 
2¼ 0:9; 0:7; 0:5f g. Each sampled network has jVj ¼ 40 nodes. The number 

of blocks is varied as Ktrue 2 f2; 3; 4g, but in the inference process K is 
assumed to be unknown. For each Ktrue;2;Kf g configuration, we sample 50 
different assortative networks and estimate the optimal number of clusters 
Kest. The results are displayed in Table 1.
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One observation for large values of K is that the model tends to find one 
exact block and combines the rest into a big cluster. This pattern suggests that 
if we continue to observe Bernoulli trials for each index, or if we have more 
observed data, we may capture all of the true clusters. If that is not the case, 
then, we may apply heuristics such as scaling Bernoulli trials for each index.

We also compare the performance of BAM-MMSB with two modularity- 
based methods: leading eigenvector method (LEM; Newman 2006a), hierarch-
ical modularity measure (HMM; Blondel et al. 2008) and mixture of finite 
mixture SBM (MFM-SBM Geng, Bhattacharya, and Pati 2019). We evaluate 
the performance on balanced networks with – V – = 40 nodes, number of 
blocks Ktrue ¼ f2; 3g. The ratio of correct estimations with respect to total 
estimations is reported in Table 2. We show that all the methods can estimate 
the number of clusters.

The BAM-MMSB generative model allows us to choose the number of 
Bernoulli trials Nij per each index of the adjacency matrix. Notice that Nij ¼

1 corresponds to the count tensor shown in Figure 2 as if there has been only 
one coin toss to represent an interaction. When Nij ¼ n such that n> 1, each 
observation model for a pair ði; jÞ becomes a binomial experiment with n trials. 
This procedure brings up the effect of added precision to the node classifica-
tion. Therefore, we perform an experiment where the contingency tensor is 
scaled up with increasing Nij ¼ n and Ktrue ¼ 4.

As Nij ¼ n increases, the model’s confidence in the observations increases, 
and hence, the model continues to divide existing blocks and create new ones. 
The estimated number of blocks Kopt for increasing pseudocounts Nij ¼ n is 
illustrated in Figure 3. Kopt rises quickly until it reaches to the true number of 
blocks Ktrue ¼ 4. When we continue to increase the scaling factor, it stays 
constant at the level of Ktrue before rising gradually. For large n values, the 

Table 1. Kest estimations in 50 experiments for three different connectivity levels. From top to 
down, the connectivity parameter 2 takes values of f0:9; 0:7; 0:5g respectively.

BAM-MMSB MMSB

K 1 2 3 4 5 1 2 3 4 5
2 0 50 0 0 0 0 50 0 0 0
3 0 0 50 0 0 0 2 43 5 0
4 0 0 0 50 0 0 2 22 25 0
2 0 50 0 0 0 0 49 1 0 0
3 0 0 50 0 0 0 7 39 4 0
4 0 0 0 50 0 0 3 28 19 0
2 0 50 0 0 0 0 50 0 0 0
3 0 0 50 0 0 0 33 16 1 0
4 0 0 0 50 0 0 38 12 0 0

Table 2. Ratio of correct estimations with respect to total estimations out 
of 50 replicates for 2¼ 0:5.

LEM HMM MFM-SBM MMSB BAM-MMSB

0.98 1 0.98 1 1
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model seems to overfit and select overly complex models due to the scaled 
noise factor. Therefore, it seems reasonable to employ this heuristic approach 
for a certain data regime.

Although this method is not a statistically principled method, we see that 
scaling pseudocounts heuristics work well in practice for synthetic networks. 
Since the noise ratio is relatively large for real-world networks due to sparsity, 
it is not obvious how to leverage this scaling idea. As a result, we borrow 
a scaling heuristics idea from collaborative filtering.

Real-World Networks
In order to assess the model performance, the simulations are performed on 
three real-world benchmark networks: (i) Zachary’s karate club network 
(Zachary 1977), (ii) Lusseau et al.’s dolphin social network (Lusseau et al. 
2003), and (iii) adjacency network of adjectives and nouns in the book David 
Copperfield by Charles Dickens (Newman 2006a).

Like most real-world networks, the networks used in the experiments 
exhibit sparsity having 34, 62, and 112 nodes with 156, 318, and 850 edges, 
respectively. As a result, our algorithm tends to select model orders with 
insufficient complexity. Under these circumstances, scaling Poisson counts is 
a heuristics solution. Figure 3 shows that scaling the contingency tensor 
directly may have a negative effect on the model order selection when there 
is inherent noise in the observations. Scaling noise drives the model to select 
overly complex representations, which are highly sensitive to small fluctua-
tions. This is due to the inherent missing data in networks such that a negative 
sample Yij ¼ 0 can result from the lack of interaction or lack of information.

For the missing data problem in collaborative filtering, Pan et al. (Pan et al. 
2008) proposed weighted alternating least squares (wALS) for sparse binary 
data sets, which contain ambiguity in the interpretation of negative samples. 

Figure 3. Estimated number of blocks Kopt as the scaling factor Nij for each index is increased.
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The idea is that each positive sample has a constant confidence level, which is 
higher than ambiguous negative samples. This relationship is expressed math-
ematically by weighting the cost of each index according to its confidence level.

We transform wALS scheme to count representations as follows. Let us denote 
the total negative tokens by N �þ and the total positive tokens by Nþþ . Following 
(Pan et al. 2008), we choose to use the same amount of tokens for both positive 
and negative samples with N�þ ¼ Nþþ ¼

P
ijð1 � YijÞ. Since we have a constant 

confidence level for positive indices, Nþþ positive tokens are distributed uni-
formly. Then, N �þ negative tokens are distributed according to three schemes:

(1) Uniform: Each negative sample is represented by a single 
token, (N �ij ¼ 1),

(2) Source-only: Each negative sample is represented by a number of tokens 
proportional to the source degree, N�ij ,

P
j Yij

(3) Source-dest: Each negative sample is represented by a number of tokens 
proportional to the product of source and destination 
degrees, N �ij ,ð

P
j YijÞð

P
i YijÞ.

Notice that the tokens in Nþþ are distributed evenly and stay constant in all 
cases. It is the negative tokens that are distributed according to distribution 
schemes. The negative token distributions according to cases (i), (ii) and (iii), 
and their difference from the count representation provided in Figure 2 are 
illustrated in Figure 4.

We performed experiments on three networks with respect to two weight-
ing schemes: (i) uniform and (iii) proportional to source and destination 
popularity. The results are displayed in Figure 5.

Figure 4. Weighted pseudocounts of the contingency tensor for each weighting scheme.
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For the (i) uniform case of Karate Club and Word Adjacency networks, 
BAM-MMSB estimates blocks that have a leader-follower topology instead of 
an assortative topology. This is a well-known characteristic of the blocks 
inferred by standard SBMs. Specifically, the generative model tends to cluster 
nodes with similar degrees into the same block. It is shown that in the top row 
of Figure 5, this behavior results in two blocks where the green ones consisting 
of low-degree nodes (followers) seem to be following the red ones consisting of 
high-degree nodes (leaders).

Interestingly, the model behaves similarly to the degree-corrected extension of 
stochastic blockmodels for the (iii) source-dest case. In this case, we obtain blocks 
with heterogeneous degree distributions in contrast to standard SBMs. This 
effect shifts the estimated topologies from leader-follower to assortative in 
Karate Club and Word Adjacency networks, respectively. Scaling the negative 
pseudocounts with respect to the source and destination degrees brings up the 
same effect even though we do not re-weight positive samples. We opt to keep 

Figure 5. The selected number of blocks for benchmark networks. The top and bottom row 
illustrate the results for (i) uniform and (ii) source-dest.

Table 3. Estimated number of clusters for dolphin data.
Method LEM HMM MFM-SBM MMSB BAM-MMSB

Number of clusters 5 5 2 2 2
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the confidence level constant for each positive observation. The estimated model 
orders Kest ¼ 2 are the same with (i) uniform case and commonly proposed 
model orders for these networks in the literature. The estimated number of 
clusters for dolphin data obtained with the LEM, HMM, MFM-SBM, MMSB, 
and the proposed method BAM-MMSB is reported in Table 3. Our results show 
that the proposed method, MMSB and MFM-SBM, can estimate the number of 
clusters, while LEM and HMM overestimate the number of clusters as 5. 
Moreover, variational approximations for the marginal likelihood are slightly 
larger for all networks with (iii) source-dest, which also suggests that degree- 
corrected extensions are favored over regular SBMs for these networks.

Conclusion

In this work, we propose BAM-MMSB, which replicates the generative process 
of the MMSB within the generic allocation framework of BAM. Our model 
considers the observations as Poisson tokens generated by a Poisson process 
and marked according to the generative process of MMSB. From a modeling 
perspective, two Poisson random variables can represent each Bernoulli ele-
ment Yij of the input matrix by adding a new index s for each ði; jÞ pair. This 
representation is equivalent to a Bernoulli trial when the sum is constrained to 
1. This feature also provides a natural extension possibility to weighted graphs 
or hypergraphs for future work.

A variational Bayes algorithm is derived to solve the inference problem. The 
first experiment illustrates the interpretation of the model output through 
synthetic network examples. Next, the block recovery performance is analyzed 
numerically in the next experiment. As expected, BAM-MMSB displays 
a similar behavior to the original MMSB in the first two experiments. 
Furthermore, it is worth noting that uniform membership vectors and 
increased complexity in the block structure reduce the block recovery 
performance.

Our model selection algorithm approximates the marginal likelihood by 
a variational evidence lower bound to select the optimal number of blocks Kopt. 
Experimental results on real-world benchmark networks are similar to the 
results in the literature. However, the weighted count heuristics proposed by 
Pan et al. (Panet al. 2008) provide limited extendability to the task at hand 
since they are only heuristically motivated. A more principled approach is to 
integrate these heuristics into the model as random variables and infer their 
characteristics from the observed data (Rubin 1976).

Additionally, BAM offers a generic allocation framework, which allows for 
rapid prototyping of distinct generative models of discrete observations. 
Therefore, another natural future direction is to perform model selection not 
only for the model order but also across different generative models, such as 
tensor factorization models proposed by Schein et al. (Schein et al. 2016). In this 
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respect, another task for future work is to compute the exact marginal like-
lihood via annealed importance sampling instead of approximating it.
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