279 research outputs found

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure

    Enabling Additional Parallelism in Asynchronous JavaScript Applications

    Get PDF
    JavaScript is a single-threaded programming language, so asynchronous programming is practiced out of necessity to ensure that applications remain responsive in the presence of user input or interactions with file systems and networks. However, many JavaScript applications execute in environments that do exhibit concurrency by, e.g., interacting with multiple or concurrent servers, or by using file systems managed by operating systems that support concurrent I/O. In this paper, we demonstrate that JavaScript programmers often schedule asynchronous I/O operations suboptimally, and that reordering such operations may yield significant performance benefits. Concretely, we define a static side-effect analysis that can be used to determine how asynchronous I/O operations can be refactored so that asynchronous I/O-related requests are made as early as possible, and so that the results of these requests are awaited as late as possible. While our static analysis is potentially unsound, we have not encountered any situations where it suggested reorderings that change program behavior. We evaluate the refactoring on 20 applications that perform file- or network-related I/O. For these applications, we observe average speedups ranging between 0.99% and 53.6% for the tests that execute refactored code (8.1% on average)

    A Theoretical Approach Involving Recurrence Resolution, Dependence Cycle Statement Ordering and Subroutine Transformation for the Exploitation of Parallelism in Sequential Code.

    Get PDF
    To exploit parallelism in Fortran code, this dissertation consists of a study of the following three issues: (1) recurrence resolution in Do-loops for vector processing, (2) dependence cycle statement ordering in Do-loops for parallel processing, and (3) sub-routine parallelization. For recurrence resolution, the major findings include: (1) the node splitting algorithm cannot be used directly to break an essential antidependence link, of which the source variable that results in antidependence is itself the sink variable of another true dependence so a correction method is proposed, (2) a sink variable renaming technique is capable of breaking an antidependence and/or output-dependence link, (3) for recurrences formed by only true dependences, a dynamic dependence concept and the derived technique are powerful, and (4) by integrating related techniques, an algorithm for resolving a general multistatement recurrence is developed. The performance of a parallel loop is determined by the level of parallelism and the time delay due to interprocessor communication and synchronization. For a dependence cycle of a single parallel loop executed in a general synchronization mode, the parallelism exposed varies with the alignment of statements. Statements are reordered on the basis of execution-time of the loop as estimated at compile-time. An improved timing formula and a derived statement ordering algorithm are proposed. Further extension of this algorithm to multiple perfectly nested Do-loops with simple global dependence cycle is also presented. The subroutine is a potential source for parallel processing. Several problems must be solved for subroutine parallelization: (1) the precedence of parallel executions of subroutines, (2) identification of the optimum execution mode for each subroutine and (3) the restructuring of a serial program. A five-step approach to parallelize called subroutines for a calling subroutine is proposed: (1) computation of control dependence, (2) approximation of the global effects of subroutines, (3) analysis of data dependence, (4) identification of execution mode, and (5) restructuring of calling and called subroutines. Application of these five steps in a recursive manner to different levels of calling subroutines in a program addresses the parallelization of subroutines

    Foo's To Blame: Techniques For Mapping Performance Data To Program Variables

    Get PDF
    Traditional methods of performance analysis offer a code centric view, presenting performance data in terms of blocks of contiguous code (statement, basic block, loop, function, etc.). Existing data centric techniques allow various program properties to be mapped directly to variables. Our approach extends these data centric mappings. Just as code centric techniques allow lower level objects like source lines be mapped up to functions, our inclusive technique allows low level data centric operations like computations on scalars to be mapped up to complex data structures like those found in scientific frameworks. Our system utilizes static analysis to collect information about the program that can be combined with runtime information to perform data centric program analysis. By pushing most of the analysis to pre-run and post-mortem, we can minimize the amount of data collected at runtime. This allows us to perform less instrumentation and also minimizes program perturbation. It also allows us to collect information that would not be possible with existing techniques. We present two applications of this analysis. The first application of our analysis is targeted at mapping performance data to high level data structures with multiple levels of abstraction. We create extended data centric mappings, which we call variable blame, that relates data centric information to these variables. The second application is a method for mapping cache miss information to variables. Existing approaches for this analysis rely on explicit hardware support and extensive program instrumentation. By utilizing our analysis and applying software heuristics, we are able to lessen those requirements. We apply both of these analyses to applications and show what performance information can be provided by our analysis that can not currently be determined. We also discuss how we can use that information to improve program performance

    Flow- and context-sensitive points-to analysis using generalized points-to graphs

    Get PDF
    © Springer-Verlag GmbH Germany 2016. Bottom-up interprocedural methods of program analysis construct summary flow functions for procedures to capture the effect of their calls and have been used effectively for many analyses. However, these methods seem computationally expensive for flow- and context- sensitive points-to analysis (FCPA) which requires modelling unknown locations accessed indirectly through pointers. Such accesses are com- monly handled by using placeholders to explicate unknown locations or by using multiple call-specific summary flow functions. We generalize the concept of points-to relations by using the counts of indirection levels leaving the unknown locations implicit. This allows us to create sum- mary flow functions in the form of generalized points-to graphs (GPGs) without the need of placeholders. By design, GPGs represent both mem- ory (in terms of classical points-to facts) and memory transformers (in terms of generalized points-to facts). We perform FCPA by progressively reducing generalized points-to facts to classical points-to facts. GPGs distinguish between may and must pointer updates thereby facilitating strong updates within calling contexts. The size of GPGs is linearly bounded by the number of variables and is independent of the number of statements. Empirical measurements on SPEC benchmarks show that GPGs are indeed compact in spite of large procedure sizes. This allows us to scale FCPA to 158 kLoC using GPGs (compared to 35 kLoC reported by liveness-based FCPA). Thus GPGs hold a promise of efficiency and scalability for FCPA without compro- mising precision

    Compiler Techniques for Optimizing Communication and Data Distribution for Distributed-Memory Computers

    Get PDF
    Advanced Research Projects Agency (ARPA)National Aeronautics and Space AdministrationOpe

    Optimal Compilation of HPF Remappings

    No full text
    International audienceApplications with varying array access patterns require to dynamically change array mappings on distributed-memory parallel machines. HPF (High Performance Fortran) provides such remappings, on data that can be replicated, explicitly through therealign andredistribute directives and implicitly at procedure calls and returns. However such features are left out of the HPF subset or of the currently discussed hpf kernel for effeciency reasons. This paper presents a new compilation technique to handle hpf remappings for message-passing parallel architectures. The first phase is global and removes all useless remappings that appear naturally in procedures. The code generated by the second phase takes advantage of replications to shorten the remapping time. It is proved optimal: A minimal number of messages, containing only the required data, is sent over the network. The technique is fully implemented in HPFC, our prototype HPF compiler. Experiments were performed on a Dec Alpha farm
    • …
    corecore