2,480 research outputs found

    Increasing Evolvability Considered as a Large-Scale Trend in Evolution

    Get PDF
    Evolvability is the capacity to evolve. This paper introduces a simple computational model of evolvability and demonstrates that, under certain conditions, evolvability can increase indefinitely, even when there is no direct selection for evolvability. The model shows that increasing evolvability implies an accelerating evolutionary pace. It is suggested that the conditions for indefinitely increasing evolvability are satisfied in biological and cultural evolution. We claim that increasing evolvability is a large-scale trend in evolution. This hypothesis leads to testable predictions about biological and cultural evolution

    A simple model of unbounded evolutionary versatility as a largest-scale trend in organismal evolution

    Get PDF
    The idea that there are any large-scale trends in the evolution of biological organisms is highly controversial. It is commonly believed, for example, that there is a large-scale trend in evolution towards increasing complexity, but empirical and theoretical arguments undermine this belief. Natural selection results in organisms that are well adapted to their local environments, but it is not clear how local adaptation can produce a global trend. In this paper, I present a simple computational model, in which local adaptation to a randomly changing environment results in a global trend towards increasing evolutionary versatility. In this model, for evolutionary versatility to increase without bound, the environment must be highly dynamic. The model also shows that unbounded evolutionary versatility implies an accelerating evolutionary pace. I believe that unbounded increase in evolutionary versatility is a large-scale trend in evolution. I discuss some of the testable predictions about organismal evolution that are suggested by the model

    A tractable genotype-phenotype map for the self-assembly of protein quaternary structure

    Full text link
    The mapping between biological genotypes and phenotypes is central to the study of biological evolution. Here we introduce a rich, intuitive, and biologically realistic genotype-phenotype (GP) map, that serves as a model of self-assembling biological structures, such as protein complexes, and remains computationally and analytically tractable. Our GP map arises naturally from the self-assembly of polyomino structures on a 2D lattice and exhibits a number of properties: redundancy\textit{redundancy} (genotypes vastly outnumber phenotypes), phenotype bias\textit{phenotype bias} (genotypic redundancy varies greatly between phenotypes), genotype component disconnectivity\textit{genotype component disconnectivity} (phenotypes consist of disconnected mutational networks) and shape space covering\textit{shape space covering} (most phenotypes can be reached in a small number of mutations). We also show that the mutational robustness of phenotypes scales very roughly logarithmically with phenotype redundancy and is positively correlated with phenotypic evolvability. Although our GP map describes the assembly of disconnected objects, it shares many properties with other popular GP maps for connected units, such as models for RNA secondary structure or the HP lattice model for protein tertiary structure. The remarkable fact that these important properties similarly emerge from such different models suggests the possibility that universal features underlie a much wider class of biologically realistic GP maps.Comment: 12 pages, 6 figure

    Measuring the Evolvability Landscape to study Neutrality

    Get PDF
    This theoretical work defines the measure of autocorrelation of evolvability in the context of neutral fitness landscape. This measure has been studied on the classical MAX-SAT problem. This work highlight a new characteristic of neutral fitness landscapes which allows to design new adapted metaheuristic

    Scaling laws in bacterial genomes: A side-effect of selection of mutational robustness?

    Get PDF
    In the past few years, numerous research projects have focused on identifying and understanding scaling properties in the gene content of prokaryote genomes and the intricacy of their regulation networks. Yet, and despite the increasing amount of data available, the origins of these scalings remain an open question. The RAevol model, a digital genetics model, provides us with an insight into the mechanisms involved in an evolutionary process. The results we present here show that (i) our model reproduces qualitatively these scaling laws and that (ii) these laws are not due to differences in lifestyles but to differences in the spontaneous rates of mutations and rearrangements. We argue that this is due to an indirect selective pressure for robustness that constrains the genome size

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability

    Scuba Search : when selection meets innovation

    Get PDF
    We proposed a new search heuristic using the scuba diving metaphor. This approach is based on the concept of evolvability and tends to exploit neutrality in fitness landscape. Despite the fact that natural evolution does not directly select for evolvability, the basic idea behind the scuba search heuristic is to explicitly push the evolvability to increase. The search process switches between two phases: Conquest-of-the-Waters and Invasion-of-the-Land. A comparative study of the new algorithm and standard local search heuristics on the NKq-landscapes has shown advantage and limit of the scuba search. To enlighten qualitative differences between neutral search processes, the space is changed into a connected graph to visualize the pathways that the search is likely to follow
    corecore