27,368 research outputs found

    Nonterrestrial utilization of materials: Automated space manufacturing facility

    Get PDF
    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    Proceedings, Pot Chrysanthemum School, 1971

    Get PDF
    Space management / Robert W. Langhans -- Soils / D. C. Kiplinger -- Nutrition / George L. Staby -- Temperature and photoperiod / Joseph W. Love -- Automated short day control -- R. A. Aldrich -- Growth regulators / James B. Shanks -- Programming for insect-free pot mums / Richard K. Lindquist -- Programming for disease-free pot mums / Lester P. Nichols and Paul E. Nelson -- Where you go wrong / Harry K. Tayam

    Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final Report. Volume III: Silicon sheet: wafers and ribbons

    Get PDF
    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. The primary objective of the Silicon Sheet Task of the FSA Project was the development of one or more low-cost technologies for producing silicon sheet suitable for processing into cost-eompetitive solar cells. Silicon sheet refers to high-purity crystalline silicon of size and thickness for fabrication into solar cells. The Task effort began with state-of-the-art sheet technologies and then solicited and supported any new silicon sheet alternatives that had the potential to achieve the Project goals. A total of 48 contracts were awarded that covered work in the areas of ingot growth and casting, wafering, ribbon growth, other sheet technologies, and programs of supportive research. Periodic reviews of each sheet technology were held, assessing the technical progress and the long-range potential. Technologies that failed to achieve their promise, or seemed to have lower probabilities for success in comparison with others, were dropped. A series of workshops was initiated to assess the state of the art, to provide insights into problems remaining to be addressed, and to support technology transfer. The Task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high-quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the Task cost goals were not achieved. This FSA Final Report (JPL Publication 86-31, 5101-289, DOE/JPL 1012-125, October 1986) is composed of eight volumes, consisting of an Executive Summary and seven technology reports: Volume I: Executive Summary. Volume II: Silicon Material. Volume III: Silicon Sheet: Wafers and Ribbons Volume IV: High-Efficiency Solar Celis. Volume V: Process Development. Volume VI: Engineering Sciences and Reliability. Volume VII: Module Encapsulation. Volume VIII: Project Analysis and Integration. Two supplemental reports included in the final report package are: FSA Project: 10 Years of Progress, JPL Document 400-279. 5101-279, October 1985. Summary of FSA Project Documentation: Abstracts of Published Documents, 1975 to 1986, JPL Publication 82-79 (Revision 1),5101-221, DOE/JPL-1 012-76, September 1986

    Roving vehicle motion control Quarterly report, 1 Mar. - 31 May 1967

    Get PDF
    System and subsystem requirements for remote control of roving space vehicle motio

    Water quality monitor

    Get PDF
    The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system
    corecore