10 research outputs found

    Offshore Wind Data Integration

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, Grimstad, 2014Using renewable energy to meet the future electricity consumption and to reduce environmental impact is a significant target of many countries around the world. Wind power is one of the most promising renewable energy technologies. In particular, the development of offshore wind power is increasing rapidly due to large areas of wind resources. However, offshore wind is encountering big challenges such as effective use of wind power plants, reduced cost of installation as well as operation and maintenance (O&M). Improved O&M is likely to reduce the hazard exposure of the employees, increase income, and support offshore activities more efficiently. In order to optimize the O&M, the importance of data exchange and knowledge sharing within the offshore wind industry must be realized. With more data available and accessible, it is possible to make better decisions, and thereby improve the recovery rates and reduce the operational costs. This dissertation proposes a holistic way of improving remote operations for offshore wind farms by using data integration. Particularly, semantics and integration aspects of data integration are investigated. The research looks at both theoretical foundations and practical implementations. As the outcome of the research, a framework for data integration of offshore wind farms has been developed. The framework consists of three main components: the semantic model, the data source handling, and the information provisioning. In particular, an offshore wind ontology has been proposed to explore the semantics of wind data and enable knowledge sharing and data exchange. The ontology is aligned with semantic sensor network ontology to support management of metadata in smart grids. That is to say, the ontology-based approach has been proven to be useful in managing data and metadata in the offshore wind and in smart grids. A quality-based approach is proposed to manage, select, and provide the most suitable data source for users based upon their quality requirements and an approach to formally describing derived data in ontologies is investigated

    Electricity Demand: Measurement, modelling and management of UK homes

    No full text
    The need to achieve a transition to a low carbon economy has renewed interest in "energy efficiency" and what has become known as "demand side management". This thesis investigates the role of measurement and modelling in the management of domestic electricity demand. Practice and policy have, since the 1950s, tended to favour a "supply paradigm" centred on the imperative of increasing energy supply. Despite the upheaval of market liberalisation, and twenty years of climate change debate, the domestic electricity "culture" has changed very little. The first half of this thesis contributes to this subject by describing the complex development of the electricity system that we are familiar with today. Drawing upon technical, social and political themes, the current and emerging practices of measurement, modelling, and management are critiqued. It is argued that current practices require revaluation, if alternative, decentralised approaches are to receive a fair analysis. The thesis contributes in empirical terms by extending the evidence base and developing modelling tools for the analysis of domestic electricity use. Field data collected by the author concerning the power flow characteristics of domestic appliances are presented which identify the dynamic nature of domestic electrical loads. A modelling framework is then introduced that combines social and technical aspects of domestic energy demand, allowing synthesis of domestic load profiles and allowing comparison between localised interventions

    A Systems Engineering Reference Model for Fuel Cell Power Systems Development

    Get PDF
    This research was done because today the Fuel Cell (FC) Industry is still in its infancy in spite over one-hundred years of development has transpired. Although hundreds of fuel cell developers, globally have been spawned, in the last ten to twenty years, only a very few are left struggling with their New Product Development (NPD). The entrepreneurs of this type of disruptive technology, as a whole, do not have a systems engineering \u27roadmap , or template, which could guide FC technology based power system development efforts to address a more environmentally friendly power generation. Hence their probability of achieving successful commercialization is generally, quite low. Three major problems plague the fuel cell industry preventing successful commercialization today. Because of the immaturity of FC technology and, the shortage of workers intimately knowledgeable in FC technology, and the lack of FC systems engineering, process developmental knowledge, the necessity for a commercialization process model becomes evident. This thesis presents a six-phase systems engineering developmental reference model for new product development of a Solid Oxide Fuel Cell (SOFC) Power System. For this work, a stationary SOFC Power System, the subject of this study, was defined and decomposed into a subsystems hierarchy using a Part Centric Top-Down, integrated approach to give those who are familiar with SOFC Technology a chance to learn systems engineering practices. In turn, the examination of the SOFC mock-up could gave those unfamiliar with SOFC Technology a chance to learn the basic, technical fundamentals of fuel cell development and operations. A detailed description of the first two early phases of the systems engineering approach to design and development provides the baseline system engineering process details to create a template reference model for the remaining four phases. The NPD reference template model\u27s systems engineering process, philosophy and design tools are presented in great detail. Lastly, the thesi

    A Systems Engineering Reference Model for Fuel Cell Power Systems Development

    Get PDF
    This research was done because today the Fuel Cell (FC) Industry is still in its infancy in spite over one-hundred years of development has transpired. Although hundreds of fuel cell developers, globally have been spawned, in the last ten to twenty years, only a very few are left struggling with their New Product Development (NPD). The entrepreneurs of this type of disruptive technology, as a whole, do not have a systems engineering \u27roadmap , or template, which could guide FC technology based power system development efforts to address a more environmentally friendly power generation. Hence their probability of achieving successful commercialization is generally, quite low. Three major problems plague the fuel cell industry preventing successful commercialization today. Because of the immaturity of FC technology and, the shortage of workers intimately knowledgeable in FC technology, and the lack of FC systems engineering, process developmental knowledge, the necessity for a commercialization process model becomes evident. This thesis presents a six-phase systems engineering developmental reference model for new product development of a Solid Oxide Fuel Cell (SOFC) Power System. For this work, a stationary SOFC Power System, the subject of this study, was defined and decomposed into a subsystems hierarchy using a Part Centric Top-Down, integrated approach to give those who are familiar with SOFC Technology a chance to learn systems engineering practices. In turn, the examination of the SOFC mock-up could gave those unfamiliar with SOFC Technology a chance to learn the basic, technical fundamentals of fuel cell development and operations. A detailed description of the first two early phases of the systems engineering approach to design and development provides the baseline system engineering process details to create a template reference model for the remaining four phases. The NPD reference template model\u27s systems engineering process, philosophy and design tools are presented in great detail. Lastly, the thesi

    College Catalog, 2011-2012

    Get PDF
    https://digitalcommons.buffalostate.edu/buffstatecatalogs/1221/thumbnail.jp

    College Catalog, 2012-2013

    Get PDF
    https://digitalcommons.buffalostate.edu/buffstatecatalogs/1223/thumbnail.jp

    2010 Calendar - Postgraduate

    Get PDF
    728pp. Includes an Index of Academic Programs and an Index of Courses.Contains academic program rules and syllabuses for all University of Adelaide postgraduate programs in 2010
    corecore