1,922 research outputs found

    Contextual Mixture of Experts: Integrating Knowledge into Predictive Modeling

    Full text link
    This work proposes a new data-driven model devised to integrate process knowledge into its structure to increase the human-machine synergy in the process industry. The proposed Contextual Mixture of Experts (cMoE) explicitly uses process knowledge along the model learning stage to mold the historical data to represent operators' context related to the process through possibility distributions. This model was evaluated in two real case studies for quality prediction, including a sulfur recovery unit and a polymerization process. The contextual mixture of experts was employed to represent different contexts in both experiments. The results indicate that integrating process knowledge has increased predictive performance while improving interpretability by providing insights into the variables affecting the process's different regimes

    Estruturas hierárquicas orientadas por dados em aprendizado multi-tarefa

    Get PDF
    Orientador: Fernando José Von ZubenDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Em aprendizado multi-tarefa, um conjunto de tarefas é simultaneamente considerado durante o processo de aprendizado de modo a promover ganho de desempenho através da exploração de similaridades entre tarefas. Em um número significativo de abordagens, tais similaridades são codificadas como informação adicional na etapa de regularização. Embora algumas estruturas sejam levadas em consideração em muitas propostas, como a existência de grupos de tarefas ou um relacionamento baseado em grafo, outras propostas mostraram que usar uma estrutura hierárquica corretamente definida poderá guiar a resultados competitivos. Focando em um relacionamento hierárquico, a extensão buscada nesta pesquisa é baseada na ideia de aprender a estrutura diretamente dos dados, possibilitando que a metodologia multi-tarefa possa ser estendida a uma gama mais vasta de aplicações. Assim, a hipótese levantada é que obter um relacionamento representativo dos dados baseado em hierarquia entre tarefas e usar esta informação adicional como um termo de penalização dentro do formalismo de aprendizado regularizado seria benéfico, relaxando a necessidade de um especialista específico de domínio e melhorando o desempenho de predição. Portanto, a novidade em abordagens hierárquicas orientadas por dados propostas nesta dissertação para aprendizado multi-tarefa é que a troca de informação entre tarefas reais associadas é promovida por tarefas hipotéticas auxiliares presentes nos nós mais altos, dado que as tarefas reais não são diretamente conectadas na hierarquia. Uma vez que a ideia principal envolve obter uma estrutura hierárquica, estudos foram feitos com foco em combinar ambas as áreas de clusterização hierárquica e aprendizado multi-tarefa. Três estratégias promissoras para a obtenção automática de estruturas hierárquicas foram adaptadas ao contexto de aprendizado multi-tarefa. Duas delas são abordagens Bayesianas, sendo uma caracterizada por ramificações não binárias. A possibilidade de corte na estrutura também é investigada, sendo uma poderosa ferramenta para detecção de tarefas outliers. Além disso, um conceito geral chamado Hierarchical Multi-Task Learning Framework é proposto, agrupando módulos individualmente, os quais podem ser facilmente estendidos em pesquisas futuras. Experimentos extensivos são apresentados e discutidos, mostrando o potencial da utilização de estruturas hierárquicas obtidas diretamente dos dados para guiar a etapa de regularização. Foram adotados nos experimentos tanto conjuntos de dados sintéticos com relacionamento entre tarefas conhecido como conjuntos de dados reais utilizados na literatura, nos quais foi possível observar que o framework proposto consistentemente supera estratégias bem estabelecidas de aprendizado multi-tarefaAbstract: In multi-task learning, a set of learning tasks is simultaneously considered during the learning process so that it can leverage performance by exploring similarities among the tasks. In a significant number of approaches, such similarities are encoded as additional information within the regularization framework. Although some sort of structure is taken into account by several proposals, such as the existence of task clusters or a graph-based relationship, others have shown that using a properly defined hierarchical structure may lead to competitive results. Focusing on a hierarchical relationship, the extension pursued in this research is based on the idea of learning it directly from data, enabling a methodology like this to be extended to a wider range of applications. Thus, the hypothesis raised is that obtaining a representative hierarchy-based task relationship from data and using this additional information as a penalty term in the regularization framework would be beneficial, relaxing the necessity of a domain-specific specialist and improving overall generalization predictive performance. Therefore, the novelty of the data-driven hierarchical approaches proposed in this dissertation for multi-task learning is that information exchange among associated real tasks is promoted by auxiliary hypothetical tasks at the upper nodes, given that the real tasks are not directly connected in the hierarchy. Once the main idea involves obtaining a hierarchical structure, several studies were performed focusing on combining both hierarchical clustering and multi-task learning areas. Three promising strategies for automatically obtaining hierarchical structures were adapted to the context of multi-task learning. Two of them are Bayesian-based approaches and one of those two is characterized by non-binary branching. The possibility of cutting edges is also investigated, being a powerful tool to detect outlier tasks. Moreover, a general concept called Hierarchical Multi-Task Learning Framework is proposed, individually grouping modules, which can be easily extended in future research. Extensive experiments are presented and discussed, showing the potential of employing a hierarchical structure obtained directly from task data within the regularization framework. Both synthetic datasets with known underlying relations among tasks and real-world benchmark datasets from the literature are adopted in the experiments, providing evidence that the proposed framework consistently outperforms well-established multi-task learning strategiesMestradoEngenharia de ComputaçãoMestre em Engenharia ElétricaCAPE

    Methodological contributions to the challenges and opportunities of high dimensional clustering in the context of single-cell data

    Get PDF
    With the sequencing of single cells it is possible to measure gene expression of each single-cell in contrast to bulk sequencing which enables only average gene expression. This procedure provides access to read counts for each single cell and allows the development of methods such that single cells are automatically allocated to cell types. The determination of cell types is decisive for the analysis of diseases and to understand human health based on the genetic profile of single cells. It is of common use that cell types are allocated using clustering procedures that have been developed explicitly for single-cell data. For that purpose the single-cell consensus clustering (SC3), proposed by Kiselev et al. (Nat Methods 14(5):483-486, 2017) is part of the leading clustering methods in this context and is also of relevance for the following contributions. This PhD thesis aims at the development of appropriate analysis techniques for the clustering of high-dimensional single-cell data and their reliable validation. It also provides a simulation framework for the investigation of the influence of distorted measurements of single cells towards clustering performance. We further incorporate cluster indices as informative weights into the regularized regression, which allows a soft filtering of variables

    Probabilistic prioritization of movement primitives

    Get PDF
    Movement prioritization is a common approach to combine controllers of different tasks for redundant robots, where each task is assigned a priority. The priorities of the tasks are often hand-tuned or the result of an optimization, but seldomly learned from data. This paper combines Bayesian task prioritization with probabilistic movement primitives to prioritize full motion sequences that are learned from demonstrations. Probabilistic movement primitives (ProMPs) can encode distributions of movements over full motion sequences and provide control laws to exactly follow these distributions. The probabilistic formulation allows for a natural application of Bayesian task prioritization. We extend the ProMP controllers with an additional feedback component that accounts inaccuracies in following the distribution and allows for a more robust prioritization of primitives. We demonstrate how the task priorities can be obtained from imitation learning and how different primitives can be combined to solve even unseen task-combinations. Due to the prioritization, our approach can efficiently learn a combination of tasks without requiring individual models per task combination. Further, our approach can adapt an existing primitive library by prioritizing additional controllers, for example, for implementing obstacle avoidance. Hence, the need of retraining the whole library is avoided in many cases. We evaluate our approach on reaching movements under constraints with redundant simulated planar robots and two physical robot platforms, the humanoid robot “iCub” and a KUKA LWR robot arm
    corecore