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Abstract

In multi-task learning, a set of learning tasks is simultaneously considered during the
learning process so that it can leverage performance by exploring similarities among the
tasks. In a significant number of approaches, such similarities are encoded as additional
information within the regularization framework. Although some sort of structure is taken
into account by several proposals, such as the existence of task clusters or a graph-based
relationship, others have shown that using a properly defined hierarchical structure may
lead to competitive results. Focusing on a hierarchical relationship, the extension pursued in
this research is based on the idea of learning it directly from data, enabling a methodology
like this to be extended to a wider range of applications. Thus, the hypothesis raised is
that obtaining a representative hierarchy-based task relationship from data and using
this additional information as a penalty term in the regularization framework would be
beneficial, relaxing the necessity of a domain-specific specialist and improving overall
generalization predictive performance. Therefore, the novelty of the data-driven hierarchical
approaches proposed in this dissertation for multi-task learning is that information exchange
among associated real tasks is promoted by auxiliary hypothetical tasks at the upper
nodes, given that the real tasks are not directly connected in the hierarchy. Once the
main idea involves obtaining a hierarchical structure, several studies were performed
focusing on combining both hierarchical clustering and multi-task learning areas. Three
promising strategies for automatically obtaining hierarchical structures were adapted to
the context of multi-task learning. Two of them are Bayesian-based approaches and one
of those two is characterized by non-binary branching. The possibility of cutting edges
is also investigated, being a powerful tool to detect outlier tasks. Moreover, a general
concept called Hierarchical Multi-Task Learning Framework is proposed, individually
grouping modules, which can be easily extended in future research. Extensive experiments
are presented and discussed, showing the potential of employing a hierarchical structure
obtained directly from task data within the regularization framework. Both synthetic
datasets with known underlying relations among tasks and real-world benchmark datasets
from the literature are adopted in the experiments, providing evidence that the proposed
framework consistently outperforms well-established multi-task learning strategies.

Keywords: Multi-Task Learning; Hierarchical Clustering; Regularization.



Resumo

Em aprendizado multi-tarefa, um conjunto de tarefas é simultaneamente considerado
durante o processo de aprendizado de modo a promover ganho de desempenho através da
exploração de similaridades entre tarefas. Em um número significativo de abordagens, tais
similaridades são codificadas como informação adicional na etapa de regularização. Embora
algumas estruturas sejam levadas em consideração em muitas propostas, como a existência
de grupos de tarefas ou um relacionamento baseado em grafo, outras propostas mostraram
que usar uma estrutura hierárquica corretamente definida poderá guiar a resultados
competitivos. Focando em um relacionamento hierárquico, a extensão buscada nesta
pesquisa é baseada na ideia de aprender a estrutura diretamente dos dados, possibilitando
que a metodologia multi-tarefa possa ser estendida a uma gama mais vasta de aplicações.
Assim, a hipótese levantada é que obter um relacionamento representativo dos dados
baseado em hierarquia entre tarefas e usar esta informação adicional como um termo de
penalização dentro do formalismo de aprendizado regularizado seria benéfico, relaxando
a necessidade de um especialista específico de domínio e melhorando o desempenho de
predição. Portanto, a novidade em abordagens hierárquicas orientadas por dados propostas
nesta dissertação para aprendizado multi-tarefa é que a troca de informação entre tarefas
reais associadas é promovida por tarefas hipotéticas auxiliares presentes nos nós mais
altos, dado que as tarefas reais não são diretamente conectadas na hierarquia. Uma vez
que a ideia principal envolve obter uma estrutura hierárquica, estudos foram feitos com
foco em combinar ambas as áreas de clusterização hierárquica e aprendizado multi-tarefa.
Três estratégias promissoras para a obtenção automática de estruturas hierárquicas foram
adaptadas ao contexto de aprendizado multi-tarefa. Duas delas são abordagens bayesianas,
sendo uma caracterizada por ramificações não binárias. A possibilidade de corte na estrutura
também é investigada, sendo uma poderosa ferramenta para detecção de tarefas outliers.
Além disso, um conceito geral chamado Hierarchical Multi-Task Learning Framework é
proposto, agrupando módulos individualmente, os quais podem ser facilmente estendidos
em pesquisas futuras. Experimentos extensivos são apresentados e discutidos, mostrando
o potencial da utilização de estruturas hierárquicas obtidas diretamente dos dados para
guiar a etapa de regularização. Foram adotados nos experimentos tanto conjuntos de
dados sintéticos, com relacionamento entre tarefas conhecido, como conjuntos de dados
reais utilizados na literatura, nos quais foi possível observar que o framework proposto
consistentemente supera estratégias bem estabelecidas de aprendizado multi-tarefa.

Palavras-chaves: Aprendizado Multi-Tarefa; Clusterização Hierárquica; Regularização.
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Chapter 1

Introduction

Countless problems distributed in distinct areas have been successfully solved
by machine learning techniques over the years and, with the exponential growth in the
amount of collected data in different domains alongside low-cost computation, a whole set
of new problems frequently arises to be tackled, demanding new computationally scalable
and high-performance approaches (JORDAN; MITCHELL, 2015).

Particularly, when a set of similar supervised tasks (regression or classification)
intends to learn linear predictive models, considering a procedure to jointly learn them
with information exchange may guide to better generalization performance. A simple and
intuitive use case in this setting would be modeling personalized predictors for a set of users
(e.g. spam detectors). These predictors may take advantage of similarities among related
users, so that better individual models can be produced, mainly when the performance of
single-task learning is limited by insufficient training data (XUE et al., 2007).

Associated with the transfer learning concept (see more in Pan & Yang (2010),
Xu & Yang (2011) and references therein), multi-task learning (MTL) has attracted atten-
tion when multiple related tasks are jointly solved, once common information across them
can flow as inductive bias, contributing to improve generalization performance (CARUANA,
1993; CARUANA, 1997). However, task relations are not always attainable and discovering
a good representation of their underlying structure may become considerably challenging.
In some fortunate cases, a domain expert is available to define the task relationship, but
not depending on an expert and letting data themselves tell how the tasks are related
would be more desirable (BAXTER, 1997; ZHANG; YEUNG, 2010).

In MTL early years, presuming all tasks being equally related was a popular
hypothesis or, even, that they share a common structure. However, if tasks are linked
in an improper manner, that is, a relationship is forced when it should not exist, MTL
may no longer be beneficial and might even produce negative transfer, characterized by a
worse performance than learning each task individually (XU et al., 2015; KANG et al.,
2011). Moreover, even in the case where tasks might seem all related to each other, distinct
degrees of relationship among tasks may be hidden and, therefore, those distinct degrees
would be completely neglected if all tasks are assumed to be equally related (BAKKER;



Chapter 1. Introduction 18

HESKES, 2003).
In order to address negative transfer, some approaches have been proposed

assuming a prior knowledge on the task relationship structure, such as clusters (JACOB et
al., 2008), graph models (EVGENIOU et al., 2005) and hierarchy (WIDMER et al., 2010),
most of them translated as additional information via the regularization term. Recently,
a small number of approaches have been proposed to learn a graph-based relationship
among tasks directly from data (GONÇALVES et al., 2014; ARGYRIOU et al., 2013),
but learning a hierarchy-based structure in this setting is a gap yet to be filled.

The area of clustering has been actively explored over the past decades in
different domains, providing several tools to group objects that present a determined level
of similarity. Either divisive or agglomerative, approaches have been proposed particularly
aiming at performing a hierarchical clustering on objects. Such generated hierarchical
structures provide distinct levels of granularity regarding the cluster organization of data.
Essentially, objects to be clustered are considered leaves in the hierarchical structure and
internal nodes represent clusters of leaves directly below in the hierarchy (MAIMON;
ROKACH, 2010).

Nonetheless, combining MTL and hierarchical clustering is challenging due
to the necessity of defining the objects to be clustered that will represent the tasks and
also how to measure task similarity in order to build a hierarchical structure. Moreover,
classical hierarchical clustering approaches do not provide an effective way of inferring the
number of clusters, once the output is just a single structure. Recently, Bayesian-based
approaches have been proposed, focused on addressing classic agglomerative hierarchical
clustering limitations, such as the lack of a probabilistic model describing the clusters
and the problem of inferring the number of clusters (HELLER; GHAHRAMANI, 2005a;
BLUNDELL et al., 2012).

Studies performed by Widmer et al. (2010) and Shan et al. (2012) have shown
that exploring a properly defined hierarchical structure may be beneficial to the learning
process, which motivates a research to address the scenario where one does not know
beforehand this hierarchical structure. Additionally, since the literature devoted to hier-
archical clustering has been actively explored, several tools to obtain a hierarchy-based
structure among objects may be employed, though its usage in the context of MTL has
not been deeply investigated.

Thus, with the purpose of contributing to the MTL community, the main
goal of this work is to study and develop methodologies that identify a representative
hierarchical relationship among tasks from data, and to take advantage of the obtained
structure in the regularization of the learning tasks. In this dissertation, three approaches
to obtain a hierarchical structure from tasks are proposed, in which two of them employ
the Bayesian-based algorithms proposed by Heller & Ghahramani (2005a) and Blundell et
al. (2012).
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1.1 Structure of the dissertation
The structure of the dissertation is divided into four parts. The first part

provides a literature review of the main concepts used in the research. The second part
introduces the proposals of the dissertation. The third part deals with the experiments
that exercise the proposals. The fourth part concludes the dissertation. A brief description
of the chapters is provided as follows:

Part I - Background

∙ Chapter 2 presents a literature overview regarding MTL focusing on the combina-
tion with the regularization framework, and discussing the main approaches and
applications found in the literature.

∙ Chapter 3 presents a literature overview regarding Hierarchical Clustering with
emphasis in Bayesian-based approaches advances, since they are directly related to
this work.

Part II - Proposals

∙ Chapter 4 introduces the proposed data-driven hierarchical multi-task learning
framework, motivating its conception and detailing its features.

Part III - Experiments

∙ Chapter 5 presents all the necessary information regarding the experimental setup,
such as evaluation metrics, description of the datasets, competing approaches and
specific settings of the experiments.

∙ Chapter 6 presents and discusses the results obtained from all the experiments
performed during the research, aiming at assessing the proposed approaches and
providing insights for those who want to understand, use or even extend it.

Part IV - Final considerations

∙ Chapter 7 concludes the dissertation by discussing the final considerations obtained
from the entire research, and suggests future directions to be followed in order to
extend the proposed approaches.



Part I

Background
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Chapter 2

Multi-task learning

2.1 Overview
Machine learning is evolving as a data-driven research area, offering several

tools to extract useful information from data in many distinct domains, characterizing
such processes of information extraction as learning tasks. Although there are several types
of learning tasks, the most common ones can be basically grouped into supervised learning
or unsupervised learning, which depends both on the configuration of the training data
and the goal of the task. Other learning scenarios may be encountered as well, such as
online learning, reinforcement learning and active learning (MOHRI et al., 2012).

In supervised learning, one has access to labeled data associated with a task,
that is, the data is composed of input values with their expected output values, and the
goal is to learn a model that captures correlations between input and output values, so
that predictions may be made via these correlations. In unsupervised learning, on the
other hand, the data is not labeled, so the goal is to learn correlations considering only
the input values, which is more challenging. In addition, there is semi-supervised learning,
which is characterized when one has access to a small amount of labeled data combined
with a large amount of unlabeled data. Figures 2.1(a) and 2.1(b) show two real world
examples of supervised learning tasks, whereas Figure 2.1(c) shows a real world example
of unsupervised learning task.

In order to work on a learning task, one generally has access to limited observed
data, compounding a finite and noisy dataset available for training the predictive model.
In practice, when learning these predictive models, one may consider splitting the observed
data into training and test sets, representing observed and unseen data, respectively.
Thereafter, training techniques are applied using the training set in order to learn the
predictive model, and its final performance is evaluated using the test set. Additionally,
the training set may be split into training and validation sets in order to perform internal
validations during the learning process.

Since currently there are several sources of data due to advances in computing
devices, a case where one needs to deal with not only one, but multiple related learning
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(c) Market segmentation

Figure 2.1 – Examples of learning tasks. (a) shows an example of a binary classification task,
where the goal is to classify e-mails into spam or not spam. (b) shows an example
of a linear regression task, where the goal is to predict sales for a determined store.
(c) shows an example of a clustering task, where the goal is to identify customer
groups potentially interested in the same market segment.

tasks could happen. Additionally, it could make more sense to break a large number of
collected training data into several possibly related learning tasks, thus preserving task
particularities inside each partition.

A naïve approach to deal with many related tasks would be applying traditional
single-task learning (STL), that is, learning each task in isolation, though this strategy
does not seem appropriate, since similarities across tasks are not exploited whatsoever
(EVGENIOU; PONTIL, 2004; ZHOU et al., 2011a). On the other hand, one could simply
consider learning a single general model simultaneously incorporating all the tasks, which
allows capturing the similarities among tasks, but individual information from each task
would be ignored, since the tasks are not identical (XUE et al., 2007). Figure 2.2 depicts
these two naïve approaches to deal with many related tasks.

w1

w2

w3

(a) Particularities

w

(b) Similarities

Figure 2.2 – Naïve approaches to solve multiple related tasks. Each circle filled in red represent a
task and w represent its respective resulting parameter vector after the training step.
In (a), the focus is on task particularities, where each task is treated individually
during the learning process, so that no information is exchanged among them. In
(b), the focus is on the task similarities, where all tasks are incorporated into one
general task during the learning process, but task particularities are ignored to
satisfy a general model.

Hence, a more intuitive approach would be letting tasks take their individual
information into account and also simultaneously learn from one another so that correlations
can be used as an inductive bias in the learning process. Such approach is known as multi-



Chapter 2. Multi-task learning 23

task learning (MTL) (CARUANA, 1993) and has attracted increasing attention over the
past years, supported by theoretical studies, such as in Ben-David & Schuller (2003) and
Ando & Zhang (2005), and empirical results, such as in Evgeniou et al. (2005), Widmer et
al. (2010) and Xu et al. (2015).

2.2 Task relationship
Although the idea of simultaneously learning a bunch of tasks seems attractive,

it only makes sense when the tasks exhibit some sort of relationship among them and when
one is able to properly identify the existing relationship. Such relationship could be known
beforehand, which is not a usual scenario (ZHONG; KWOK, 2012), or introduced by a
domain-specific expert (BAXTER, 1997). Either way, imposed relations may be incorrect
and depending upon experts tends to be costly (CARUANA, 1993). Those are relevant
motivations for letting the machine automatically learn the underlying relationship from
data (XUE et al., 2007). In spite of this, a number of approaches were proposed considering
that all tasks are somehow close to each other, which may not hold in many real-world
applications (XU et al., 2015). Therefore, a key point to get good results when applying
MTL is to properly capture task relationship (BEN-DAVID; SCHULLER, 2003; ZHANG;
YEUNG, 2010).

Nevertheless, when task relationship is incorrectly modeled, for instance forcing
a relationship among dissimilar tasks or failing to detect outlier tasks, MTL may no
longer be beneficial and might even degrade performance to the point that learning each
task in isolation would be better. This behavior is known as negative transfer (THRUN;
O’SULLIVAN, 1996; ZHANG; YEUNG, 2010; KANG et al., 2011; CHEN et al., 2011;
ZHONG; KWOK, 2012; XU et al., 2015). In MTL early stages, Caruana (1993) had already
approached this subject, pointing out that MTL is a problem-dependent tool that can
either help or hurt and, therefore, a deep analysis must be performed concerning the task
relationship.

Despite positive correlation, which happens when tasks are similar, Zhang &
Yeung (2010) considered negative correlation as well, that is, when dissimilar tasks help to
reduce the complexity of the learning stage. They argued that this kind of correlation can
be modeled by learning a task covariance matrix and most of the proposed approaches
consider that specific tasks only present either positive correlation or no relation. In their
work, a formulation is proposed for learning both task parameter vectors and the covariance
matrix. Gonçalves et al. (2014) also considered negative correlation in their work, but
the inverse covariance matrix (precision matrix) was taken into account rather than the
covariance matrix.

All this problematic around task relationship has led researchers to propose
numerous approaches with a variety of views regarding how tasks relates to each other. Such
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approaches range from using a shared hidden layer in neural networks (CARUANA, 1993;
CARUANA, 1997), assuming a common prior in Bayesian hierarchical models (BAKKER;
HESKES, 2003), assuming a low-rank structure among task parameter vectors (JI; YE,
2009) or assuming that task parameter vectors are structured in distinct clusters (THRUN;
O’SULLIVAN, 1996; JACOB et al., 2008; ZHANG; YEUNG, 2010), to name a few. A
wide discussion of the main approaches is presented in Section 2.4.

Another important aspect of MTL is its advantage over STL when dealing
with insufficient training data. Clearly, model quality is compromised if limited training
data is available, which perfectly fits the MTL formalism, since more information is
available in multiple related tasks and it also allows tasks to avoid learning individual
noise (CARUANA, 1993; EVGENIOU et al., 2005; XUE et al., 2007; WIDMER et al.,
2010). Still regarding training data, but dealing with its format in the supervised learning
context, the following scenarios can be considered in MTL: all tasks have the same output
values, but different input values; all tasks have the same input values, but different output
values; all tasks have different input and output values (EVGENIOU; PONTIL, 2004).

2.3 Regularized multi-task learning
Considering the case where training data (input and output) are different

among tasks and all tasks use the same feature space, MTL can be more formally defined
as follows. Let 𝒮 = {𝒮𝑘 : 𝑘 = 1, . . . , 𝑚} be the set of 𝑚 supervised learning tasks devoted
to learning linear models. The available training data for the 𝑘-th task, which has 𝑛𝑘 data
observations described by 𝑑 features, is represented by 𝒮𝑘 = {(x𝑖

𝑘, y𝑖
𝑘) : 𝑖 = 1, . . . , 𝑛𝑘},

where x𝑖
𝑘 ∈ R𝑑 is the input, while y𝑖

𝑘 ∈ R is the corresponding output when dealing with
regression problems, and y𝑖

𝑘 ∈ {0, 1} when dealing with binary classification problems.
Therefore, the goal is to learn a parameter vector w𝑘 ∈ R𝑑 for each task 𝑘, such that
𝑓(x𝑖

𝑘, w𝑘) ≈ y𝑖
𝑘, 𝑖 = 1, . . . , 𝑛𝑘 and 𝑘 = 1, . . . , 𝑚. Additionally, parameter vectors that need

to be estimated for the tasks are organized in a set denoted by 𝒲 = {w𝑘 : 𝑘 = 1, . . . , 𝑚}
for better exposition. Table 2.1 summarizes the components of a multi-task learning
problem.

Table 2.1 – Description of a multi-task learning problem.

Set 𝒮 Features Observations Training data* Set 𝒲
𝑇𝑎𝑠𝑘1 𝒮1 𝑑 𝑛1 {(x𝑖

1, y𝑖
1)}𝑛1

𝑖=1 w1 ∈ R𝑑

𝑇𝑎𝑠𝑘2 𝒮2 𝑑 𝑛2 {(x𝑖
2, y𝑖

2)}𝑛2
𝑖=1 w2 ∈ R𝑑

. . . . . . . . . . . . . . . . . .
𝑇𝑎𝑠𝑘𝑚 𝒮𝑚 𝑑 𝑛𝑚 {(x𝑖

𝑚, y𝑖
𝑚)}𝑛𝑚

𝑖=1 w𝑚 ∈ R𝑑

* x𝑖
𝑘 ∈ R𝑑 is the input, while the corresponding output is either y𝑖

𝑘 ∈ R or y𝑖
𝑘 ∈ {0, 1} for

regression or binary classification problems, respectively.
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In the STL case when dealing with linear predictive models, a common approach
to employ is to fix a convex loss function ℓ(𝑓(x, w), y), such as squared, logistic or hinge,
that measures the cost of the prediction 𝑓(x, w) = w⊤x compared to the correct output
y (JACOB et al., 2008). Then, this cost is averaged over all training data according to
Equation (2.1), denoted the empirical loss over the single training set:

𝐿(𝑋, y, w) = 1
𝑛

𝑛∑︁
𝑖=1

ℓ(𝑓(x𝑖, w), y𝑖) (2.1)

where 𝑛 is the number of observations, 𝑋 ∈ R𝑛×𝑑 is the input matrix and y ∈ R𝑛 is the
desired output vector. Bringing up the empirical loss to multiple tasks, Equation (2.1) can
then be generalized by taking into account all 𝑚 tasks together, leading to Equation (2.2):

𝐿(𝒮,𝒲) =
𝑚∑︁

𝑘=1

[︃
1
𝑛𝑘

𝑛𝑘∑︁
𝑖=1

ℓ(𝑓(x𝑖
𝑘, w𝑘), y𝑖

𝑘)
]︃

(2.2)

Although Equation (2.2) can simultaneously cover the empirical loss of multiple
tasks, it is still equivalent to treating each task independently. Moreover, computing
the average of the empirical loss of each task ignores that the 𝑘-th task may have more
information than others, thus 1

𝑛𝑘
can be removed from Equation (2.2) to encourage such

bias, resulting in the Equation (2.3):

𝐿(𝒮,𝒲) =
𝑚∑︁

𝑘=1

𝑛𝑘∑︁
𝑖=1

ℓ(𝑓(x𝑖
𝑘, w𝑘), y𝑖

𝑘) (2.3)

In order to incorporate the relationship among tasks, the well-established
regularization framework, which is largely applied to STL, can be generalized to the
context of MTL, providing tools to model task relations. Essentially, prior assumptions
about task relationship can be enforced in the regularization term 𝑅 (EVGENIOU;
PONTIL, 2004; JACOB et al., 2008; WIDMER et al., 2010; GONG et al., 2012). Hence,
the regularized MTL cost function can be represented by Equation (2.4):

𝐽(𝒮,𝒲) =
𝑚∑︁

𝑘=1

𝑛𝑘∑︁
𝑖=1

ℓ(𝑓(x𝑖
𝑘, w𝑘), y𝑖

𝑘)⏟  ⏞  
MTL loss function

+𝜆 𝑅(𝒲)
(2.4)

where 𝜆 ≥ 0 is a hyper-parameter that controls the penalty influence and should be
optimized by using some technique, such as cross-validation. Therefore, an optimum
𝜆 must be found so that it can provide a balance between the terms 𝐿 and 𝑅. This
formulation also covers the case where all tasks are indeed independent, thus becoming
equivalent to STL (EVGENIOU; PONTIL, 2004).

Finally, the optimization problem boils down to finding the task parameter
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vectors 𝒲 , given training data 𝒮, which minimizes the regularized cost function 𝐽 , such
that:

𝒲* = arg min
𝒲

𝐽(𝒮,𝒲) (2.5)

As will be seen in Section 2.4, the class of regularized MTL is very popular and
several approaches have been proposed on top of it, where a notion of task similarity is
translated into the regularization term. Usually, researchers have pursued convex or, at
least, bi-convex formulations for 𝐽 , so that off-the-shelf optimization techniques can then
be applied.

In addition, if the cost function 𝐽 is smooth, the optimization problem expressed
in Equation (2.5) could be efficiently solved by first-order iterative optimization algorithms,
such as the gradient descent method, which has convergence rate of 𝑂(1/𝑡), where 𝑡 is
the number of iterations. A gradient descent method starts at an initial condition and
iteratively explores the search space toward better candidate solutions.

In order to speed up the gradient descent method, Nesterov (1983) proposed
an accelerated gradient method (AGM), which has convergence rate of 𝑂(1/𝑡2). Basically,
AGM uses a linear combination of the last two candidate solutions to operate as the starting
point of the search. Recently, AGM’s author also proposed other accelerated methods
covering non-smooth convex functions (NESTEROV, 2005) and composite functions
(NESTEROV et al., 2007). Although AGM is designed for general purposes, in the MALSAR
toolbox (ZHOU et al., 2011b), which stands for Multi-tAsk Learning via StructurAl
Regularization, most of the included MTL approaches are implemented via AGM.

2.3.1 STL and regularized MTL: a comparative example

The simplest scenario in which MTL approaches may be employed is the one
composed of only two similar tasks (𝑡1 and 𝑡2). In this section, a comparative example
between STL and regularized MTL considers such scenario, where the goal of each task is
fit a line aiming at modeling the linear relationship between the output y and the input
x. Moreover, in order to provide a visual motivation of the results, each observation in
the employed datasets is described by only one feature, that is, they are simple linear
regression tasks. Hence, the resulting figures can be depicted in two dimensions.

Each dataset employed in this example has a population of 1000 data points
randomly generated by x ∼ 𝒩 (0, 1) and y = xw + 𝒩 (0, 3), where 𝒩 is the normal
distribution, and the ground truth parameters for 𝑡1 and 𝑡2 are the values w1 = 3.368
and w2 = 3.321, respectively. Notice that w1 and w2 are similar values, making the tasks
properly fitting to be solved by MTL approaches. Since in this example the tasks are going
to be solved by regularized MTL, the estimated parameters are going to be encouraged to
be similar, having their deviations penalized. Finally, the parameters represent the slope
of the regression line, whereas the intercept is fixed to zero.
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In Figures 2.3(a) and 2.3(b), both population (1000 points) and ground truth
line are shown. From the population, 50 data points were randomly sampled to compose
the training set for each task, representing 5% of all data. Thus, after performing a training
on these 50 data points, the results for each task are depicted in Figures 2.4(a) and 2.4(b),
representing the training via STL, and Figures 2.5(a) and 2.5(b), representing the training
via regularized MTL. Notice that the lines obtained by the regularized MTL is closer to
the ground truth lines than the ones obtained by STL. Finally, the more similar tasks
compound the problem, the higher is the advantage of MTL over STL. Conversely, the
easier the problem becomes, the more equivalent STL and MTL tends to be.
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(a) Ground truth slope: 3.368 (𝑡1)

−4 −3 −2 −1 0 1 2 3 4
x

−15

−10

−5

0

5

10

15

y

ground truth
data

(b) Ground truth slope: 3.321 (𝑡2)

Figure 2.3 – Comparison between STL and regularized MTL: the ground truth. (a) and (b) show
data points and the ground truth line for 𝑡1 and 𝑡2, respectively.
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(a) Slope via STL: 3.224 (𝑡1)
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(b) Slope via STL: 3.486 (𝑡2)

Figure 2.4 – Comparison between STL and regularized MTL: STL results. (a) and (b) show
limited training data points and the resulting linear regression lines via STL for 𝑡1
and 𝑡2, respectively.
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(a) Slope via regularized MTL: 3.347 (𝑡1)
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(b) Slope via regularized MTL: 3.350 (𝑡2)

Figure 2.5 – Comparison between STL and regularized MTL: MTL results. (a) and (b) show
limited training data points and the resulting linear regression lines via regularized
MTL for 𝑡1 and 𝑡2, respectively. The lines obtained via regularized MTL are closer
to the ground truth than lines obtained via STL.

2.4 Main approaches
A common view among the wide number of approaches that have been proposed

in the MTL literature is devoted to task relationship. In this manner, the following
subsections describe the main approaches, distinguishing the ones that assume that all
tasks are related and the ones that assume that task relationship is encoded in some sort of
structure (clustered, graph-based and hierarchical). Clearly, the MTL literature comprises
a large number of proposals, so the intention with this section is to provide a general view
of the main approaches in order to identify research opportunities.

2.4.1 All tasks are related

One of the earliest models introduced in the MTL literature was proposed
by Caruana (1993), where task relationship is defined in neural network hidden units
and each task corresponds to an output in the output layer. Thus, tasks using the same
features in the hidden layer are considered similar. Succeeding and highly popular in STL,
regularization–based methods was first extended to the context of MTL by Evgeniou &
Pontil (2004), assuming the existence of underlying task parameter vector shared across
tasks, where a regularization penalty is imposed on task parameter vectors, so that all of
them are constrained to be close to their feature-by-feature average. Thereafter, Argyriou et
al. (2006) proposed an approach assuming that tasks share a common set of features, where
a group sparsity penalty is imposed on task parameter vectors. Furthermore, Abernethy et
al. (2006) and Ji & Ye (2009) considered imposing a trace norm on task parameter vectors,
assuming they share a low-dimensional subspace.
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Approaches presented so far do not consider the case where outlier tasks are
present, once they assume either all tasks are close to each other or tasks share a common
structure. Consequently, negative transfer from an outlier task might easily degrade
generalization performance (XU et al., 2015). Aiming at addressing this issue, the following
regularized MTL approaches have been proposed, where the regularization penalty imposed
on task parameter vectors is decomposed in two components:

∙ Chen et al. (2011) proposed a robust MTL formulation, decomposing task parameter
vectors in a component that identifies the task relationship using a low-rank structure
(similar to Ji & Ye (2009)) and another component that identifies outlier tasks using
a group-sparse structure.

∙ Gong et al. (2012) also proposed a robust MTL formulation for feature learning,
decomposing task parameter vectors in a component that captures common features
among relevant tasks (similar to Argyriou et al. (2006)) and another component that
identifies outlier tasks;

Nevertheless, despite all mentioned approaches consider that tasks are somehow
related, most advanced approaches relax this constraint, as will be seen in the next sections.

2.4.2 Clustered structure

Several approaches are based on the idea that relationship among tasks follows
a clustered structure, so that knowledge transfer is allowed only among tasks within the
same cluster. To begin with, Evgeniou et al. (2005) showed different approaches on how
to incorporate kernel methods and regularization into MTL, and one of such approaches
included a task clustering regularization. The initial idea that all task parameter vectors
were assumed to be close to their average was extended considering only tasks within the
same group, though task membership needed to be known a priori.

In order to avoid the necessity of knowing the task membership, a number of
approaches have been proposed to learn a clustered structure directly from data. In MTL
early stages, Thrun & O’Sullivan (1996) proposed a methodology to learn task clusters
by using a pairwise relationship metric among tasks, where distances are measured based
on how well a task model performs when applied to another task. Relying in Bayesian
hierarchical models, Bakker & Heskes (2003) applied an approach in neural networks where
a mixture distribution is considered rather than a single Gaussian prior, meaning that
each Gaussian in the mixture represents a cluster, though the number of mixtures needs
to be informed a priori. On the other hand, Xue et al. (2007) proposed an approach that
automatically identifies the task structure without knowing beforehand the number of
clusters, where task similarities are learned based on Dirichlet process.
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Jacob et al. (2008), in turn, proposed a convex formulation considering that
task membership is not known a priori and parameters of tasks in the same cluster are
constrained to be similar to each another. Kang et al. (2011) and Zhou et al. (2011a)
also considered this scenario, but applied alternating optimization to simultaneously learn
task parameter vectors and perform task clustering. Recently, Xu et al. (2015) proposed
an approach that assumes a co-clustered structure, arguing that most proposals are
restricted by the fact that tasks within the same cluster are close in all features, which
might not be always the case. Zhong & Kwok (2012) also approached this scenario in
their work, assuming that clusters can vary from feature to feature, but Xu et al. (2015)
pointed out that feature relationship are completely neglected in this case. On the other
hand, the co-clustered-based formulation of Xu et al. (2015) is capable of capturing both
global similarities among tasks and group-specific similarities, then considering feature
relationship.

2.4.3 Graph-based structure

Although assuming a clustered structure seems attractive, once information is
not transferred among different clusters, tasks within the same cluster are constrained to
have similar parameter vectors, which may not hold in all the cases. Such scenario can
be better modeled using a graph-based structure, where weighted edges between tasks
can quantify how strong their relations are and, with densely connected subgraphs, even
clusters of tasks can be represented (ARGYRIOU et al., 2013).

Given a graph of relations among features, Li & Li (2008) proposed a STL
formulation that both performs feature selection and penalizes deviations in a genetic
graph structure which employs the Laplacian regularization term. In Zhou et al. (2011b),
the Laplacian regularization was brought up to the context of MTL, where a graph models
relations among task parameter vectors rather than features. A limiting factor on the
previously mentioned approaches is that those formulations assume the knowledge of the
graph structure beforehand, information not usually available.

In order to address the aforementioned limitation, some efforts have been made
in the sense of modeling the task relationship as a graph via alternating optimization,
where such structure is learned directly from data alongside task parameter vectors. In
this manner, Argyriou et al. (2013) considered the case of jointly learning task parameter
vectors and their graph Laplacian. Recently, Gonçalves et al. (2014) combined MTL and
advances in structure learning of probabilistic graphical models, proposing an approach
to learn both task parameter vectors and their sparse inverse covariance matrix, which
represents a graph of relations among tasks.
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2.4.4 Hierarchical structure

A number of approaches in the MTL literature have also taken into account a
hierarchical task structure among tasks, comprising cases similar to graph-based, where
the structure can either be known a priori or not. Widmer et al. (2010) considered the
case where tasks are leaves in a given hierarchical structure described by a phylogenetic
relationship and proposed two approaches to explore such hierarchy. In the former, a
top-down approach is employed by individually learning task parameter vectors for all
nodes, where each node is composed of data union from tasks below in the hierarchy and a
regularization penalty is imposed, constraining the task parameter vector from a node to be
similar to the parameter vector of its parent node. In the latter, all task parameter vectors
are simultaneously learned and a regularization penalty is imposed on task parameter
vectors via a closeness measure derived from the hierarchy, which is similar to treating the
structure as a graph with edge weights calculated by the mentioned closeness measure.

Recently, the idea of decomposing task parameter vectors in two components
(as mentioned earlier in the case where outlier tasks are present) was extended, considering
multiple components rather than only two. In Han et al. (2014), a probabilistic tree sparsity
model alongside a product decomposition is employed assuming a given tree structure,
where each node corresponds to a component and the product from a leaf to the tree root
is the sought parameters for its associated task. In contrast, a sum-based decomposition
in a multi-level structure was considered in Han & Zhang (2015), where each level groups
tasks via multiple regularization terms in a descending order, that is, the lower the level,
the more the number of task groups, constraining task parameter vectors within the same
group to be similar with each other.

In a similar direction regarding levels of sharing, Zweig & Weinshall (2013)
considered a top-down iterative feature selection structure, where the incentive to share
information among tasks is gradually decreased by using a hierarchy of regularization
functions. Unlike Han et al. (2014), both approaches from Han & Zhang (2015) and Zweig
& Weinshall (2013) do not depend upon knowing any structure a priori, though the number
of levels does need to be optimized.

2.5 Applications
An important and natural contribution that all researches in the area of MTL

have brought is a variety of case studies and insights for applications. Pertaining to
the interdisciplinary machine learning field, MTL has been applied in different domains,
including bioinformatics, robotics, computer vision, meteorology and medicine. Hence, an
overview of some applications is provided as follows.

When training neural networks, Caruana (1993) justified the usage of MTL
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by presenting two use cases in computer vision, where the goal is to learn main tasks
aided by a number of auxiliary tasks. In the former use case, the main task aimed at
predicting steering direction using road images, while simultaneously learning 8 auxiliary
tasks, for example: road center location, road surface intensity, and whether the road
has one or two lanes. In the latter use case, the main tasks aimed at locating doorknobs
and recognizing door types using door images collected by a robot, while simultaneously
learning 10 auxiliary tasks, for example: doorway width, right edge horizontal location,
and whether the door is single or double. In both cases, MTL outperformed tasks trained
individually.

Another example is a real-world problem, whose data have been employed as a
benchmark dataset in publications such as Chen et al. (2011), Zhou et al. (2011b) and
Xu et al. (2015). The problem consists of predicting exam scores of students that are
distributed in many secondary schools. Bringing up to the context of MTL, each school
can be seen as one task and each student is a specific observation described by a number
of demographic attributes. This configuration motivates the usage of MTL when dealing
with data composed of entities that are divided into groups.

MTL has also been applied to predict disease progression. Zhou et al. (2011c)
brought MTL and Alzheimer’s disease progression together by considering cognitive scores
prediction at each time point as a task, where each task is related to its neighboring
time points. Extensive experimental studies were performed and results showed that
the proposed MTL approach could capture the progression trends better than existing
methods.

In the context of bioinformatics, Widmer et al. (2010) considered the problem
of splice site prediction across different organisms. In this setting, each organism is a
task and their relations are derived from a given beforehand phylogenetic tree. Thus, a
model quality improvement is assumed when using information from such tree, since tasks
with sufficient evolutionary distance are expected to help improving one another. In other
words, the closer the organisms are in the tree, the more information exchange is expected
among them. Results demonstrated that MTL outperformed baseline methods with large
margin, suggesting MTL as a potential tool to be used with known biological structures.

Lastly, the problem of temperature prediction considering global climate model
outputs is approached by Gonçalves et al. (2014) as part of the performance evaluation of
their proposed MTL framework. In this setting, each geographical location is a task and
their relations are encoded in a sparse graph, which is jointly learned with task parameter
vectors. It is worth mentioning that the method is not influenced by the geographical
neighborhood among locations, in the sense that the geographical coordinates are not
provided as input information. Results confirmed better performance of the proposed
approach against baseline methods, and also showed informative correlations among
locations captured by the graph.
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2.6 Chapter summary
This chapter presented an overview regarding Multi-Task Learning (MTL),

pointing out distinct task relationship views, the trend involving MTL and the regu-
larization framework, and case studies employing MTL. Due to the complexity of real
world problems, learning a general model considering all training data within a single
task or learning individual models without taking into account task similarities is not
attractive, mainly when limited training data is available and the tasks exhibit some sort
of structure. Besides, the task relationship must be carefully identified (preferably in an
automatic manner) rather than assuming that all tasks are related, avoiding the occurrence
of negative transfer of information among tasks. Finally, the usage of a given hierarchical
structure by Widmer et al. (2010) motivates a subsequent research on letting the machine
uncover the task hierarchical structure, which is going to be the main contribution of this
dissertation.
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Chapter 3

Hierarchical clustering

3.1 Overview
Chapter 2 discussed the area of MTL focusing on supervised learning tasks,

though a limited number of MTL proposals consider addressing unsupervised learning tasks
as well. Despite this, unsupervised learning in general context has also been extensively
studied over the past decades, resulting in the proposal of several techniques to model the
relationship among objects without relying on labeled data, such as association rules, cluster
analysis, self-organizing maps, dimensionality reduction, among others (FRIEDMAN et
al., 2001). In addition, Section 2.4.2 has shown that unsupervised learning steps may be
incorporated into the context of MTL, for instance by clustering similar tasks and letting
the occurrence of information exchange only within the cluster.

Specifically dealing with the task of clustering objects in general context, the
goal for such tasks is to group similar objects, so that sufficiently distinct objects remain
in separate groups. Due to a subjective notion of the organization of objects into clusters,
several approaches have been proposed in the clustering literature, basically denoted as
partitional and hierarchical algorithms (JAIN et al., 1999). In Figure 3.1, a comparison is
shown between partitional and hierarchical clustering views considering the same set of
objects.

(a) Dataset (b) Partitional (c) Hierarchical

Figure 3.1 – Comparison between partitional and hierarchical clustering views.

Additionally, simpler approaches like the 𝑘-means algorithm require the a priori
definition of the number of clusters, whereas advanced approaches based on a Dirichlet
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Process (infinite mixture) obtains it from data. Related to the research detailed in this
dissertation, the class of hierarchical clustering is discussed with more attention and, for a
survey on clustering algorithms, the reader is invited to refer to Xu & Wunsch II (2005),
Berkhin (2006) and references therein.

In essence, hierarchical clustering algorithms can be classified into divisive
(top-down) and agglomerative (bottom-up) strategies. Both strategies provide a tree
structure as the output, often referred as dendrogram, where the leaves are the original
objects to be clustered and internal nodes represent clusters of leaves directly below in
the hierarchy. In the divisive approach, all objects start in the same cluster and a divisive
strategy is recursively applied, progressively forming sub-clusters down in the hierarchy
until each object ends up on its own cluster or a given number of levels is reached. In the
agglomerative approach, in turn, each object starts in its own cluster and an agglomerative
strategy is recursively applied, progressively forming larger clusters up in the hierarchy
until all objects end up in the same cluster or a given number of clusters is reached
(MAIMON; ROKACH, 2010). In this chapter, the focus is on the agglomerative approach,
which is more frequently studied in the information retrieval area (MANNING et al.,
2008).

An attractive advantage of hierarchical clustering algorithms over partitional
clustering algorithms is the interpretability that the resulting tree provides. In other words,
one can perform analyses taking into account all different levels of granularity exhibited
by the nested clusters (BERKHIN, 2006), as exemplified in Figure 3.2.

(a) Nested clusters

2

3

6

(b) Hierarchical representation

Figure 3.2 – Hierarchical representation of a set of objects showing different levels of granularity
exhibited by the nested clusters. In (b), one can consider having 2, 3 or even 6
plausible clusters.

Although the number of clusters does not need to be specified a priori, inferring
it from a hierarchical structure might not be an easy task. Usually, some cut strategy
is applied in order to derive clusters from a hierarchical structure, such as cutting at a
determined level of similarity, cutting when a large gap between two successive levels is
identified or, as pointed out earlier, stop the algorithm when a desired number of clusters
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is reached (MANNING et al., 2008).
One downside of hierarchical clustering algorithms, however, is that such

strategies tend to be prohibitive when dealing with a large number of objects due to the high
cost of building the tree, even restricted to binary trees, which makes partitional algorithms
more interesting to be employed (DUDA et al., 1995; JAIN et al., 1999). Moreover, the
usage of an incorrect similarity strategy or the presence of noise may contribute to generate
uninformative results (KARYPIS et al., 1999). Lastly, a disadvantage exhibited for most
hierarchical clustering algorithms is the lack of structure revision during its construction,
because node relations are never revisited once created (BERKHIN, 2006).

Aiming at exemplifying the ease of interpretation provided by a hierarchical
structure, Figure 3.3 shows undergraduate courses hierarchically organized, where internal
nodes are properly labeled as major clusters. Depending on the problem, one could be
interested in obtaining clusters by area, which results in three clusters, or by field, to be
even more specific. Clearly, the internal nodes represent obvious groups in this example,
but real world problems can admit latent grouping levels that only hierarchical clustering
algorithms are able to identify. Furthermore, the tree presented in the example is not
binary but, since the hypothesis space for binary trees are easier to deal with, several
algorithms provide a binary tree as output, though some efforts have been made to relax
this constraint.

Humanities
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English
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Molecular Biology
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Figure 3.3 – Example of a hierarchical organization of a number of undergraduate courses.
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3.2 Agglomerative hierarchical clustering: a binary structure
perspective

Treating the problem more formally, let 𝒟 = {x𝑖 : 𝑖 = 1, . . . , 𝑛} be the set of 𝑛

objects, where each object is described by 𝑑 features. The goal is to organize the objects in
a binary tree structure 𝒯 , such that leaf nodes in 𝒯 represent the objects in 𝒟 and internal
nodes represent clusters of leaves directly below in the hierarchy. In other words, the 𝑖-th
internal node can be viewed as a sub tree 𝒯𝑖 composed of 𝒟𝑖 ⊆ 𝒟 objects. In addition, a
similarity strategy 𝒮 must be defined in order to identify the clustering levels. Finally, since
each object starts in its own singleton cluster when initializing the algorithm, they also
represent 𝑛 trivial trees {𝒯𝑖 : 𝑖 = 1, . . . , 𝑛} and, via the similarity metric 𝒮, the algorithm
progressively identifies the most similar tree pair (𝒯𝑖, 𝒯𝑗) and merges them forming a new
internal node 𝒯𝑘, which is composed of the objects 𝒟𝑘 = 𝒟𝑖 ∪ 𝒟𝑗. Algorithm 3.1 shows
the general procedure for agglomerative hierarchical clustering.

Algorithm 3.1: General procedure of agglomerative hierarchical clustering
Input : A set 𝒟 of objects to be clustered; a similarity metric 𝒮.
Output : A tree structure 𝒯 representing the hierarchical organization of the

objects.
1 begin
2 Initialize 𝑛 trivial trees. Each 𝑇𝑖 is composed of 𝐷𝑖 = {x𝑖}, 𝑖 = 1, . . . , 𝑛.
3 Initialize ℒ ← {1, . . . , 𝑛} as labels for available trees to be merged.
4 Initialize 𝑘 ← 𝑛 + 1 to be the label for the next merged sub tree.
5 while | ℒ | > 1 do
6 Find the closest tree pair (𝑇𝑖, 𝑇𝑗) using the similarity metric 𝒮, {𝑖, 𝑗} ⊂ ℒ.
7 Create a new tree node 𝑇𝑘 ← (𝑇𝑖, 𝑇𝑗) composed of 𝐷𝑘 ← 𝐷𝑖 ∪ 𝐷𝑗.
8 Update the labels:ℒ ← ℒ+ {𝑘} − {𝑖, 𝑗}.
9 Update the next label: 𝑘 ← 𝑘 + 1.

10 end
11 end

Classic agglomerative hierarchical clustering algorithms include the so-called
and widely used linkage methods. Such methods vary in the employed similarity metric,
usually distance-based, including Euclidean, Manhattan or cosine, to name a few. The
most popular linkage methods are single linkage, complete linkage and average linkage,
which consider similar objects by minimum, maximum and average distance, respectively
(BERKHIN, 2006). Hence, the selected linkage method is applied as the similarity metric
𝒮 in Algorithm 3.1, so that the most similar object pair is selected to be merged at each
iteration.

However, the following drawbacks associated with linkage methods are discussed
by Heller & Ghahramani (2005a) in order to motivate the proposal of their probabilistic
approach. Firstly, it would be necessary to rerun the algorithm when a new object is
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available in order to recalculate the distances, once a distance-based similarity metric
is employed. Secondly, choosing a distance metric among many options is often hard,
especially for structured data, such as images and gene expression profiles. Lastly, linkage
methods are not capable of identifying the number of clusters by themselves. Often, it
depends on either subjective assumptions by visual identification or arbitrary strategies,
such as pruning the tree at a determined distance level.

3.3 Bayesian hierarchical clustering (BHC)
Motivated by linkage limitations, Heller & Ghahramani (2005a) proposed a

Bayesian-based approach named Bayesian Hierarchical Clustering (BHC) that, basically,
differs from linkage methods in the similarity metric adopted. They argued that such
limitations would be addressed by defining a probabilistic model of the data, enabling the
incorporation of a new object by computing its predictive distribution without rerunning
the algorithm, and also allowing model comparisons with other probabilistic models.
Moreover, measuring similarity among objects via statistical tests could identify objects
that are most likely part of the same cluster, information ignored by a distance-based
similarity metric. Finally, pruning the tree in order to identify the number of clusters would
be enabled once verified that objects in the merge operation are more likely to belong to
different clusters. Further details regarding the algorithm are provided in Section 3.3.2.

3.3.1 Motivation

A number of interesting examples comparing average-linkage and BHC are
provided by Heller & Ghahramani (2005a) in their work, and a particular one was extended
in this dissertation in order to motivate the usage of BHC. Basically, a comparison of the
generated dendrograms is made among the techniques single-linkage, complete-linkage,
average-linkage and BHC.

In Figure 3.4, a plot of the employed dataset is shown, which was obtained
from the BHC authors’ homepage1. In this example, assume all data cross-like arranged in
two dimensions and the observed data being represented by those 18 points labeled from
0 to 17. The goal is to identify the most informative dendrogram among the mentioned
techniques, the one that best describes the existence of two major clusters composed of
labels [0, 9] and [10, 17].

Figure 3.5 shows dendrograms obtained from linkage-based techniques. Overall,
none of them were able to capture two major clusters, showing that employing a distance-
based similarity metric fails in scenarios represented by the example. Clearly, the object
labeled as 17 always appears closer to the group [0, 9]. Assuming an a priori radial

1http://www.gatsby.ucl.ac.uk/∼heller/code/bhc
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Figure 3.4 – Example dataset for clustering obtained from BHC author’s homepage. The objects
to be clustered are represented by numbered labels. Consider the existence of two
major clusters composed of labels [0, 9] and [10, 17].

distribution for the data, the effective distribution is never taken into account in a distance-
based similarity metric, motivating the usage of a probabilistic-based similarity metric.
Although one could easily identify the clusters by just looking to Figure 3.4, practical
applications often are composed of a higher number of dimensions and a more complex
data distribution, so that visual inspection is no more feasible.
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(a) Single linkage
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(b) Complete linkage
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(c) Average linkage

Figure 3.5 – Hierarchical structures obtained from the example dataset via different linkage
strategies. None of them were able to obtain a structure indicating the presence of
2 major clusters.
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In Figure 3.6, on the other hand, two clusters can be easily identified after
applying the BHC algorithm, which properly represents the expected structure. In this case,
object 17 follows the data distribution and appears within the group [10, 17]. Moreover,
the BHC algorithm would suggest to prune the last node in the structure so that the two
clusters be completely independent from each other. Therefore, this example motivates
the usage of BHC instead of distance-based approaches, since BHC is capable of properly
identifying aspects of the problem.
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Figure 3.6 – Hierarchical structure obtained from the example dataset via Bayesian Hierarchical
Clustering. The obtained hierarchical structure clearly indicates the presence of 2
major clusters. This example is based on Heller & Ghahramani (2005a).

3.3.2 Overview of the BHC algorithm

This section is intended to present an overview of the BHC algorithm, since it is
directly related to the research detailed in this dissertation. However, for a comprehensive
explanation of the theory behind the BHC proposal, the reader is invited to refer to the
original work described in Heller & Ghahramani (2005a).

Essentially, BHC assumes that data to be clustered are generated from a Dirich-
let Process Mixture Model (DPMM), which considers an infinite number of components
instead of assuming that data are generated from a finite number of components. In
practice, clustering through DPMM is more attractive and it has been widely studied,
since it does not require the a priori specification of the number of clusters. Moreover,
defining beforehand in how many clusters a particular dataset will be divided is often
difficult when dealing with real world applications. As presented in Section 2.4.2 related
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to MTL, Xue et al. (2007) employed a similar strategy to learn the clustered structure
among tasks, though a hierarchical structure was not considered by them.

Focusing on the algorithm itself, two intuitive hypotheses are tested for every
candidate sub tree pair (𝒯𝑖, 𝒯𝑗) to be merged as 𝒯𝑘, which basically functions as a similarity
metric for the agglomerative hierarchical clustering procedure presented in Algorithm 3.1.
The first hypothesis, denoted as ℋ𝑘

1 , indicates that data in 𝒟𝑘 come from the same mixture,
that is, data were generated from the same probabilistic model 𝑝(𝑥|𝜃) with unknown
parameters 𝜃. The alternative hypothesis, denoted as ℋ𝑘

2 , indicates that data come from
two or more mixtures.

In order to evaluate the probability of ℋ𝑘
1 , a prior probability 𝑝(𝜃|𝛽) over

the unknown parameters 𝜃 with hyper-parameters 𝛽 must be specified. Assuming a
probabilistic model 𝑝(𝑥|𝜃), the probability of the data 𝒟𝑘 under ℋ𝑘

1 can be computed as
follows:

𝑝(𝒟𝑘|ℋ𝑘
1) =

∫︁
𝑝(𝒟𝑘|𝜃) 𝑝(𝜃|𝛽) 𝑑𝜃 (3.1)

Depending on the dataset 𝒟, distinct distributions for 𝑝(𝑥|𝜃) can be employed,
such as multinomial distribution and Gaussian distribution for categorical and continuous
data, respectively. In addition, the integral in Equation (3.1) is tractable if 𝑝(𝑥|𝜃) is chosen
with a conjugate prior, for instance, the Normal-Inverse-Wishart prior when dealing with
Gaussian data. Refer to Murphy (2007) for a thorough conjugate Bayesian analysis of the
Gaussian distribution.

When dealing with the alternative hypothesis ℋ𝑘
2 , which means that 𝒟𝑘 come

from two or more mixtures, considering all possibilities in order to divide the data into
an unknown number of mixtures is certainly intractable. Instead, it can be recursively
computed if the hypothesis space is limited to the already built structures in the sub trees
(𝒯𝑖, 𝒯𝑗). Thus, the probability of the data 𝒟𝑘 under ℋ𝑘

2 can be evaluated as follows:

𝑝(𝒟𝑘|ℋ𝑘
2) = 𝑝(𝒟𝑖|𝒯𝑖) 𝑝(𝒟𝑗|𝒯𝑗) (3.2)

where 𝑝(𝒟𝑘|𝒯𝑘) is the marginal probability of the data 𝒟𝑘 given the tree 𝒯𝑘, recursively
evaluated as shown in Equation (3.3). In addition, 𝜋𝑘 is defined as the weight representing
the prior 𝑝(ℋ1) for the merged hypothesis, which can be computed considering the DPMM
concentration parameter 𝛼 during the tree construction, as shown in Heller & Ghahramani
(2005a).

𝑝(𝒟𝑘|𝒯𝑘) = 𝜋𝑘𝑝(𝒟𝑘|ℋ𝑘
1) + (1− 𝜋𝑘) 𝑝(𝒟𝑘|ℋ𝑘

2) (3.3)

Finally, the pursued posterior probability 𝑝(ℋ𝑘
1 |𝒟𝑘), which denotes the proba-

bility of the merged hypothesis given the data, is obtained through the Bayes rule and is
defined as 𝑟𝑘, as shown in Equation (3.4). Consequently, the candidate tree pair (𝒯𝑖, 𝒯𝑗)
which maximizes 𝑟𝑘 is selected to be merged as the new node 𝒯𝑘. Thus, 𝑟𝑘 can be interpreted
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as the similarity metric 𝒮 for the agglomerative hierarchical clustering algorithm.

𝑟𝑘 = 𝜋𝑘𝑝(𝒟𝑘|ℋ𝑘
1)

𝑝(𝒟𝑘|𝒯𝑘)
(3.4)

In order to derive the number of clusters from the obtained tree, BHC authors
suggest pruning the tree when 𝑟𝑘 < 50%, which makes sense, once the statistical test is
indicating that objects from the best selected candidate pair (𝒯𝑖, 𝒯𝑗) are more likely to
belong to different mixtures in this case. In fact, it can be used as a stopping criteria for
the algorithm, since 𝑟𝑘 is a monotonically decreasing function.

Regarding the hyper-parameters associated with BHC, which are the concentra-
tion parameter 𝛼 from the mixture model and the prior hyper-parameters 𝛽, BHC authors
suggest that the marginal probability 𝑝(𝒟|𝒯 ) may be also used to optimize these hyper-
parameters. In this sense, different hyper-parameter settings act on such probability values
and may work as a function to be maximized in order to find the best hyper-parameters.
Thus, a procedure similar to expectation-maximization (EM) can be performed during the
construction of the tree, where the best tree is obtained using the current hyper-parameters
and then the best hyper-parameters are obtained for the current tree, and so on.

In summary, the BHC algorithm is quite similar to the classic agglomerative
hierarchical clustering algorithm, especially for being greedy and achieving time complexity
of order 𝑂(𝑛2) . The only difference, though, is that BHC evaluates marginal likelihoods
of a probabilistic model in order to find the best tree pair to merge, instead of using
a distance-based similarity metric. Furthermore, as stated by BHC authors, the BHC
algorithm can also be interpreted as a fast bottom-up approximate inference method for a
DPMM, functioning as an alternative to Markov chain Monte Carlo approximations.

3.3.3 Applications

Heller & Ghahramani (2005a) provided experimental results considering four
real problems originally for classification and compared with classic agglomerative hierar-
chical clustering algorithms, such as single, complete and average linkage. The datasets
are composed of data for classifying e-mail, glass, digit and text. For the majority of the
tested datasets, BHC outperformed all classic algorithms.

In addition, a small number of applications employing BHC have been found in
the literature, mainly focused on microarray gene expression data analysis. Essentially, such
analysis considers clustering patterns of expressions of different genes. The expected result
is a set of clusters, each one grouping genes in terms of related functionality, allowing the
identification of genes influenced by a common factor. Usually, classic agglomerative hierar-
chical clustering is employed, but its earlier discussed disadvantages motivated the usage of
BHC on this context (SAVAGE et al., 2009; COOKE et al., 2011; SIRINUKUNWATTANA
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et al., 2013).
Savage et al. (2009) implemented an R/Bioconductor port for general usage of

BHC and applied it in gene expression clustering, considering single time point microarray
observations. As an extension, Cooke et al. (2011) employed BHC in a more challenging
setting composed of microarray time series with replicates and outlier measurements.
Recently, Sirinukunwattana et al. (2013) applied BHC for studying cancer gene expression
data. All of these studies are composed of extensible experiments showing the potential of
BHC compared against classic agglomerative hierarchical clustering algorithms. Finally,
the promising but scarce number of conducted studies emphasizes that BHC needs to be
further explored in other contexts.

3.3.4 Extensions

Contrasting with the powerful advantages that BHC provides and being a
frequent issue to be addressed in agglomerative hierarchical clustering algorithms, BHC
disadvantage in terms of time complexity is due to the necessity of pairwise comparisons
among all objects, especially in lower levels of the tree, making BHC applicability not
interesting to datasets composed of a large number of objects. Thus, BHC authors extended
their original approach aiming at allowing BHC to be ran on very large datasets.

Therefore, by taking advantage of randomized algorithms, Heller & Ghahramani
(2005b) proposed two strategies to accelerate BHC so that the time complexity is improved,
allowing their usage on large datasets. Similarly to the original BHC, both proposed
algorithms take the object set as input and return a tree 𝒯 as output, where each node
in 𝒯 is a Bayesian mixture component. As result, the proposed algorithms achieve time
complexity of order 𝑂(𝑛 𝑙𝑜𝑔(𝑛)) and 𝑂(𝑛).

Referred as Randomized Bayesian Hierarchical Clustering (RBHC), the first
proposed algorithm applies BHC on a randomly chosen subset of objects rather than all
objects, resulting in a tree structure 𝒯 ′ that describes the subset of objects. Thus, 𝒯 ′ is
assumed to be a good approximation of the sought tree 𝒯 . Afterwards, the remaining
objects are recursively filtered through 𝒯 ′, that is, the probability of each object belonging
to the left and right sub trees are computed and then each object is added into the sub
tree with the highest probability. In addition, if the number of levels 𝐿 is limited to a
value that not necessarily makes the algorithm reach the point where each object is in
their own cluster, the time complexity reduces to 𝑂(𝑛𝐿).

The second proposed RBHC extension is based on the EM algorithm and
referred to as EMBHC. Firstly, objects of a randomly chosen subset are assigned as unit
clusters and the remaining objects are randomly put into those clusters. Then, the cluster
assignments are improved by running 𝑘 steps of the EM algorithm. Finally, BHC is applied
to cluster the clusters, resulting in a tree structure where the leaves are composed of the
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clusters obtained in the EM step.
Despite proposing the randomized extensions and discussing their time com-

plexity, Heller & Ghahramani (2005b) did not show any experiments aiming at comparing
RBHC and BHC. Recently, Darkins et al. (2013) applied the first mentioned RBHC
algorithm for a large microarray time series dataset. In their work, several experiments are
discussed, showing a substantial improvement of RBHC over the original BHC in terms
of run-time at a small cost to the final clustering performance, which motivates further
research regarding RBHC applied to large datasets.

3.4 Bayesian rose trees (BRT)
Previous section showed BHC as a powerful agglomerative hierarchical clustering

algorithm that mainly leverages from probabilistic models in order to select objects most
likely to belong to the same cluster. Although computationally convenient, the resulting
tree is strictly binary, which may not properly describe the hierarchical relationship among
objects, once spurious relations in the shape of cascades are sometimes imposed. Aiming
at addressing this issue, Blundell et al. (2012) extended BHC to an efficient and flexible
approach named Bayesian Rose Trees (BRT). Basically, BRT is a mixture model that
has all features provided by BHC with the additional property of allowing objects to be
hierarchically represented in an arbitrary branching structure (rose tree), having the binary
structure as just one of the possible configurations.

3.4.1 Motivation

The promotion of non-binary structures is achieved by the logical principle of
Occam’s razor, given that the simplest representation of the data might be associated
with a non-binary structure, avoiding unnecessary cascades (BLUNDELL et al., 2012).
When dealing with large datasets, for instance, the assumption of unnecessary spurious
relations, such as the imposition of a binary structure, may contribute to make the obtained
clustering structure more complex than it should be.

Figure 3.7 depicts a comparison example between a binary and a non-binary
tree built from a simple problem composed of 8 objects that must be organized in two
clusters. In the binary version depicted in Figure 3.7(a), 7 internal nodes were necessary to
represent the data and the clusters ended up being organized as cascades. In Figure 3.7(b),
on the other hand, only 3 internal nodes were necessary to represent the data in a non-
binary tree, resulting in a much more informative structure when compared to the binary
version.
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(a) Binary tree (b) Rose tree

Figure 3.7 – Hierarchical structure of two object clusters modeled as (a) binary tree and (b)
rose tree. Red nodes represent the original objects to be clustered, while blue nodes
represent internal nodes. This example is an adaptation from Blundell et al. (2012).

3.4.2 Comparison between BHC and BRT

One of the main differences between BHC and BRT lies on the merge operation
occurring at each iteration after identifying the best node pair (𝒯𝑖, 𝒯𝑗) to combine into
𝒯𝑘. In the BHC algorithm, (𝒯𝑖, 𝒯𝑗) is simply combined as child nodes of 𝒯𝑘, operation
referred to as Join. In BRT, on the other hand, three operations are evaluated before
performing the merge itself and the one yielding the best likelihood ratio between 𝑝(𝒟𝑘|𝒯𝑘)
and 𝑝(𝒟𝑖|𝒯𝑖) 𝑝(𝒟𝑗|𝒯𝑗) is then selected. The operations are described as follows:

∙ Join: As in BHC, this operation just combines the nodes (𝒯𝑖, 𝒯𝑗) as child nodes of
𝒯𝑘, meaning they are considered related but their individual structures must be kept
untouchable. Figure 3.8(b) exemplifies this operation.

∙ Absorb: This operation considers incorporating 𝒯𝑗 as a child node of 𝒯𝑖, becoming
𝒯𝑘 afterwards, meaning that the child nodes from 𝒯𝑖 are considered similar to 𝒯𝑗

but keeping untouchable the structure of 𝒯𝑗 is better than collapsing it. Clearly,
incorporating 𝒯𝑖 as a child node of 𝒯𝑗 is also evaluated. Figure 3.8(c) exemplifies this
operation.

∙ Collapse: This operation removes the nodes (𝒯𝑖, 𝒯𝑗) and relates their child nodes to
one single parent node 𝒯𝑘, meaning that the child nodes are considered sufficiently
indistinguishable. Figure 3.8(d) exemplifies this operation.

These operations offer the opportunity of performing local corrections in the
hierarchical structure during its construction, aiming at improving the representation of
the data and removing the binary restriction imposed on the resulting tree. Conversely,
both BHC and classic hierarchical clustering algorithms do not allow such flexibility, that
is, links between nodes can not be undone during the process. Notice that, regardless of
the selected operation in BRT, the new node 𝒯𝑘 is always composed of the same leaves
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Figure 3.8 – Bayesian Rose Trees merge operations. This figure is based on Blundell et al. (2012).

(e.g. leaf nodes 𝑇𝑎, 𝑇𝑏, 𝑇𝑐, 𝑇𝑑, 𝑇𝑒 in Figure 3.8). BRT is thus a generalization of BHC, given
that the binary structure is always considered as a candidate at each branching decision.

In addition, the probability of data 𝒟𝑘 under ℋ𝑘
2 , which is shown in Equa-

tion (3.2) for BHC and means that data come from different mixtures, is generalized in
BRT by considering two or more child sub trees, resulting in:

𝑝(𝒟𝑘|ℋ𝑘
2) =

∏︁
𝒯𝑖 ∈ 𝑐ℎ(𝒯𝑘)

𝑝(𝒟𝑖|𝒯𝑖) (3.5)

where 𝑐ℎ(𝒯𝑘) denotes the set of child sub trees of the sub tree 𝒯𝑘. In other words, Equa-
tion (3.5) covers binary trees, where 𝑐ℎ(𝒯𝑘) is composed of 𝒯𝑖 and 𝒯𝑗, and non-binary
trees, where 𝑐ℎ(𝒯𝑘) is composed of more than two child sub trees. Thus, the marginal
probability of the data 𝒟𝑘 given the tree 𝒯𝑘 can be also evaluated using Equation (3.3),
but now considering Equation (3.5).

However, as discussed by the authors and unlike BHC, BRT can not be viewed
as an approximate inference method for DPMM. Thus, the following proposal is suggested
by the authors to compute the weight 𝜋𝑘 in Equation (3.3):

𝜋𝑘 = 1− (1− 𝛼)𝑛𝒯 −1 (3.6)

where 𝛼 is a hyper-parameter controlling the proportion of the partitions and 𝑛𝒯 is the
number of child nodes of 𝒯 .

Additionally, Blundell et al. (2012) employs the same EM-like procedure sug-
gested by Heller & Ghahramani (2005a) in order to optimize BRT hyper-parameters,
which are 𝛼, from Equation (3.6), and the prior hyper-parameters 𝛽. However, they found
that the hyper-parameters are sensible to initial conditions when dealing with binary data,
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which motivates the application of other hyper-parameter optimization strategies.
As a final remark, BHC and BRT are greedy algorithms, which do not guar-

antee finding the optimal tree. Nonetheless, results have shown that they provide more
informative structures than classic agglomerative hierarchical clustering algorithms. For a
comprehensive explanation of the theory behind the BRT proposal as well as comparative
experiments between BHC and BRT, the reader is invited to refer to the original work
described in Blundell et al. (2012) and Mengersen et al. (2011).

3.5 Chapter summary
This chapter presented an overview of clustering methods focusing on hier-

archical clustering, which is directly related to the proposal of Chapter 4. A discussion
was provided involving characteristics, pros and cons of classic agglomerative hierarchical
clustering algorithms. The advantages of Bayesian-based approaches are then highlighted,
with the description of BHC and BRT algorithms. Only a few number of conducted studies
were identified in the literature that employ BHC, most of them related to bioinformatics.
It seems relevant to extend the application of BHC to other domains as well as the
combination with other techniques. Finally, BRT may be interpreted as an extension of
BHC to admit non-binary trees, which motivates its application in the context of MTL, as
will be described in Chapter 4.
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Chapter 4

Proposals for data-driven hierarchical
multi-task learning

As seen in Section 2.4, several MTL approaches assume some kind of structure
among tasks and encode this additional information in regularization terms. Additionally,
the MTL community initially explored the usage of a pre-defined structure and, then,
considered the possibility of learning such structure directly from data. For instance,
Evgeniou et al. (2005) showed that using a known clustered structure among tasks
provided promising results and, afterwards, Xue et al. (2007) proposed an approach that
jointly learns the task parameter vectors and their corresponding clustered structure.

Following the trend of letting the machine responsible for providing the structure
among tasks rather than depending on domain experts or specific a priori knowledge,
a hierarchical MTL framework is proposed in this dissertation, which incorporates a
hierarchical structure into the learning process via regularization. Moreover, once the
structure is obtained, users may use such structural information on additional analysis of
the problem.

4.1 Motivation
Differently from assuming a clustered structure, where parameter vectors of

tasks within the same cluster are constrained to be similar, or assuming a graph-based
structure, where parameter vectors of linked tasks are constrained to be similar, the idea
of using a hierarchical structure is based on the hypothesis that parameter vectors of tasks
sharing the same upper-level parameter vector will be constrained to be similar to that
upper-level parameter vector rather than directly with each other. Such strategy is intuitive
to the context of MTL, since it considers both that tasks have their own particularities
and that similarities can be captured by a general model simultaneously incorporating
more than one task.

A setting composed of tasks A and B is illustrated in Figure 4.1, exemplifying
those previously mentioned structure assumptions. In the clustered case represented in
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Figure 4.1(a), a regularized MTL formulation would constrain task parameter vectors from
A and B to be similar, since the tasks belong to the same cluster. In the case represented
in Figure 4.1(b), where the task relationship is modeled by a graph, a regularized MTL
formulation would also constrain task parameter vectors from A and B to be similar, since
the tasks are linked in the graph by the relationship strength 𝜔. Lastly, since tasks A
and B are directly close in the hierarchy represented in Figure 4.1(c), a regularized MTL
formulation would constrain task parameter vectors from both A and B to be similar to
the parameter vector of the upper-level task AB. Moreover, the task AB is referred to as a
hypothetical task, once it is created during the learning process and it is not part of the
original tasks.

A B

(a) Cluster

A B
ω

(b) Graph

A B

AB

(c) Hierarchy

Figure 4.1 – Different task relationship assumptions. (a) Tasks A and B belong to the same
cluster, constraining their parameter vectors to be similar. (b) Tasks A and B are
linked in the graph, constraining their parameter vectors to be similar, but the
relationship strength is weighted by 𝜔. (c) Tasks A and B are directly close in the
hierarchy, constraining their parameter vectors to be similar to the parameter vector
of the upper-level hypothetical task AB.

In the context of ecology and probabilistic matrix factorization, as a final
remark to motivate the usage of hierarchical structures, Shan et al. (2012) proposed a
methodology to deal with high percentage of missing data applied to plant trait prediction,
resulting in significant accuracy improvement over other methods. Considering hierarchical
phylogenetic correlation of plants, which is a known biological information derived from
many years of intensive research (e.g. species, genus and family), data combinations were
created following such structure, forcing the algorithm to learn parameters according to the
hierarchy levels. At each level 𝐿, corresponding parameters were constrained to be close to
the ones at level 𝐿 + 1. Moreover, as presented in Section 2.4, a similar idea was employed
by Widmer et al. (2010). Therefore, using a hierarchical structure combined with this kind
of regularization motivates a research applied to a more general form, characterized by
removing the necessity of knowing the hierarchical structure a priori.

4.2 Hierarchical multi-task learning framework
The proposal is denoted as Hierarchical Multi-Task Learning Framework and it

is illustrated in Figure 4.2. Each module of the proposed framework is independent of the
others, facilitating studies of extensions aiming at improving specific components without
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affecting the others, such as alternative proposals for obtaining the hierarchical structure
and novel strategies to define the cost function. Moreover, the framework also provides
the obtained hierarchical structure, allowing a thorough analysis of the problem, making
it possible to identify, for example, clusters of tasks and outlier tasks. Further details of
each component are presented in what follows.

Prediction

World

Prediction
Module

Optimization
Module

Observed data

Hierarchy
Identification

Module

Unseen data

Known hierarchical structure

Figure 4.2 – Structure of the proposed framework.

The Hierarchy Identification Module receives training data of all tasks and it
is responsible for obtaining a representative hierarchical structure that maintains similar
tasks close to each other. Once the structure is fully obtained, this module returns an arc
set, which describes the obtained structure. In Section 4.3, three alternative strategies are
proposed to obtain the hierarchical structure from tasks.

The Optimization Module receives both training data of all tasks and the
hierarchical structure obtained by the Hierarchy Identification Module. In possession of
this information, this module is responsible for optimizing the defined cost function, which
considers learning parameter vectors for all nodes in the hierarchy, including hypothetical
tasks at the internal nodes. In Section 4.5, one cost function is proposed, which incorporates
the hierarchical structure in the regularization term. Alternatively, if the hierarchical
structure is known due to a prior research, one could use this knowledge directly as input
in the Optimization Module, skipping the step of obtaining the hierarchical structure from
task data.

After completing the optimization procedure, the Optimization Module returns
only the parameter vectors of the original tasks, whereas parameter vectors for hypothetical
tasks are discarded, once they are useful only during the optimization. Notice that the
number of hypothetical tasks is 𝑂(𝑛), where 𝑛 is the number of original tasks. Moreover, the
number of hypothetical tasks is further reduced when non-binary structures are considered,
when compared to binary ones. Finally, the Prediction Module receives the task parameter
vectors learned from the Optimization Module, and, then, this module is able to make
predictions on data not observed during the training phase. Figures 4.3, 4.4 and 4.5 depict
these three mentioned modules considering an example composed of four tasks.



Chapter 4. Proposals for data-driven hierarchical multi-task learning 52

Input Processing Output
Hierarchy

Identification

Algorithm

  

T1 T3 T2 T4

H1 H2

H3

Training data
Task1

Task2

Task3

Task4

Arc set = {
  (H , T ), (H , T ),
  (H , T ), (H , T ),
  (H , H ), (H , H )
}

1 1 1

1

22 2

2

3

3 3

4

Figure 4.3 – Hierarchy identification module. A hierarchical structure described by an arc set
is obtained from training data of all tasks via a hierarchy identification algorithm.
In this example, the problem is originally composed of four original tasks, but the
obtained hierarchical structure has the original tasks (leaves in red) plus three
hypothetical tasks (internal nodes in blue).
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Figure 4.4 – Optimization module. In this example, parameter vectors w are learned for all nodes
in the given hierarchical structure, including for hypothetical tasks at the internal
nodes, but, in the end, only the parameter vectors for original tasks matter, whereas
parameter vectors for hypothetical tasks are discarded, once they are useful only
during the optimization.
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Figure 4.5 – Prediction module. Predictions are made on task data not observed during the
training phase.
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4.3 Identification of the hierarchical structure
In this section, three alternative strategies that identify a representative hi-

erarchical structure from task data are proposed. Basically, such strategies have been
developed following the idea of an agglomerative hierarchical clustering algorithm. Reflect-
ing a bottom-up model, each object starts in its own cluster and, through a similarity
metric, the most similar cluster pair at each iteration is combined until the root node is
reached.

The resulting structure of applying a hierarchical clustering algorithm assumes
that each node corresponds to a particular cluster. In other words, a leaf node is a cluster
composed of one object, while an internal node is a cluster composed of the leaves directly
below in the hierarchy. Bringing up to the context of MTL, objects to be clustered are
original tasks and internal nodes are treated as hypothetical tasks, that is, an internal
node is not simply a cluster, but also a generic task that should simultaneously generalize
for all data on the leaves.

Following the definition presented in Section 2.3, suppose there are 𝑚 linear
predictive tasks, each of which associated with a training dataset 𝒮𝑘, 𝑘 = 1, . . . , 𝑚.
Additionally, let 𝒢(𝒱 ,𝒜) be a directed graph, where 𝒱 = {1, . . . , M} denotes the set of M
vertices and 𝒜 = {(𝑝, 𝑐) : 𝑝, 𝑐 ∈ 𝒱} denotes the set of arcs which describes the existence of
a connection between vertices 𝑝 and 𝑐. In this scenario, the graph 𝒢 is assumed to have
a tree topology, such that leaves represent original tasks and internal nodes represent
hypothetical tasks. The goal, then, is to define strategies to obtain the set of arcs 𝒜 so
that similar tasks remain close in the hierarchical structure.

Each strategy that is going to be proposed has its own internal characteristics,
which are going to be discussed in the sections that follow. The basic difference among
them, though, concentrates on the similarity metric taken. From now on, the proposed
approaches to obtain the hierarchical structure are referred to as Hierarchy Identification
Algorithm (HIA).

4.3.1 Pairwise task combination

In this proposed approach, the similarity metric taken is the predictive perfor-
mance when pairing tasks, so that the pair with best performance collapses, that is, the
training sets from that task pair are combined, transforming two tasks into a single hypo-
thetical task. At each iteration, STL is applied to all possible hypothetical task candidates
and the obtained performance of the training process is kept. At the end of each iteration,
all available candidates have been tested, and the one yielding the best performance
remains as a new final hypothetical task with its children left out until the structure is
completely learned. Furthermore, arcs are created between new hypothetical tasks and
their children, which compose the set 𝒜. With this intuition in mind, Algorithm 4.1 is



Chapter 4. Proposals for data-driven hierarchical multi-task learning 54

proposed to fulfill this job (comments reinforce what each instruction is performing), based
on Algorithm 3.1. Notice that this process of evaluating all task pairing candidates is
𝑂(𝑛2), where 𝑛 is the number of original tasks.

Algorithm 4.1: Pairwise task combination
// task list copy: contains task training data
Input :𝒮 = {𝒮𝑘 : 𝑘 = 1, . . . , 𝑚}
// arc list: describes the hierarchical structure
Output :𝒜

1 begin
// ℐ holds available task ids to be combined

2 ℐ ← {1, . . . , |𝒮|}
// 𝑐 holds the new task id

3 𝑐← |𝒮|+ 1
// 𝒜 holds arcs that describe the hierarchy

4 𝒜 ← ∅
// iterate until the structure is fully identified

5 while | ℐ | > 1 do
// performance evaluation for all task pairing 𝑖𝑗 using STL and
// 𝑘-fold cross-validation to obtain an average performance

6 P𝑖𝑗 ← cross_validation(𝒮𝑖 ∪ 𝒮𝑗, 𝑘), ∀ 𝑖, 𝑗 ∈ ℐ, 𝑖 < 𝑗
// identify the task pair which yielded the best performance

7 𝑖, 𝑗 ← arg max
𝑖,𝑗

P𝑖𝑗

// combine data of the best pair and add into 𝒮 as the new task data
8 𝒮 ← 𝒮 + {𝒮𝑖 ∪ 𝒮𝑗}

// remove children ids 𝑖 and 𝑗 from ℐ and add the new task id 𝑐

9 ℐ ← ℐ − {𝑖, 𝑗}+ {𝑐}
// add arcs from 𝑐 to its children 𝑖 and 𝑗

10 𝒜 ← 𝒜+ {(𝑐, 𝑖), (𝑐, 𝑗)}
// increase new task id

11 𝑐← 𝑐 + 1
12 end
13 end

Since applying STL and measuring the performance are internal operations of
the proposed algorithm, it is necessary to split the training data of the combined tasks
into training and validation sets. Thus, STL is applied using the training set and the
performance is measured using the validation set. Such technique is known as holdout,
which is simple to implement and indicated when the sample size is large.

However, tasks possessing limited training data, which is the situation where
MTL stands out, might generalize poorly, providing an inappropriate performance value to
be used as similarity metric. In order to overcome such scenario, the 𝑘-fold cross-validation
technique is proposed to be applied rather than holdout. This way, the resulting value is
an average performance value over the folds, which is more suitable to be incorporated
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into the proposed algorithm.
The proposed pairwise task combination strategy, which is simply identified

as HMTL-PC in the sections that follow, presents itself as an intuitive procedure and, as
will be shown in the experiments, provides promising results. However, HMTL-PC does
not follow a probabilistic model and it depends totally on the performance obtained by
task combinations, which might not provide a structure that best generalizes, especially in
the presence of noisy data. Besides, the computational cost is high due to the necessity of
learning parameter vectors for all possible task combinations, which may be impracticable
if the number of tasks is large. These aspects motivated further studies, resulting on the
usage of Bayesian-based hierarchical clustering methods already discussed in Chapter 3.

4.3.2 Bayesian hierarchical clustering

As seen in Chapter 3, the absence of a probabilistic model on classic agglomer-
ative hierarchical clustering algorithms is one motivation for Heller & Ghahramani (2005a)
having developed the BHC algorithm. Moreover, an ad-hoc distance metric (e.g. Euclidean
or Manhattan) and a criterion (e.g. single or complete) are necessary to be specified for
classic algorithms, making it difficult to achieve the inherent structure behind the task
relationship. Thus, Bayesian-based hierarchical clustering algorithms are favored in this
research instead of relying on linkage methods.

In order to incorporate the BHC algorithm into the context of MTL, it is
proposed that the objects to be clustered are task parameter vectors obtained from STL.
Although such strategy has showed itself very competent during the research development,
it is not limited to STL. In other words, given the independence of the framework modules
depicted in Figure 4.2, other strategies to derive objects to be hierarchically clustered
from tasks may be proposed, including employing MTL approaches. Furthermore, task
parameter vectors derived from systems already running may also be employed as objects
to be clustered by BHC in order to verify the obtained hierarchical structure, which may
provide new insights regarding the entire task set.

Algorithm 4.2 describes the procedure of using BHC combined with MTL
to obtain a hierarchical structure. Although BHC was conceived for general purposes,
its combination with MTL fits well into the proposed HMTL framework and, on the
sections that follow, their joint usage is referred to as HMTL-BHC and HMTL-BHCc,
when the cut is not allowed and when the cut is allowed, respectively. In practice, al-
lowing the cut means that BHC stops the hierarchy construction as soon as it iden-
tifies that the probability of hypothesis ℋ1 (all objects belong to the same mixture)
of the newly constructed node is less than 50%. At the end of the algorithm, the
arc set 𝒜 is available, which will be used afterwards in the Optimization Module.
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Algorithm 4.2: BHC for obtaining a hierarchical structure from tasks.
// task list copy, probabilistic model, prior, 𝛼 and cut indicator

Input :𝒮, model, prior, 𝛼 > 0, cut
// arc list: describes the hierarchical structure

Output :𝒜

1 begin
2 for 𝑖← 1 to | 𝒮 | do

// apply STL for task 𝑖 obtaining the parameter vector w𝑖

// each w𝑖 is viewed as an object to be clustered

3 data[i] ← w𝑖 ← STL(task𝑖)
4 end

// obtain the hierarchical structure from task parameter vectors

5 structure ← bhc(data, model, prior, 𝛼, cut)
// convert bhc output to a list of arcs

6 𝒜 ← convert(structure)
7 end

Finally, Section 3.3 discussed the importance of having a probabilistic model
applied to agglomerative hierarchical clustering when a new data point comes out. In the
context of MTL, therefore, it means that there is no need to recalculate the hierarchical
structure when a new task is available, since the entire hierarchical structure is supported
by a probabilistic model.

4.3.3 Bayesian rose trees

The main difference between BHC and BRT algorithms lies in the decision
taken when the best object pair to be combined is found. In BHC, the best pair is simply
combined, operation called join. In BRT, on the other hand, two additional operations
are also considered (absorb and collapse), as described in Section 3.4.2. Thus, instead of
BHC, employing BRT is also proposed in this dissertation as an HIA within the HMTL
framework. Similarly to BHC, the sections that follow refer to the usage of BRT as
HMTL-BRT when the cut is not allowed, and HMTL-BRTc when the cut is allowed.

The BRT approach tends to obtain parsimonious structures and, like BHC, it
also allows the structure to be cut. Consequently, there will be less hypothetical nodes to
be optimized in the HMTL framework, resulting in a faster optimization process. Moreover,
the resulting structure may be more informative to users, once spurious relations forced
by binary structures are removed. On the other hand, depending on the MTL problem, it
may be more interesting to have binary relations among tasks rather than allowing various
tasks being regularized by a single parent node.
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It is worth mentioning that employing BRT allows but does not force the
resulting structure to be non-binary. As BRT is a generalization of BHC, obtaining a
binary structure is perfectly plausible. Moreover, allowing the cut also does not force the
resulting structure to be presented in more than one tree. The inherent characteristics of
the problem and the choice made for the hyper-parameters will define the shape of the
resulting structure.

Algorithm 4.3 presents the usage of BRT within the HMTL framework. Notice
that both Algorithm 4.2 and Algorithm 4.3 are identical, except for the highlighted area,
where BRT is employed instead of BHC. Such simple procedure allows other HIAs to be
proposed as well by just changing the highlighted area.

Algorithm 4.3: BRT for obtaining a hierarchical structure from tasks.
// task list copy, probabilistic model, prior, 𝛼 and cut indicator
Input :𝒮, model, prior, 𝛼 > 0, cut
// arc list: describes the hierarchical structure
Output :𝒜

1 begin
2 for 𝑖← 1 to | 𝒮 | do

// apply STL for task 𝑖 obtaining the parameter vector w𝑖

// each w𝑖 is viewed as an object to be clustered
3 data[i] ← w𝑖 ← STL(task𝑖)
4 end

// obtain the hierarchical structure from task parameter vectors
5 structure ← brt(data, model, prior, 𝛼, cut)

// convert brt output to a list of arcs
6 𝒜 ← convert(structure)
7 end

Either applying BHC or BRT, the set of necessary hyper-parameters are
composed of the hyper-parameter 𝛼 and the hyper-parameters 𝛽 of the chosen prior, as
discussed in Sections 3.3 and 3.4. Since the objects to be hierarchically clustered by BHC
and BRT (refer to Algorithm 4.2 and Algorithm 4.3) are the 𝑚 task parameter vectors in
𝑑 dimensions, which are organized in the matrix 𝑑𝑎𝑡𝑎 ∈ R𝑚×𝑑, the task parameter vectors
are modeled using Gaussians and, consequently, the Normal-inverse-Wishart distribution
is an appropriate conjugate prior to be employed. Such prior has the following four
hyper-parameters:

∙ 𝜇0: The prior on the mean, which is set 𝜇0 = 𝑑𝑎𝑡𝑎, 𝜇0 ∈ R𝑑.

∙ 𝑆: The scatter matrix, which is set 𝑆 = 𝐼𝑑𝑔, 𝑆 ∈ R𝑑×𝑑, where 𝐼𝑑 is the identity
matrix and 𝑔 is a constant that should be optimized.

∙ 𝜈: The degrees of freedom, which is set to a value 𝜈 ≥ 𝑑. In the experiments, the
value used is 𝜈 = 𝑑 + 2.
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∙ 𝑟: The scaling factor, 𝑟 ∈ R, that should be optimized as well.

Hence, the necessary hyper-parameters to be optimized is denoted 𝛾 = {𝑟, 𝛼, 𝑔}.
Both Heller & Ghahramani (2005a) and Murphy (2007) provide the equations for MAP
estimates of the prior hyper-parameters 𝛽, which are used in the implementation of both
BHC and BRT. In addition, the cut indicator could also be treated as a hyper-parameter
to be optimized, though it is going to be individually assessed in the experiments.

4.4 Prior hyper-parameters optimization
Heller & Ghahramani (2005a) suggested optimizing BHC hyper-parameters

in an EM-like procedure, where the best tree structure is obtained given the current
hyper-parameters and then the best hyper-parameters are obtained given the current tree
structure, via maximizing the marginal likelihood that data within the newly created node
belong to the same mixture. Nevertheless, authors stated that only one hyper-parameter
was optimized using such procedure.

In Blundell et al. (2012), the same procedure was applied for BRT hyper-
parameters, though they pointed out that optimizing in such manner converges to a local
optimum since the marginal likelihood function is typically not convex, and, consequently,
the hyper-parameters are sensible to initial conditions. Experiments using this EM-like
procedure were performed in this research, and, indeed, the hyper-parameters presented
themselves very sensible to initial conditions. In addition, it was observed that manually
setting the hyper-parameters in a random manner yielded favorable results with only few
trials.

This scenario motivated the usage of the Random Search (RS) technique to
optimize both BHC and BRT hyper-parameters 𝛾. Shed light by Bergstra & Bengio
(2012), RS is simple to implement either sequentially or in parallel, though a Python
library1 is available to be incorporated into any Python project (BERGSTRA et al., 2013).
Furthermore, Bergstra & Bengio (2012) showed theoretically and empirically that RS is
more interesting than the widely used grid search strategy, especially when there are lots
of hyper-parameters and the search space is awkwardly not convex.

In order to apply RS, the following components are necessary to be specified: (i)
an objective function taking hyper-parameter candidates randomly chosen by RS as input,
and returning a value that indicates the quality of the tested hyper-parameter candidates;
(ii) the space over which to search for the hyper-parameters; (iii) the number of trials. The
selected hyper-parameters are the ones that yield the best output value of the objective
function within the number of trials.

1http://hyperopt.github.io/



Chapter 4. Proposals for data-driven hierarchical multi-task learning 59

Aiming at motivating RS, Figures 4.6, 4.7, 4.8 and 4.9 exemplify a comparison
between RS and grid search with the number of trials fixed in 10, 20, 50 and 100, respectively.
In this example, suppose that 𝑦(𝑥) = 𝑥2 defined in the interval [−10, 30] is the objective
function to be minimized, where the optimum value is zero, so that the closer to zero
a value is, the better. RS tries to randomly find the best value within the search space
[−10, 30], whereas grid search tries to find the best value considering a grid of 𝑛 possible
values uniformly spaced within the interval [−10, 30], where 𝑛 is the number of trials.
Notice that, in all runs depicted in Figures 4.6, 4.7, 4.8 and 4.9, RS approached more the
optimum point than grid search.
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Figure 4.6 – Comparison between random search and grid search with 10 trials. Compared to grid
search, random search found the best value, that is, a value closer to the optimum.
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Figure 4.7 – Comparison between random search and grid search with 20 trials. Compared to grid
search, random search found the best value, that is, a value closer to the optimum.
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Figure 4.8 – Comparison between random search and grid search with 50 trials. Compared to grid
search, random search found the best value, that is, a value closer to the optimum.
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Figure 4.9 – Comparison between random search and grid search with 100 trials. Compared
to grid search, random search found the best value, that is, a value closer to the
optimum.

Bringing up RS and the HMTL framework together, the proposed objective
function is defined simply as a function returning the task set predictive error average
by means of 𝑘-fold cross-validation when applying the obtained hierarchical structure
with the hyper-parameter candidates. In other words, this function measures how the
hyper-parameter candidates are suitable to derive a hierarchical structure consistent with
the context of MTL. Such approach internally exercises the entire framework, but clearly
considers only training and validation sets. In addition, the search space and the number
of trials are defined in Chapter 5, which deals with the experimental setup. Finally, after
optimizing the hyper-parameters 𝛾 in the described procedure, the final hierarchical
structure is obtained, which is employed in the Optimization module.
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4.5 Hierarchy-based regularization
Once the hierarchy is obtained and encoded in 𝒜, a regularization term similar

to the one employed by Widmer et al. (2010) and Shan et al. (2012) is proposed, where
parameter vectors from nodes in the hierarchy and their respective children/parent are
constrained to be close to each other, taking the form presented in Equation (4.1):

𝑅(𝒲 ,𝒜) =
∑︁

(𝑝,𝑐)∈𝒜
‖w𝑐 −w𝑝‖2

2 (4.1)

where a task parameter vector w𝑝 is treated as the parent of the task parameter vector w𝑐

and ‖·‖2 is the Euclidean norm. That way, this regularization function penalizes deviations
between a particular parent parameter vector and its children parameter vectors.

Although the intention is to learn parameter vectors not only for original tasks
but also for hypothetical tasks, the set 𝒮, which includes only original task data, may
be used in the loss term together with the presented regularization term. Thus, even
though internal nodes have no data associated with them, which means their loss is 0,
learning their parameter vectors will indirectly consider their children node data due to
the necessity of the agreement in terms of similarity between a parent parameter vector
and their children parameter vectors.

Finally, considering the regularized MTL framework presented in Section 2.3,
the complete regularized cost function to be minimized is represented by Equation (4.2):

𝐽(𝒮,𝒲 ,𝒜) =
𝑀∑︁

𝑘=1

𝑛𝑘∑︁
𝑖=1

ℓ(𝑓(x𝑖
𝑘, w𝑘), y𝑖

𝑘)⏟  ⏞  
𝐿(𝒮,𝒲)

+𝜆
∑︁

(𝑝,𝑐)∈𝒜
‖w𝑐 −w𝑝‖2

2⏟  ⏞  
𝑅(𝒲,𝒜)

(4.2)

where 𝜆 ≥ 0 is a hyper-parameter controlling the regularization influence. As additional
material, a Bayesian perspective regarding the problem derivation to obtain the cost
function is presented in Appendix A.

4.6 Chapter summary
This chapter presented the Hierarchical Multi-Task Learning framework. Moti-

vated by the literature, where there is a trend on letting the machine identify the task
relationship as well as the lack of studies merging MTL and hierarchical clustering areas,
three approaches to obtain a representative hierarchical structure from task data are
proposed. Moreover, a cost function is proposed in order to translate such structural
information into the regularization function. Finally, as the Bayesian-based HIAs have
hyper-parameters to be specified, their optimization via Random Search is also proposed. In
summary, these are the main contributions made during the development of this research.
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Chapter 5

Experimental setup

In this chapter, common aspects regarding experimental settings are presented.
First, the evaluation metrics are introduced, followed by datasets that are going to be
employed, including both synthetic and real world ones. Then, selected competitors that
are going to be put to test on the same conditions to the proposed framework are presented.
As the proposed framework uses specific settings to be properly executed, such settings are
also covered in detail. Finally, the experimental plan is summarized, closing the chapter.

5.1 Evaluation metrics
As will be seen in Section 5.2, the employed datasets in the experiments are

composed of either regression or binary classification tasks. Focusing on these two types of
tasks, this section presents the evaluation metrics used both to perform model selection
and to measure the generalization performance of learned task models.

5.1.1 Regression problems

The goal when dealing with regression tasks is to predict real values, such as
exam scores based on information from students, house prices based on features from houses,
and so on. In order to compare the predicted output with the actual one, quantifying
the difference between these two values is common in the literature by means of an error
metric. Thus, in the experiments of this dissertation, the root mean squared error (RMSE)
is employed as an error metric for regression tasks.

Basically, RMSE applied in MTL takes the average of the squared difference
between actual values and predicted values considering all tasks, followed by taking the
squared root. This error metric punishes more intensively larger errors and produces a
score to be minimized. Focusing only on the context of MTL, several authors like Jacob et
al. (2008), Kang et al. (2011), Kumar & III (2012), Gonçalves et al. (2014) and Xu et al.
(2015) have used RMSE to compare results produced by existing approaches with the one
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achieved by their own proposals. Equation (5.1) formally defines RMSE.

RMSE =
⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑡=1

(y𝑡 − ŷ𝑡)2 (5.1)

where y𝑡 and ŷ𝑡 are the actual value and the predicted value for observation 𝑡, respectively,
and 𝑛 is the total number of observations.

5.1.2 Binary classification problems

Unlike regression, the goal in classification is to predict discrete values, that
is, assigning objects to a finite number of classes. These tasks range from classification of
e-mails into spam or not spam, assignment of a particular sentiment based on a product
review, distinguishing objects in images, and so on.

Classification tasks may be divided in either binary classification (in which
there are only two classes) or multiclass classification (in which there are multiple classes),
so that both consider assigning each object to only one class. There is also multilabel
classification, which allows an object to be assigned to a subset of labels. In the experiments
of this dissertation, only binary classification tasks are considered. Given that multiclass
classification tasks may be converted into multiple binary classification tasks, they could
have been considered as well.

In order to measure performance of binary classification tasks, one may consider
building the so-called confusion matrix. Such matrix quantifies correct and incorrect
predicted values compared to actual values. Assuming {False, True} as the set of classes,
there are only four possible situations to account, as depicted in Table 5.1: (1) the actual
value is True and the classifier correctly classified the object as True (True Positive); (2)
the actual value is True, but the classifier wrongly classified the object as False (False
Negative); (3) the actual value is False and the classifier correctly classified the object as
False (True Negative); (4) the actual value is False, but the classifier wrongly classified
the object as True (False Positive).

Table 5.1 – Confusion matrix for a binary classification task. An ideal classifier would have no
FP/FN entries.

Actual value
True False

Predicted value True True Positive (TP) False Positive (FP)
False False Negative (FN) True Negative (TN)

Once the confusion matrix is built by counting the number of occurrences in
each situation, several metrics may be calculated from it, such as accuracy, classification
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error (CE), precision, recall and f-score. For a wide discussion regarding classification
metrics, the reader is invited to refer to Powers (2011).

In the experiments of this dissertation, CE and recall are employed as evaluation
metrics. Essentially, recall is used as a similarity metric for HMTL-PC in order to decide
the best task pair to combine and CE is used to compare final results obtained from the
proposed framework and competitors.

Focusing on CE, this metric gives the ratio of wrong predictions in relation to
total predictions made, which is equivalent to the complement of the accuracy metric. As
CE measures error, the closer to zero, the better. Equation (5.2) formally defines CE as
follows:

CE = wrong predictions
total predictions =

∑︀
𝐹𝑃 + ∑︀

𝐹𝑁∑︀
𝑇𝑃 + ∑︀

𝑇𝑁 + ∑︀
𝐹𝑃 + ∑︀

𝐹𝑁
(5.2)

Finally, the recall metric gives the ratio of objects correctly classified as True
in relation to objects that should actually be classified as True. Also known as sensitivity,
this metric provides more discriminant values than CE to be used as a similarity metric
for HMTL-PC, though other metrics may be employed as well. Values provided by Recall
range in the interval [0, 1] and the closer to one, the better. Equation (5.3) formally defines
Recall as follows:

Recall = objects correctly classified as True
objects that should actually be classified as True =

∑︀
𝑇𝑃∑︀

𝑇𝑃 + ∑︀
𝐹𝑁

(5.3)

5.2 Description of the datasets
Four synthetic datasets named 𝐷𝑠1, 𝐷𝑠2, 𝐷𝑠3 and 𝐷𝑠4 were generated in order

to assess the proposed approaches, each one having a particular structure to reproduce
different scenarios, making it possible to perform a thorough analysis on whether the
approaches are behaving as expected or not. Additional experiments are also considered
involving the proposed approaches, but focusing on real world datasets used in the MTL
literature. Hence, four real world datasets were selected to be employed in the experiments
as well. Both synthetic and real world datasets are detailed in the sections that follows
and summarized in Table 5.2.

5.2.1 Synthetic tasks

Inspired by similar procedures adopted by Xu et al. (2015) and Zhong & Kwok
(2012), each synthetic dataset was conceived to correspond to 𝑚 = 12 regression tasks
(labeled from 0 to 11) with 𝑑 = 30 features and 𝑛 = 500 data observations randomly
generated by X ∼ 𝒩 (0, 1) and y = Xw +𝒩 (0, 10), where 𝒩 is the normal distribution
and each task parameter vector set 𝒲 was designed to simulate the following structures:
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∙ 𝐷𝑠1: All tasks are independent, such that w𝑖 ∼ 𝒰(0, 10), where 𝒰 is the uniform
distribution and w𝑖 is the parameter vector of the 𝑖-th task, 𝑖 = 1, . . . , 𝑚. Notice
that independent does not mean distinct. The generated centers could be close by
random chance.

∙ 𝐷𝑠2: All tasks are similar, such that w𝑖 ∼ 𝒩 (𝜇, 𝐼) and 𝜇 ∼ 𝒰(0, 10).

∙ 𝐷𝑠3: 3 clusters of 4 similar tasks, such that w𝑖
𝑗 ∼ 𝒩 (𝜇𝑗, 𝐼) and 𝜇𝑗 ∼ 𝒰(0, 10),

where 𝑗 is the 𝑗-th cluster. The clusters are composed of tasks {0, 3, 6, 9}, {1, 4, 7,
10} and {2, 5, 8, 11}.

∙ 𝐷𝑠4: 2 clusters of 5 similar tasks composed of tasks {0, 2, 4, 6, 8} and {1, 3, 5, 7, 9},
plus 2 independent tasks labeled as 10 and 11. The generative procedures used in
𝐷𝑠3 and 𝐷𝑠1 were applied to this scenario in order to generate the clusters and the
independent tasks, respectively.

In order to validate the generative process of the desired scenarios, each task
parameter vector set 𝒲 was projected in 2 dimensions using the multidimensional scale
(MDS) technique (BORG; GROENEN, 2005) as illustrated in Figure 5.1, making it possible
to have a perspective view of their structures. Although the generated task parameter
vectors (ground truth) lie in the 30-dimensional space, MDS places the objects in a lower
dimension preserving their relative distances as much as possible. Such projections suffice
to provide insights into the pursued structures.

In Figure 5.1(a) and Figure 5.1(b), which represent independent and similar
tasks, respectively, it is possible to observe that task parameter vectors were spread over
the space as expected, since they do not present a specific structure, such as clusters. On
the other hand, Figure 5.1(d) shows the clusters and independent tasks distant from each
other. Moreover, Figure 5.1(c) shows that two of the three clusters are closer, information
that will be explored on the results.

Clearly, if the task structure of dataset 𝐷𝑠3 was not known beforehand, Fig-
ure 5.1(c) could guide to misleading interpretations regarding the relations. For example,
tasks 1 and 5 could be assumed to be part of the same cluster, which is not true. Therefore,
it is of great relevance to implement an automatic structural learning mechanism to identify
the underlying relationship among tasks, thus removing the dependency of limited human
assumptions.

5.2.2 Real world tasks

Synthetic datasets will provide several important observations derived from the
results due to the prior knowledge regarding their task relationship structure. In case of
real world problems, on the other hand, one does not know such structural information.
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(a) 𝐷𝑠1

−20 −15 −10 −5 0 5 10 15 20
MDS dimension 1

−30

−25

−20

−15

−10

−5

0

5

10

15

20

25

30

M
DS

 d
im
en
sio

n 
2

(b) 𝐷𝑠2
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(c) 𝐷𝑠3
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(d) 𝐷𝑠4

Figure 5.1 – Two-dimensional projection of the ground truth task parameter vectors from syn-
thetic datasets. (a) and (b) do not show a clear structure, once their structures
represent independent and similar tasks, respectively. (c) shows each expected clus-
ter horizontally arranged, while (d) clearly shows the expected clusters and the
independent tasks.

Nevertheless, the intention when employing real world datasets is to show the proposed
framework effectiveness, competing with other approaches in the literature. Additionally,
as all synthetic datasets are composed of regression tasks, the experiments with real world
datasets are focused mostly on binary classification problems. In summary, the datasets
are composed of one regression problem and three binary classification problems, described
as follows:

∙ School: This problem is composed of 139 regression tasks. Each task gathers obser-
vations from a specific London’s secondary school and the goal is to predict students’
exam scores. Each observation is described by 27 features, which are extracted from
the schools and their students, such as percentage of students eligible for free meals,
gender and ethnic group (GOLDSTEIN, 1991). The dataset was obtained from the
MALSAR toolbox (ZHOU et al., 2011b).

∙ Spam3: This problem is composed of 3 binary classification tasks. Each task gathers
observations from a specific user and the goal is to classify an e-mail as either (1)
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spam or (0) non-spam. The dataset is originally derived from ECML 2006 discovery
challenge1, but the pre-processed dataset provided by Gonçalves et al. (2014) was
used in the experiments of this research.

∙ Spam15: This problem is composed of 15 binary classification tasks. Similarly to
Spam3, the goal is also to classify users’ e-mails and the differences lie in the number
of tasks and in the sample size per task. Gonçalves et al. (2014) provided the dataset
as well.

∙ Landmine: This problem is composed of 19 binary classification tasks. Each task
gathers observations from a specific landmine field and the goal is to classify the field
as either (1) landmine or (0) clutter. Each observation is described by 9 features
extracted from radar images, in which four of them are moment-based, three are
correlation-based, one is an energy ratio and one is a spatial variance (XUE et al.,
2007).

Although the task relationship structures of real world datasets are not known
a priori, the MTL literature has identified important characteristics of each problem. The
School dataset has been explored as a problem where all the tasks are similar, properly
fitting into MTL (BAKKER; HESKES, 2003). Xue et al. (2007) and Gonçalves et al.
(2014) showed that the Landmine dataset is composed of two major clusters of tasks. The
datasets Spam3 and Spam15 are described as problems composed of related tasks. This
information will be important when discussing the results obtained for each dataset. As a
final remark, all datasets were standardized to have zero mean and unit variance.

Table 5.2 – Summary of the datasets. In case of School and Landmine datasets, the tasks have a
varied sample size within the defined interval. Notice that Synthetics represent the 4
versions presented in Section 5.2.1.

Dataset Type Tasks Features Sample size per task

Synthetics Regression 12 30 500
School Regression 139 27 [22, 251]
Spam3 Binary classification 3 500 2500
Spam15 Binary classification 15 500 400

Landmine Binary classification 19 9 [445, 690]

5.3 Competing approaches
Experiments involving the proposed framework will also show comparative

results obtained by STL and four regularized approaches. If any MTL approach loses
1http://www.ecmlpkdd2006.org/challenge.html
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to STL in terms of generalization performance, it can indicate that negative transfer is
occurring, which is not interesting. Moreover, the regularized competitors were specifically
chosen due to similarities with the proposed cost function, including: (i) they are built
on top of the regularization framework; (ii) their regularization function has only one
hyper-parameter to optimize; (iii) their optimization problem are solved using AGM,
whose implementation is derived from the MALSAR toolbox (ZHOU et al., 2011b). A
brief description of each competitor is presented as follows:

∙ Single-Task Learning (STL): Considers learning each task isolated from the
others, applying Ordinary Least Squares (OLS) and Logistic Regression (LR) when
dealing with regression and binary classification problems, respectively.

∙ LASSO: Well-known regularization method introduced by Tibshirani (1996), which
imposes the minimization of the ℓ1-norm on the parameter vectors in order to perform
feature selection.

∙ Ridge: Another well-known regularization method, which imposes the minimization
of the ℓ2-norm on the parameter vectors in order to control the complexity of the
model. This method is also known as Tikhonov regularization.

∙ MTFL (ARGYRIOU et al., 2006): Considers that similar tasks share a common set
of features by the imposition of ℓ2,1-norm restrictions on the parameter vectors.

∙ LowRank (JI; YE, 2009): Considers that parameter vectors of similar tasks share
a low dimensional subspace, when trace norm minimization is imposed on the
parameter vectors.

5.4 Specific settings
All the proposed approaches within the HMTL framework admit some sort

of specific settings. Particularly, the proposed hierarchy identification algorithms (HIAs)
are flexible and different strategies may be employed in some internal procedures. In this
section, suitable settings identified for the experiments are presented, though alternative
promising configurations could have been considered as well.

5.4.1 HMTL-PC

Focusing on HMTL-PC, this HIA needs the number 𝑘 of folds for 𝑘-fold cross-
validation in order to obtain an average STL performance for each task combination. In all
experiments, the value 𝑘 = 3 was employed, which provided consistent results to situations
either with plenty or scarce training data. Clearly, users may consider using other types of
cross-validation as well, such as leave-one-out and leave-p-out.
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A particular STL strategy and evaluation metric also need to be specified, that
is, how to perform the training on the task combinations and what performance metric
will be used in order to decide which task combination is the best choice to merge. Thus,
when dealing with regression tasks, the STL steps in HMTL-PC correspond to applying
OLS and the goal at each iteration is to find the task pair which minimizes the RMSE
metric. On the other hand, when dealing with binary classification tasks, STL corresponds
to applying logistic regression (LR) and the goal at each iteration is to find the task pair
which maximizes the Recall metric.

5.4.2 Bayesian-based HIAs

Recall that Bayesian-based HIAs are HMTL-BHC and HMTL-BRT (and their
variations to enable the cut operation), which are simply hierarchical clustering algorithms
of general purpose but adapted to the context of MTL. As seen in Section 4.3.2 and
Section 4.3.3, STL is performed for each task in order to learn their parameter vectors,
which, in turn, are used as objects to be clustered by the hierarchical clustering algorithms.
Hence, a STL strategy needs to be defined.

Although OLS and LR may be used as STL to obtain the task parameter
vectors to be clustered for regression and binary classification problems, respectively, such
strategies might not behave very well when dealing with scarce training data. Therefore,
there is a need to employ more advanced techniques for such situations.

In order to cover both scarce and plenty training data, OLS and LR were
employed, but regularized by the LASSO (TIBSHIRANI, 1996). In this manner, task
parameter vectors are regularized and only relevant features are selected, resulting in
parameter vectors more appropriated to be used as objects. Moreover, the regularization
influence of the LASSO is controlled by a hyper-parameter 𝜆, which is optimized via 𝑘-fold
cross-validation (𝑘 = 3) among the candidate values {0.01, 0.1, 1, 10, 100}.

Hyper-parameters

As seen in Section 4.4, the Random Search (RS) technique was chosen to
optimize the hyper-parameters 𝛾 = {𝑟, 𝛼, 𝑔} of Bayesian-based HIAs. Recall that RS needs
three settings to be employed: the objective function to minimize (already discussed in
Section 4.4), the search space and the number of trials. For the experiments, 100 trials
were set, though the more trials are available, the more is the chance to obtain better
values, but, consequently, the higher is the computational budget required. Regarding the
search space, a wide space was defined as shown in Table 5.3.
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Table 5.3 – Search space for the hyper-parameters 𝛾 = {𝑟, 𝛼, 𝑔}. Log-uniform returns a value,
with its logarithm being uniformly distributed according to exp(𝒰(a, b)). Log-normal
returns a positive value, with its logarithm being normally distributed according to
exp(𝒩 (𝜇, 𝜎)). Refer to hyperopt documentation for a thorough description of all
available options.

hyper-parameter distribution a b

𝑟 log-uniform 1𝑒− 6 1
𝛼 log-uniform 1𝑒− 6 1
𝑔 log-normal 0 1

5.4.3 Cost function regularization parameter

Not limited to the proposed cost function presented in Section 4.5, all employed
algorithms built on top of the regularization framework, which includes the competitors,
use the same configuration for optimizing their cost function regularization parameter:
𝑘-fold cross-validation (𝑘 = 3) is applied in the experiments to select the best regulariza-
tion parameter among the values {0.01, 0.1, 1, 10, 100}. In addition, since all presented
competitors implemented in the MALSAR toolbox use AGM to optimize the task parame-
ter vectors, the same procedure is performed in the Optimization Module of the HMTL
framework, though other convex optimization techniques could have been considered as
well.

5.5 Experimental plan
Once having the evaluation metrics, synthetic and real world datasets, com-

petitors from the literature and specific settings of the proposed framework specified, this
section closes the experimental setup by summarizing the experiments that are going to
be discussed in Chapter 6.

Structural analysis (Section 6.1)

In this experiment, the intention is to assess the obtained hierarchical struc-
ture when applying each HIA, including the versions that allow the structure to be cut
(HMTL-BHCc and HMTL-BRTc). All four synthetic datasets are considered, providing
insights into the adequacy of each HIA, since a prior knowledge on task relations is available.
Of course, this prior knowledge is only considered after concluding the learning process.
On each hierarchical structure that will be depicted in the resulting figures, the leaf nodes
(in red) represent original tasks, while internal nodes (in blue) represent hypothetical tasks
generated during the process of obtaining the structure. Moreover, labels on blue nodes
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also indicate the order in which they were generated, and the absence of a specific value
on the ordering indicates that the node was removed during the process (applicable only
for HMTL-BRT and HMTL-BRTc).

Performance analysis: Varying training data size (Section 6.2.1)

In this experiment, the intention is to assess the predictive performance varying
the number of observations available for training when applying each HIA, including the
versions that allow the structure to be cut (HMTL-BHCc and HMTL-BRTc). All four
synthetic datasets are considered, aiming at showing that the HIAs provide promising
results in different scenarios when compared to competitors of the literature presented
in Section 5.3. More specifically, 40% of all training data is reserved exclusively for
performance evaluation (test set) in order to provide representative performance results
and, with the rest, different quantities of data for each task are gathered for training,
which lie on the interval [100, 200] and is incremented with step 25. The resulting figures
(bar plots) will depict performance comparisons between the competitors and the proposed
HIAs in terms of average RMSE and standard deviation in the test set over 20 independent
runs.

Performance analysis: Random structures (Section 6.2.2)

In this experiment, the intention is to evaluate the effect of employing a
randomly generated structure (simply referred to as Random in the results) on different
scenarios provided by the synthetic datasets. More specifically, 40% of all training data is
reserved exclusively for performance evaluation (test set) in order to provide representative
performance results and, with the rest, different quantities of data for each task are
gathered for training, which lie on the interval [100, 200] and is incremented with step
25. The resulting figures (bar plots) will depict performance comparisons among Random,
STL and HMTL-PC in terms of average RMSE and standard deviation in the test set over
20 independent runs.

Performance analysis: Each task (Section 6.2.3)

In this experiment, the intention is also assessing the predictive performance of
the HIAs, but the focus is on analyzing the results of each task rather than averaging the
entire task set. All four synthetic datasets are considered, aiming at bringing different known
scenarios to be discussed. More specifically, 40% of all training data is reserved exclusively
for performance evaluation (test set) in order to provide representative performance results
and, with the rest, quantities of size 100 are gathered for training over 20 independent
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runs. The resulting figures (box-plots) will depict performance comparisons in terms of
RMSE on the test set. Furthermore, results for each synthetic dataset are divided in two
figures for best exposition: the first one compares STL and HMTL-PC; and the second
one compares HMTL-PC and Bayesian-based HIAs.

Performance analysis: Real world datasets (Section 6.2.4)

In this experiment, the intention is to assess the predictive performance of
each HIA, including the versions that allow the structure to be cut (HMTL-BHCc and
HMTL-BRTc), when applied to real world problems, and compare with the competitors
presented in Section 5.3. In this case, different portions of the dataset are considered for
training (80%, 60%, 40% and 20%) and the rest is gathered for performance evaluation
(test set). The resulting tables will show the average error and standard deviation over
20 independent runs. The best values are highlighted in bold face and the symbol “*”
indicates statistical improvement over the competitors measured by paired t-tests at 5%
significance level. Finally, for regression and binary classification problems, the error metric
is RMSE and CE, respectively.

Running time analysis (Section 6.3)

In this experiment, the intention is to assess the running time of each HIA
(HMTL-PC, HMTL-BHC and HMTL-BRT) varying the number of objects to be clustered,
that is, varying the number of tasks. In this case, only the procedures which obtain the
hierarchical structure are considered and their necessary hyper-parameters are given a
priori. In order to perform the evaluation, synthetic datasets are generated on the fly with
the number of tasks within the interval [10, 100] and increasing in a 10-step increment.
Each task is composed of 100 observations described by 10 features and the entire set was
generated using the same generative process done for the synthetic dataset 𝐷𝑠2. The results
will be presented in terms of average running time for each HIA over 10 independent runs.

Cost function analysis (Section 6.4)

In this experiment, the intention is to assess the convergence behavior of the
proposed cost function presented in Section 4.5. A comparison is made between LowRank
and HMTL-PC, given that HMTL-PC is the HIA which guides to the higher number of
hypothetical tasks. The results are presented in terms of evolution of the cost function
over iterations during the optimization of the task parameter vectors via AGM. In this
experiment, the HMTL framework is simply referred to as HMTL and the Landmine
dataset is the selected problem.
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Regularization parameter analysis (Section 6.5)

In this experiment, the intention is to assess the influence of the regularization
parameter 𝜆 in the proposed cost function presented in Section 4.5. All four synthetic
datasets are considered, allowing different scenarios to be analyzed and compared. It is
expected a higher regularization influence on cases where tasks are similar. Additionally,
only HMTL-PC is employed in this experiment, that is, the evaluation will be performed
considering a single hierarchical structure. More specifically, 40% of all training data are
reserved exclusively for performance evaluation (test set) in order to provide representative
performance results and, with the rest, quantities of size 100 are gathered for training over
10 independent runs. Regarding the 𝜆 candidates, a grid search composed of 100 values
uniformly spaced within the interval [0.01, 200] is employed. The results will be presented
in terms of average RMSE on the test set obtained from the runs when varying 𝜆 and the
best selected 𝜆 is highlighted in each case.

5.6 Chapter summary
This chapter presented all the necessary information regarding the experimental

setup. Since the focus of the experiments is on regression and binary classification problems,
three evaluation metrics used for these types of problems were defined, where two of them
are employed for measuring performance (RMSE and CE) and one is employed as a
similarity metric (Recall). Moreover, synthetic and real world datasets were detailed, and
all the competitors that are going to participate in the experiments are briefly described.
Finally, specific settings of the proposed approaches are suggested followed by a summary
of the experimental plan.
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Chapter 6

Results and discussion

The proposed HMTL framework is analyzed in this chapter, where several
experiments are performed following the experimental plan discussed in Section 5.5. Since
the framework is based on obtaining a hierarchy directly from task data, performing a
structure validation represents a reasonable first step. After that, different experiments
focusing on performance evaluation are discussed in detail. Finally, analyses are shown
regarding the running time to obtain the hierarchical structure by each HIA, the behavior
of the proposed cost function and the regularization influence on distinct scenarios.

6.1 Structural analysis

6.1.1 𝐷𝑠1 - Independent tasks

As presented in Figures 6.1, 6.2(a) and 6.3(a), HIAs forcing a single structure
identified their own view of task relationship. Some tasks were put close by all HIAs, like
occurred with pairs (7,9) and (0,2). Although dataset 𝐷𝑠1 is composed of independent
tasks, building a single structure keeps the most similar tasks close to each other, or, in
this case, keeps the least different tasks close to each other, once the tasks are not equally
independent among each other. Therefore, a minor influence of task relations is expected
when employing a single hierarchical structure as regularization to the problem composed
of independent tasks.

Figures 6.2(b) and 6.3(b), on the other hand, show that HIAs admitting cuts
in the structure correctly identified that all tasks are independent, information that may
be helpful for users interested in performing a structural analysis of the problem. Clearly,
such behavior will cause each task to be learned independently, that is, the framework
will not apply any structural regularization. So, MTL frameworks endowed with such
structural identification mechanisms can be interpreted as having STL as a particular
case, thus working properly for datasets characterized by the existence of independent
tasks. Moreover, negative transfer is expected to be mitigated, since the tasks would not
be directly connected, but linked to an upper-level hypothetical task whose parameter
vector agrees with all its child parameter vectors after the cost function optimization.
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Figure 6.1 – Hierarchical structure produced by HMTL-PC for dataset 𝐷𝑠1. Although the tasks
are independent, HMTL-PC identified the best possible relations according to its
own strategy.
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Figure 6.2 – Hierarchical structures produced by HMTL-BHC and HMTL-BHCc for dataset
𝐷𝑠1. A single structure is obtained in (a), whereas the cut is allowed in (b). Notice
that HMTL-BHCc ultimately considered all tasks independent, once no relation
was identified.
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Figure 6.3 – Hierarchical structures produced by HMTL-BRT and HMTL-BRTc for dataset 𝐷𝑠1.
A single structure is obtained in (a), whereas the cut is allowed in (b). Similarly to
HMTL-BHC, (b) shows that all tasks are ultimately treated as independent tasks.
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6.1.2 𝐷𝑠2 - Similar tasks

As already verified in the case of dataset 𝐷𝑠1, each HIA identified their own
view of task relationship for dataset 𝐷𝑠2 as well. Focusing on HMTL-PC, such approach
preferred to progressively aggregate the tasks in a cascade structure as shown in Figure 6.4,
which makes sense to the proposed algorithm, since adding more data from similar tasks
to those already existent is the best option at each iteration.
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Figure 6.4 – Hierarchical structure produced by HMTL-PC for dataset 𝐷𝑠2. A cascade was
identified by HMTL-PC, since adding more data from similar tasks to those already
existent is the best option at each iteration.

Figures 6.5(b) and 6.6(b) show that HIAs admitting cuts in the structure
chose to keep a single structure rather than applying cuts, since the tasks are similar
and splitting them is not appropriate. Such behavior occurs due to validations performed
when optimizing the hyper-parameters for Bayesian-based HIAs, which also validates the
obtained structure within the context of MTL, not only within the context of hierarchical
clustering. Additionally, the same structures were obtained by Bayesian-based HIAs that
force a single structure, as presented in Figures 6.5(a) and 6.6(a), compared to Figures 6.5(b)
and 6.6(b), respectively. Obviously, such behavior occurs once HMTL-BHCc becomes
equivalent to HMTL-BHC when the cut is not used, similar to what occurs with BRT-based
HIAs.

Finally, it is possible to observe that HIAs obtaining a binary structure needed
11 internal nodes to describe the hierarchical structure, whereas BRT-based HIAs, which
are not restricted to a binary structure, needed only 5 internal nodes to perform the
same job, a much simpler view of task relations following the Occam’s razor principle.
Nevertheless, performance comparison will show that there are circumstances where a
higher granularity provided by a binary structure is better than employing a simpler
non-binary structure, since there are more levels of sharing to leverage.
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(a) HMTL-BHC
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(b) HMTL-BHCc

Figure 6.5 – Hierarchical structures produced by HMTL-BHC and HMTL-BHCc for dataset
𝐷𝑠2. (a) obtains a single structure, whereas the cut is allowed in (b). Notice that
HMTL-BHCc chose to keep a single hierarchical structure, once the tasks are similar.
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Figure 6.6 – Hierarchical structures produced by HMTL-BRT and HMTL-BRTc for dataset
𝐷𝑠2. (a) obtains a single structure, whereas the cut is allowed in (b). Similarly to
HMTL-BHCc, (b) shows that HMTL-BRTc chose to keep all tasks in the same
structure.

6.1.3 𝐷𝑠3 - Clusters of tasks

Focusing on the dataset 𝐷𝑠3, it is clear that all HIAs correctly identified the
presence of 3 clusters of tasks. As the resulting structures are necessarily binary, HIAs
illustrated in Figures 6.7 and 6.8(a) joined 2 clusters before composing with the third one,
matching the spatial observation seen in the 2D projection illustrated in Figure 5.1(c).
Small differences are detected when comparing the order in which the leaves were clustered.
On the other hand, Figure 6.9(a) shows that HMTL-BRT considered all clusters equally
in the same level. Finally, Figures 6.8(b) and 6.9(b) show that HIAs admitting cuts in the
structure performed a cut as expected, resulting in a forest of structures rather than a
single one.
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Figure 6.7 – Hierarchical structure produced by HMTL-PC for dataset 𝐷𝑠3. Even though it is a
single structure, tasks belonging to the same cluster are closer to each other, thus
revealing the presence of three clusters.
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Figure 6.8 – Hierarchical structures produced by HMTL-BHC and HMTL-BHCc for dataset
𝐷𝑠3. (a) obtains a single structure, whereas the cut is allowed in (b). Notice that
HMTL-BHCc correctly applied the cut in the structure, splitting the clusters so
that each cluster has its own structure.
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Figure 6.9 – Hierarchical structures produced by HMTL-BRT and HMTL-BRTc for dataset
𝐷𝑠3. (a) obtains a single structure, whereas the cut is allowed in (b). Similarly to
HMTL-BHCc, (b) shows that HMTL-BRTc applied the cut as expected.
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In a scenario similar to 𝐷𝑠3, it is expected that properly splitting the clusters
guide to better predictive performance compared to the usage of single structures, since the
influence of the hypothetical tasks higher in the hierarchy is removed, which also removes
the attraction between distinct clusters during the cost function optimization. Although
HMTL-BRTc provided a much simpler structure than HMTL-BHCc, only the experiments
will tell us which one is the better: many levels of sharing provided by HMTL-BHCc or a
single level of sharing provided by HMTL-BRTc.

6.1.4 𝐷𝑠4 - Clusters of tasks plus independent tasks

Similarly to dataset 𝐷𝑠3, all HIAs correctly identified the structural config-
uration of dataset 𝐷𝑠4, that is, tasks belonging to the same cluster were kept closer to
each other and the independent tasks were the last ones to be attached to the hierarchical
structure. In spite of this, Figures 6.10, 6.11(a) and 6.12(a) show that HIAs forcing a
single structure identified distinct ways to position the independent tasks. Figures 6.11(b)
and 6.12(b), on the other hand, show that HIAs admitting cuts in the structure correctly
separated the clusters and the independent tasks, confirming that they are able to both
identify the clusters and the independent tasks. In a real scenario, independent tasks may
act as outliers, and users could take actions regarding outlier tasks after analyzing the
obtained hierarchical structure. Moreover, employing the structures produced by HIAs
allowing cuts will treat separately each independent task, demanding specific regularization
techniques in order to avoid overfitting.
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Figure 6.10 – Hierarchical structure produced by HMTL-PC for dataset 𝐷𝑠4. Tasks from the
same cluster are kept closer to each other, while independent tasks are considered
only at the last iterations.
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Figure 6.11 – Hierarchical structures produced by HMTL-BHC and HMTL-BHCc for dataset
𝐷𝑠4. (a) obtains a single structure, whereas the cut is allowed in (b). Notice that
(b) correctly isolated the independent tasks and the clusters.
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Figure 6.12 – Hierarchical structures produced by HMTL-BRT and HMTL-BRTc for dataset
𝐷𝑠4. (a) obtains a single structure, whereas the cut is allowed in (b). Similarly to
HMTL-BHCc, (b) shows that HMTL-BRTc applied the cut as expected.

6.2 Performance analysis
Previous section showed distinct views of task relationship produced by the

HIAs, considering synthetic datasets with different configurations. In this section, the
entire HMTL framework is exercised, that is, the experiments not only consider obtaining
the hierarchical structure, but also use such structural information in the regularization of
the learning tasks. Both synthetic and real world datasets are employed in the experiments,
and the goal is to evaluate performance in terms of predictive error on data unseen during
training. The results are presented and discussed, pointing out important insights for those
who want to understand, use or even extend the proposed HMTL framework.
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6.2.1 Varying training data size

6.2.1.1 𝐷𝑠1 - Independent tasks

With a quick scan over Figure 6.13, it is possible to observe that all regularized
formulations yielded better performance than training each task isolated, in the case where
the tasks are independent. The performance improvement is not large and such behavior is
expected in this scenario, since exchanging dissimilar information would not help the tasks
achieving better models. Additionally, negative transfer is not expected to occur, since the
regularization influence of the methods are controlled by a hyper-parameter. Nevertheless,
all HIAs that obtain a single structure consistently presented better performance than
popular regularization techniques, showing that structural regularization pays off more
than arbitrarily performing feature selection (LASSO) or controlling the model complexity
(Ridge), behavior that will be confirmed in all further scenarios. In addition, HIAs allowing
the structure to be cut correctly identified the independence of the tasks, since their
performance is equivalent to STL. In practice, results like this may be helpful to users
devoted to a deeper understanding of the problem.
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Figure 6.13 – Performance comparison in terms of average RMSE and standard deviation in
the test set over 20 independent runs focusing on all tasks of dataset 𝐷𝑠1. HIAs
allowing cuts are equivalent to STL, whereas HIAs forcing a single structure present
better predictive performance than competitors.
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6.2.1.2 𝐷𝑠2 - Similar tasks

Results presented in Figure 6.14 show that using a hierarchical structure as
regularization largely outperformed competitors in the case where all tasks are similar.
Clearly, a single structure is more suitable than a forest of structures, once all tasks
are similar and may positively influence each other in order to produce better models.
Moreover, only the competitor LowRank presented a significant improvement over STL,
but it was not capable of outperforming the HIAs, especially HMTL-BRT, which presented
the best average performance. Finally, all HIAs yielded similar performance, including the
ones that allow cuts in the structure. As seen in Section 6.1.2 when dealing with dataset
𝐷𝑠2, both HMTL-BHCc and HMTL-BRTc preferred not to cut the hierarchy. In practice,
such behavior strongly indicates that tasks are similar, since the cut is not used.
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Figure 6.14 – Performance comparison in terms of average RMSE and standard deviation in the
test set over 20 independent runs focusing on all tasks of dataset 𝐷𝑠2. All HIAs
present equivalent performance and a clear performance improvement over the
competitors.

6.2.1.3 𝐷𝑠3 - Clusters of tasks

In general, Figure 6.15 shows that using a single hierarchical structure yielded
better results than competitors from the literature, even considering that dataset 𝐷𝑠3

has clusters of tasks. Similarly to results presented for datasets 𝐷𝑠1 and 𝐷𝑠2, all HIAs
largely presented better performance than both STL and the well-known regularization
techniques (Ridge and LASSO). Additionally, it is possible to observe that HIAs allowing
cuts in the structure yielded better results than the other HIAs, since the influence of
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higher nodes in the hierarchy is removed and the clusters are properly separated. Finally,
a consistent performance improvement is presented by HMTL-BHCc over competitors,
validating the usage of a forest rather than a single structure when dealing with problems
composed of clusters of tasks, and also indicating that using a binary structure in this
case is more favorable than a non-binary structure.
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Figure 6.15 – Performance comparison in terms of average RMSE and standard deviation in
the test set over 20 independent runs focusing on all tasks of dataset 𝐷𝑠3. As
expected, HIAs allowing the structure to be cut present better performance than
other HIAs. Moreover, a binary structure is better for this particular problem than
a non-binary structure.

6.2.1.4 𝐷𝑠4 - Clusters of tasks plus independent tasks

Similarly to dataset 𝐷𝑠3, results presented in Figure 6.16 show that using a
single structure yielded good results in the case where independent tasks are present. In
spite of this, correctly identifying the aspects of the problem through the cuts yielded even
better results. Moreover, the difference between all HIAs and STL is the lowest, when
compared to this difference for datasets 𝐷𝑠2 and 𝐷𝑠3. It indicates that individual tasks
(tasks 10 and 11) are degrading the overall performance. Finally and once more, properly
identifying the clusters of tasks and independent tasks yielded the best results compared
to the competitors. In practice, the structure produced by HIAs that allow the structure
to be cut may provide important insights to the user, including a better management of
the independent tasks identified via the cuts.
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Figure 6.16 – Performance comparison in terms of average RMSE and standard deviation in the
test set over 20 independent runs focusing on all tasks of dataset 𝐷𝑠4. As expected,
HIAs allowing the structure to be cut present better performance than other HIAs.
Similarly to 𝐷𝑠3, a binary structure is better for 𝐷𝑠4 than a non-binary structure.

6.2.2 Random structures

Previously discussed results showed a performance improvement over STL
when employing a single hierarchical structure, even in situations where the true task
relationship exhibit sparse relations, as in datasets 𝐷𝑠1, 𝐷𝑠3 and 𝐷𝑠4. Moreover, distinct
hierarchical structures obtained by the HIAs yielded similar performance on datasets 𝐷𝑠1

and 𝐷𝑠2.
Although each HIA identified its own task structure due to different similarity

metrics, all single structures have, at least, the root node in common. Hence, a scenario
with different structures yielding similar performance motivates an experiment to assess a
randomly generated structure, since it also presents a single structure and the root node is
the same as in the HIAs.

Overall, Figure 6.17 shows Random appearing in between HMTL-PC and STL.
The worst performance is observed in Figures 6.17(c) and 6.17(d), since datasets 𝐷𝑠3 and
𝐷𝑠4 are composed of specific tasks that should be together and others that should not.
Despite this, Random presented better performance than STL in all scenarios, indicating
that regularizing the tasks by a random structure acted positively.

In Figures 6.17(a) and 6.17(b), on the other hand, it is possible to observe
that Random presented its performance closer to HMTL-PC. Once the tasks are either
all independent or all similar in datasets 𝐷𝑠1 and 𝐷𝑠2, respectively, relating any task



Chapter 6. Results and discussion 86

with others yielded reasonable performance, but HMTL-PC always presented superior
performance, indicating that identifying the relationship via a similarity metric is better
than the random structure, even considering that both strategies have the root node in
common.
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(a) 𝐷𝑠1
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(b) 𝐷𝑠2
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(c) 𝐷𝑠3
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(d) 𝐷𝑠4

Figure 6.17 – Performance comparison in terms of average RMSE and standard deviation in
the test set over 20 independent runs focusing on the synthetic datasets to assess
the behavior of randomly generated structures. Although both HMTL-PC and
Random obtain a single structure and have the root node in common, HMTL-PC
presents the best performance due to the possibility of capturing task relations in
the structure.

This experiment also illustrates that regularizing tasks by any hierarchical
structure yields performance either equivalent or superior to what is achieved by isolated
training, motivating the proposition of distinct HIAs. Moreover, once the regularization
influence is controlled by a penalty parameter, it is expected that a random structure
will yield a performance equivalent to the one achieved by STL, avoiding compromising
performance by negative transfer.
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6.2.3 Each task

6.2.3.1 𝐷𝑠1 - Independent tasks

Figure 6.18(a) shows that the slight performance improvement obtained by
HMTL-PC when compared to STL comes from some tasks (e.g. tasks 2 and 11), while the
performance of others are equivalent to what is achieved by STL (e.g. tasks 5 and 10).
Thus, employing the hierarchy as regularization contributes even in the case where tasks
are independent, because the structure may identify tasks that benefit from regularization
hints provided by other tasks. Figure 6.18(b) shows that HIAs admitting a single structure
yielded equivalent performance, even considering that each HIA produced a different view
of the hierarchical structure, as seen in Section 6.1.
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Figure 6.18 – Performance comparison in terms of RMSE in the test set over 20 independent runs
focusing on each task from dataset 𝐷𝑠1. Even for independent tasks, employing a
single hierarchical structure yields a slightly performance improvement over STL.

6.2.3.2 𝐷𝑠2 - Similar tasks

In Figure 6.19(a), the performance improvement of HMTL-PC over STL is clear
for all tasks except task 1. Nevertheless, this is the most favorable situation to employ a sin-
gle hierarchical structure, since all tasks are related. Similarly to 𝐷𝑠1, Figure 6.19(b) shows
that HIAs characterized by a single hierarchical structure yielded equivalent performance
even founded on distinct hierarchical structures.

Although employing distinct hierarchies produced similar results, all structures
share, at least, the same root node. Thus, any HIA (not limiting to the ones proposed
in this dissertation) may provide competitive results, once all tasks are similar and can
influence each other positively. Despite this, considering all tasks as being similar is not
a popular hypothesis anymore and the MTL literature tends to identify a sparse task
relationship, as discussed in Section 2.4.
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Figure 6.19 – Performance comparison in terms of RMSE in the test set over 20 independent runs
focusing on each task from dataset 𝐷𝑠2. Even all HIAs having obtained distinct
hierarchical structures, in this scenario they yield equivalent performance for each
task, as shown in (b).

6.2.3.3 𝐷𝑠3 - Clusters of tasks

Figure 6.20(a) shows that using a single structure yielded better performance
than STL for all tasks except task 6. Clearly, the performance improvement is not as large
as in dataset 𝐷𝑠2, because this setting is composed of clusters of tasks and all tasks ended
up being linked in the same hierarchy. In spite of this, HMTL-PC keeps the tasks from
the same cluster closer in the hierarchical structure, which contributes to the performance
improvement of individual tasks.

Figure 6.20(b) shows the comparison among HMTL-PC, HMTL-BHCc and
HMTL-BRTc to evaluate the behavior when the cut is permitted. It is possible to observe
that, overall, HIAs that allow the cut yielded better performance for some tasks (e.g. tasks
3, 4 and 6), since tasks from different clusters do not influence each other, while others
presented equivalent performance among the tested HIAs (e.g. tasks 2, 7, and 8).
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Figure 6.20 – Performance comparison in terms of RMSE in the test set over 20 independent runs
focusing on each task from dataset 𝐷𝑠3. In general, HIAs that allow the structure
to be cut present a better performance than HMTL-PC, since the clusters are
properly separated, with a subtle advantage for HMTL-BHCc.
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6.2.3.4 𝐷𝑠4 - Clusters of tasks plus independent tasks

Once more, Figure 6.21(a) shows that using a single hierarchical structure
obtained by HMTL-PC yielded better performance when compared to STL, even con-
sidering the scenario composed of clusters of tasks and independent tasks. Similarly to
Section 6.2.3.3, Figure 6.21(b) shows that properly applying the cuts yielded better perfor-
mance for some tasks (e.g. tasks 0, 2 and 7), contributing in providing the best results for
HIAs that allow the structure to be cut, while others presented equivalent performance
among the tested HIAs (e.g. tasks 1, 6 and 9).

Regarding the performance of the independent tasks (tasks 10 and 11) for
HMTL-BHCc and HMTL-BRTc, it is possible to notice, comparing Figures 6.21(a)
and 6.21(b), that they are equivalent to the STL performance, which makes sense, since
they are treated as isolated tasks. Finally, task 11 presented better performance for
HMTL-PC than both STL and HIAs admitting cuts, even being independent, because the
hierarchical structure worked positively in the regularization, behavior not observed for
task 10. This last observation motivates the investigation of novel approaches for MTL,
characterized by directed relations among tasks, so that task 11 may be regularized by the
hierarchical structure, but tasks in the hierarchical structure are not influenced by task 11.
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Figure 6.21 – Performance comparison in terms of RMSE in the test set over 20 independent
runs focusing on each task from dataset 𝐷𝑠4. In this case, HIAs allowing the
structure to be cut properly separate the clusters and independent tasks, resulting
in performance improvement for some tasks when compared to HMTL-PC.
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6.2.4 Real world datasets

6.2.4.1 School dataset

The School dataset comprises a scenario composed of several regression tasks
with different sample size per task. In Table 6.1, a consistent and significant performance
improvement of the HIAs over the competitors is shown. Moreover, HIAs allowing the
structure to be cut did not present a performance improvement over the HIAs that obtain
a single structure, indicating that the tasks are similar and all of them should be related
together in the same hierarchical structure. Results also suggested that a binary structure
is more suitable for this problem, once HMTL-BHC consistently presented the best results.
Finally, the differences between results of HMTL-PC and HMTL-BHC, both having a
binary structure, showed that a Bayesian strategy was able to capture the task relations
better than the strategy used by HMTL-PC, highlighting the advantages of a probabilistic
approach.

Table 6.1 – Performance comparison in terms of average RMSE and standard deviation in the
test set over 20 independent runs focusing on the School dataset. Different portions
of the dataset were considered as training data and the rest was employed as test
data. The best values are highlighted in bold face and the symbol “*” indicates
statistical improvement over the literature competitors measured by paired t-tests at
5% significance level.

School dataset

Algorithm Training data
80% 60% 40% 20%

STL (OLS) 10.49 (±0.16) 10.64 (±0.09) 11.00 (±0.08) 12.07 (±0.14)
LASSO 10.43 (±0.16) 10.56 (±0.09) 10.83 (±0.07) 11.50 (±0.07)
Ridge 10.48 (±0.16) 10.63 (±0.09) 10.95 (±0.08) 11.77 (±0.08)
MTFL 10.39 (±0.16) 10.50 (±0.08) 10.71 (±0.07) 11.16 (±0.07)
LowRank 10.37 (±0.16) 10.47 (±0.08) 10.68 (±0.07) 11.11 (±0.06)
HMTL-PC 10.32 (±0.13)* 10.40 (±0.08)* 10.56 (±0.08)* 10.89 (±0.06)*

HMTL-BHC 10.23 (±0.15)* 10.28 (±0.07)* 10.41 (±0.07)* 10.68 (±0.07)*

HMTL-BHCc 10.26 (±0.14)* 10.33 (±0.11)* 10.51 (±0.12)* 10.84 (±0.12)*

HMTL-BRT 10.24 (±0.15)* 10.31 (±0.09)* 10.44 (±0.08)* 10.73 (±0.08)*

HMTL-BRTc 10.31 (±0.15)* 10.42 (±0.15)* 10.59 (±0.14)* 10.87 (±0.18)*

6.2.4.2 Spam3 dataset

The Spam3 dataset comprises a scenario composed of only three binary clas-
sification tasks with a large amount of available data per task. Clearly, the hypothesis
space of hierarchical structures is small, once only few hierarchical structures are possible
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to be derived from three objects. Thus, it is expected a small difference among results
of the HIAs. Table 6.2 shows that HMTL-BRT provided the best results on most cases,
indicating that a non-binary structure is more suitable for this problem. On the other
hand, HIAs that obtain a binary structure yielded better performance when limiting the
training data to 20%. Overall, the Bayesian approaches presented similar or better results
than LowRank, the best competitor. Finally, the results indicated that all tasks are related,
since HIAs allowing cuts in the structure did not present a performance improvement over
HIAs that obtain a single structure.

Table 6.2 – Performance comparison in terms of average CE and standard deviation in the test
set over 20 independent runs focusing on the Spam3 dataset. Different portions
of the dataset were considered as training data and the rest was employed as test
data. The best values are highlighted in bold face and the symbol “*” indicates
statistical improvement over the literature competitors measured by paired t-tests at
5% significance level.

Spam3 dataset

Algorithm Training data
80% 60% 40% 20%

STL (LR) 2.29 (±0.36) 2.63 (±0.29) 3.09 (±0.31) 3.86 (±0.57)
LASSO 1.94 (±0.26) 2.13 (±0.22) 2.52 (±0.16) 3.40 (±0.35)
Ridge 1.97 (±0.31) 2.13 (±0.25) 2.44 (±0.21) 3.21 (±0.22)
MTFL 1.95 (±0.29) 2.13 (±0.22) 2.53 (±0.19) 3.38 (±0.28)
LowRank 1.86 (±0.29) 2.00 (±0.26) 2.37 (±0.20) 3.01 (±0.39)
HMTL-PC 1.92 (±0.26) 2.04 (±0.22) 2.33 (±0.23) 2.80 (±0.41)*

HMTL-BHC 1.85 (±0.31) 2.00 (±0.21) 2.33 (±0.22) 2.79 (±0.33)*

HMTL-BHCc 1.85 (±0.31) 2.00 (±0.21) 2.33 (±0.22) 2.79 (±0.33)*

HMTL-BRT 1.80 (±0.34) 1.92 (±0.19) 2.27 (±0.23) 2.82 (±0.38)
HMTL-BRTc 1.80 (±0.32) 1.95 (±0.21) 2.28 (±0.23) 2.84 (±0.36)

6.2.4.3 Spam15 dataset

The Spam15 dataset comprises a scenario composed of a reasonable number
of binary classification tasks with the number of features higher than the sample size
per task. Similarly to results obtained for Spam3, Table 6.3 shows that admitting a
non-binary structure is more suitable for this problem, though HMTL-PC presented the
best performance when limiting the training data to 20%. In this case, such behavior
suggests that performing a hierarchical clustering of task parameter vectors obtained from
scarce training data is not able to properly identify the best relations. On the other hand,
HMTL-PC leverages from limited training data, since the hierarchy levels are build from
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dataset combinations. Once more, results indicated that all tasks are related, since the
best results are derived from HIAs that obtain a single structure.

Table 6.3 – Performance comparison in terms of average CE and standard deviation in the test
set over 20 independent runs focusing on the Spam15 dataset. Different portions
of the dataset were considered as training data and the rest was employed as test
data. The best values are highlighted in bold face and the symbol “*” indicates
statistical improvement over the literature competitors measured by paired t-tests at
5% significance level.

Spam15 dataset

Algorithm Training data
80% 60% 40% 20%

STL (LR) 6.33 (±0.61) 7.23 (±0.60) 8.23 (±0.61) 11.03 (±0.63)
LASSO 5.69 (±0.69) 6.52 (±0.63) 7.58 (±0.59) 10.31 (±0.62)
Ridge 5.71 (±0.75) 6.57 (±0.58) 7.53 (±0.61) 9.71 (±0.52)
MTFL 5.66 (±0.70) 6.49 (±0.64) 7.54 (±0.58) 10.18 (±0.65)
LowRank 4.82 (±0.64) 5.43 (±0.49) 6.01 (±0.46) 7.87 (±0.56)
HMTL-PC 4.77 (±0.66) 5.38 (±0.47) 5.76 (±0.47)* 7.10 (±0.76)*

HMTL-BHC 4.80 (±0.61) 5.37 (±0.63) 5.85 (±0.52) 7.27 (±0.54)*

HMTL-BHCc 4.84 (±0.73) 5.39 (±0.58) 5.85 (±0.52) 7.30 (±0.53)*

HMTL-BRT 4.61 (±0.60)* 5.13 (±0.58)* 5.47 (±0.38)* 7.16 (±0.70)*

HMTL-BRTc 4.67 (±0.61) 5.21 (±0.55)* 5.52 (±0.48)* 7.22 (±0.67)*

6.2.4.4 Landmine dataset

Differently from all the other real world datasets, where the prior knowledge
indicated that all tasks are related, the Landmine dataset is supposed to present a structure
with two clusters of tasks. Thus, it is expected that HIAs allowing cuts in the structure
outperform the others. Indeed, such behavior occurred in most cases and the results are
presented in Table 6.4. Similarly to the other classification problems, HMTL-PC presented
the most favorable result when limiting the training to 20%, reinforcing that dataset
combinations should be promoted in scenarios characterized by scarce data available for
training. Additionally, HIAs that obtain a single structure presented equivalent performance
for 20% of training data compared to their corresponding versions that allow cuts, indicating
that all tasks were treated in the same structure.
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Table 6.4 – Performance comparison in terms of average CE and standard deviation in the test set
over 20 independent runs (Landmine dataset). Different portions of the dataset were
considered as training data and the rest was employed as test data. The best values
are highlighted in bold face and the symbol “*” indicates statistical improvement
over the literature competitors measured by paired t-tests at 5% significance level.

Landmine dataset

Algorithm Training data
80% 60% 40% 20%

STL (LR) 5.77 (±0.28) 6.02 (±0.21) 6.45 (±0.21) 8.40 (±0.47)
LASSO 5.58 (±0.19) 5.68 (±0.11) 5.75 (±0.13) 5.96 (±0.14)
Ridge 5.54 (±0.17) 5.69 (±0.13) 5.71 (±0.10) 5.85 (±0.11)
MTFL 5.51 (±0.15) 5.69 (±0.11) 5.76 (±0.12) 5.92 (±0.10)
LowRank 5.50 (±0.15) 5.66 (±0.10) 5.68 (±0.09) 5.77 (±0.08)
HMTL-PC 5.49 (±0.19) 5.64 (±0.10) 5.66 (±0.09) 5.75 (±0.12)
HMTL-BHC 5.49 (±0.23) 5.59 (±0.14) 5.72 (±0.10) 5.90 (±0.12)
HMTL-BHCc 5.40 (±0.22)* 5.55 (±0.14)* 5.65 (±0.13) 5.90 (±0.15)
HMTL-BRT 5.51 (±0.22) 5.66 (±0.17) 5.76 (±0.09) 6.01 (±0.18)
HMTL-BRTc 5.44 (±0.27) 5.56 (±0.17)* 5.68 (±0.13) 6.01 (±0.21)

In Figures 6.22, 6.23 and 6.24, the hierarchical structures produced by all HIAs
when the training data of the Landmine dataset is limited to 80% are presented. With
a quick scan over the structures, it is possible to observe that all the HIAs produced
structures so that tasks from the groups [0, 9] and [10, 18] appear close to each other, thus
revealing the presence of two clusters of tasks.
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Figure 6.22 – Hierarchical structure produced by HMTL-PC for the Landmine dataset.
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Figure 6.23 – Hierarchical structures produced by HMTL-BHC and HMTL-BHCc for the Land-
mine dataset. (a) obtains a single structure, whereas the cut is allowed in (b).
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Figure 6.24 – Hierarchical structures produced by HMTL-BRT and HMTL-BRTc for the Land-
mine dataset. (a) obtains a single structure, whereas the cut is allowed in (b).

Overall, experiments on real world datasets showed promising results associated
with the proposed framework. Indeed, regularizing task parameter vectors by means of a
hierarchical structure provided the best results on distinct scenarios when compared with
various competitors from the literature. As seen in the results, however, no HIA prevailed
in all cases.

In the cases where one does not have any prior knowledge about the task
relationship, it is indicated to test all HIAs and a careful analysis be performed in order
to identify the most indicated HIA. Even though some HIAs presented better performance
than others, all of them yielded good results for most of the scenarios, validating the
HMTL framework.
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6.3 Running time analysis
Referring to Figure 6.25, it is clear that HMTL-PC presented a higher growth

rate than HMTL-BHC and HMTL-BRT, becoming impractical on situations where the
number of tasks is large. In fact, such high cost is caused by the fact that HMTL-PC
builds level by level the hierarchical structure, testing all possible task pairs via estimating
predictors and evaluating their performance, which consumes lots of computational time.
Nevertheless, as seen in the previous experiments, HMTL-PC yielded high-quality results,
especially when the task set is composed of similar tasks and scarce data are available for
training.
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Figure 6.25 – Running time comparison among the HIAs. Bayesian-based HIAs run faster than
the strategy used by HMTL-PC.

The running time presented by HMTL-BHC and HMTL-BRT, on the other
hand, motivates their usage in situations where the number of tasks is large, but their
repeated execution for optimizing the hyper-parameters may require additional computa-
tional time, though it can be done in parallel. Considering that the hyper-parameters have
already been determined, HMTL-BHC and HMTL-BRT run fast and may be applicable
under more challenging conditions. Additionally, as presented in Section 3.3.4, Heller &
Ghahramani (2005b) proposed extensions to deal with a large number of objects to be
clustered, which may be incorporated into the HMTL framework.

Finally, HMTL-BHC presented slightly better results than HMTL-BRT in
terms of running time. This is due to the fact that HMTL-BRT performs some additional
operations when deciding how to combine the nodes and, clearly, it will take more running
time to be completed.
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6.4 Cost function analysis
Figure 6.26 shows that LowRank converged faster than HMTL, which required

twice as many iterations. However, this comparison is not totally fair. The Landmine
dataset has 19 tasks and, consequently, LowRank is optimizing task parameter vectors
for the same 19 tasks. On the other hand, HMTL optimizes task parameter vectors for
2𝑛− 1 tasks, where 𝑛 is the number of original tasks. Therefore, HMTL is optimizing task
parameter vectors for 37 tasks.

Thus, this experiment shows that even optimizing task parameter vectors for all
tasks including the hypothetical ones, the convergence for HMTL occurs rapidly, properly
exploring the convexity of the cost function. Besides, the optimization process tends to be
even faster when employing hierarchical structures obtained by HMTL-BRT and HIAs
that allow the structure to be cut, since the obtained hierarchical structures produced by
such HIAs have a smaller number of hypothetical tasks.
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Figure 6.26 – Comparison between HMTL and LowRank applied to the Landmine dataset
focusing on the cost function evolution over iterations. LowRank converges faster
than HMTL, but HMTL considers both original and hypothetical tasks.

6.5 Regularization parameter analysis
The experimental analysis can be discussed in a general way by comparing the

selected 𝜆s and taking into consideration the task structure of each synthetic dataset. In
Figure 6.27, the highest selected 𝜆 value was used for dataset 𝐷𝑠2 (Figure 6.27(b)), which
makes sense, since all tasks are similar and regularizing with the hierarchical structure
should have a higher influence when compared to the other scenarios. As opposed to the
problem where tasks are similar, the lowest selected 𝜆 value was used for dataset 𝐷𝑠1

(Figure 6.27(a)), since tasks are independent and the regularization influence should not
be dominant.
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Intermediary results are presented for dataset 𝐷𝑠3 and 𝐷𝑠4 in Figures 6.27(c)
and 6.27(d), respectively. Although both datasets admit clusters of tasks, the highest
selected 𝜆 value between them was used for dataset 𝐷𝑠3, showing that the presence of
independent tasks on dataset 𝐷𝑠4 may have contributed to reduce the regularization
influence, since a single hierarchical structure is connecting both the clusters and the
independent tasks.
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Figure 6.27 – Average RMSE when varying the regularization parameter 𝜆. The highest regular-
ization influence (𝜆 best value implies minimum average error) is observed in the
case where all tasks are similar, whereas the lowest influence is observed in the
case where all tasks are independent.

6.6 Chapter summary
This chapter presented results of several experiments in order to assess the

proposed HMTL framework. The different and controlled scenarios provided by synthetic
datasets contributed to the analyses involving the obtained structures and performance
comparisons. It was possible to observe that employing a hierarchical structure as regu-
larization yielded promising results, motivating further research focusing on extensions.
The entire study is interpreted as an important contribution to MTL and hierarchical
clustering areas, especially focusing on Bayesian-based algorithms (BHC and BRT), since,
to the best of the author’s knowledge, both areas have not been studied together.
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Chapter 7

Conclusions and future directions

7.1 Concluding remarks
The overview presented in Chapter 2 showed the evolution of MTL approaches

over the years and highlighted characteristics of the technique, especially focusing on the
importance of properly identifying the task relationship to avoid the occurrence of negative
transfer among tasks. In addition, the motivation behind MTL is to take advantage of
both task similarities and their particularities to achieve better models.

Although the MTL literature is rich in distinct task relationship assumptions,
the majority can be basically grouped into those in which all tasks are considered somehow
related and those assuming a task relationship structure, such as cluster-based, graph-based
and hierarchy-based. Since real world problems tend to exhibit sparse relations among
tasks, it seems to be more attractive to resort to a task relationship structure.

The well-known regularization framework, which is usually applied to STL, has
been largely explored in recent MTL proposals as well. In the case of MTL, distinct task
relationship assumptions can be incorporated into the regularization function, commonly
attracting together the parameter vectors of similar tasks. Therefore, the key point is
to define which tasks are similar. Moreover, since the regularization influence can be
parameterized, the mutual influence among the related tasks can be properly tuned.

The evolution of the area of MTL is characterized by a sequence of different
assumptions for the task relationship structure. Proposals considering either cluster-
based or graph-based structures, for example, started by assuming a predefined structure
and evolved to the point of learning both task parameter vectors and their underlying
relationship directly from data. In the case of assuming a hierarchical structure, however,
the MTL literature has a lack of proposals founded on obtaining such structure from data.
Thus, a research opportunity was identified, with the main goal of obtaining a hierarchical
structure to represent the relationship among tasks and, then, employing such structural
information within the regularization framework.

Since the goal is based on obtaining a hierarchical structure directly from task
data, the established hierarchical clustering area was investigated. Such important area
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brought insights on how to obtain a hierarchical structure for the tasks. Essentially, the
most challenging step was to derive a similarity metric that could identify related tasks. As a
proof of concept, a pairwise task combination approach was proposed, showing the potential
of the strategy and highlighting points for improvement, such as the computational cost,
the incorporation of a probabilistic model and the removal of some limitations on the
resulting structure. Such limitations included the fact that all tasks ended up related in a
single structure, which may not be interesting for problems where either clusters of tasks
or outlier tasks are present.

Having in view recent advances in agglomerative hierarchical clustering, two
Bayesian-based approaches named Bayesian Hierarchical Clustering (BHC) and Bayesian
Rose Trees (BRT), proposed by Heller & Ghahramani (2005a) and Blundell et al. (2012),
respectively, were extended to the context of MTL. Essentially, BRT generalizes BHC by
allowing an internal node to have more than two child nodes, that is, the resulting structure
is not restricted to be binary. Both algorithms are more suitable than the developed proof
of concept for problems composed of larger number of tasks and allow the structure to be
cut without depending on domain specialists. At this point, three hierarchy identification
algorithms were available to be evaluated.

Regardless of many advantages provided by Bayesian-based algorithms, one
drawback is related to hyper-parameters. Depending on the dataset, different probabilistic
models and their respective conjugate prior must be employed. In the end, a set of hyper-
parameters must be optimized. An EM-like approach suggested by Heller & Ghahramani
(2005a) was firstly employed, but, as pointed out by Blundell et al. (2012), the hyper-
parameters were sensible to initial conditions. As an alternative, the Random Search
technique shed light by Bergstra & Bengio (2012) was employed, which yielded consistent
and high-quality results.

Inspired by approaches that consider incorporating a given hierarchical structure
within the regularization framework, a cost function was also proposed. Basically, the
information provided by the obtained hierarchical structure is used to constrain task
parameter vectors sharing the same upper-level parameter vector to be similar. Such idea
follows the trend in MTL that employs the regularization framework to penalize deviations
between parameter vectors associated with linked tasks. Moreover, due to the convexity of
the cost function, the optimization problem can be easily solved by off-the-shelf algorithms,
such as the gradient descent.

Usually, established regularized MTL approaches consider both task particular-
ities and information exchange among tasks. However, such approaches fail to cover the
information from a single general model simultaneously incorporating more than one task.
In this scenario, a hierarchical structure can cover such information via hypothetical tasks.
Thus, hypothetical tasks can be viewed as auxiliary tasks, with the elementary purpose of
helping achieving better models for original tasks. Notice that the usage of auxiliary tasks
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was motivated by Caruana (1993) at the very beginning of MTL ideas.
All the strategies employed in this research resulted in the proposal of the

Hierarchical Multi-Task Learning framework. Each module of the proposed framework is
independent of the others, facilitating studies of extensions involving specific components
without affecting the remaining parts, such as alternative proposals to obtain the hierarchi-
cal structure and novel strategies to define the cost function. Moreover, the framework also
provides the obtained hierarchical structure, allowing a thorough analysis of the problem,
making it possible to identify, for example, clusters of tasks and outlier tasks.

Empirical results obtained from the experiments indicated that the proposed
framework is capable of overcoming well-established MTL strategies derived from the
literature. Overall, employing a hierarchical structure as regularization outperformed all
competitors in terms of predictive error, which motivates further research on the subject,
since a scarce number of approaches exploring hierarchical structures in the context of
MTL is available in the literature.

The experiments carried out over synthetic datasets provided important insights
regarding the behavior of each component in the proposed framework, revealing that
distinct hierarchical structures can yield similar performance in scenarios where all tasks
are similar. However, Bayesian-based strategies yielded the best results in the majority
of the experiments, highlighting advantages of relying in a probabilistic approach to
model task similarities. Such advantages include the strategy to identify similar tasks, the
possibility of having a forest of structures via smart and automatic cuts in a previously
single structure, the possibility of having internal nodes with more than two child nodes
and the ease of accommodating new tasks. Furthermore, all proposed strategies provided
consistent structures compared to what was expected.

In the case of real world datasets, performance experiments confirmed the
raised hypothesis in this dissertation. The proposed framework consistently outperformed
competitors in scenarios characterized by a varying amount of available training data.
Favorable results were presented by the pairwise task combination strategy when scarce
training data was available, while BHC was more suitable for some scenarios and BRT for
others. Moreover, applying the cut for the Landmine dataset was crucial to obtain the
best performance, once the clusters were properly split. Therefore, the adequacy of each
hierarchy identification algorithm depends on the problem.

High demand of computational cost in the pairwise task combination approach
was one factor that motivated further research. As seen in the results, employing BHC
and BRT algorithms is much cheaper when hyper-parameters were previously defined.
However, repeated executions for hyper-parameter tuning may become costly. In spite of
this, applying the random search technique provided hyper-parameters that satisfactorily
met expectations better than simply making a grid search.

Finally, the reached conclusion is that obtaining a hierarchical structure from
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task data and using this additional information within the regularization framework is
promising and suits the problem of simultaneously learning a set of tasks, even if clusters or
outliers are present. The proposed approach not only considers task particularities during
the learning process but also considers exchanging information among similar tasks via
auxiliary tasks, which covers general information contained in two or more tasks. Moreover,
the dependence of domain experts is relaxed, once underlying relations among tasks are
automatically uncovered by the machine, enabling such a methodology to be employed in
a wider range of applications.

7.2 Future directions
Despite promising results obtained via employing the proposed HMTL frame-

work, both in terms of performance and interpretability, some sources of improvement
were identified during the course of the research that can be further explored in the future.
Thus, a list of suggested directions are provided as follows:

∙ Settings: In Section 5.4, specific settings for the proposed HMTL framework were
defined. Nevertheless, different settings can be also analyzed, including different
similarity metrics, strategies to obtain all preliminary task parameter vectors that
are clustered by BHC/BRT, and strategies for hyper-parameter optimization.

∙ Hierarchical clustering: The results presented in Chapter 6 showed that, depend-
ing on the problem, different hierarchical structures may yield either similar or
distinct performance in terms of predictive error. In addition, none of the proposed
HIAs provided the best results in all scenarios, motivating the proposal of alternative
HIAs more suitable to specific problems. Thus, the incorporation of different HIAs
in the proposed HMTL framework is strongly encouraged.

∙ Cost function: Although the usage of the proposed cost function has provided
favorable results, extensions focused on the regularization term can be incorporated
and further explored, such as the usage of different norms (e.g. ℓ1 and ℓ2,1). More-
over, weighted edges can also be considered, possibly including distinct weights for
bidirectional links connecting pairs of tasks. These changes, however, would require
additional hyper-parameters and the application of different optimization techniques.

∙ Jointly learning the task parameter vectors and hierarchical structure:
Section 2.4 presented MTL approaches that employ alternating optimization to
simultaneously learn the structure and task parameter vectors, mostly focusing on
either cluster-based or graph-based structures. Such strategy can be investigated for
hierarchical structures as well.
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APPENDIX A

HMTL cost function as a maximum a
posteriori estimation

The proposed cost function of the HMTL framework described in Section 4.5
can be derived in a Bayesian perspective. In this sense, a Maximum a posteriori (MAP)
can be written as Equation (A.1), assuming the likelihood as the conditional distribution
of the output y ∈ R given the input vector x ∈ R𝑑 and the task parameter vector w ∈ R𝑑

for 𝑀 tasks, and the prior as a multivariate Gaussian distribution over the task parameter
vector w taking the relations described by the set of arcs 𝒜 into account. Essentially, it is
assumed that the task parameter vector w𝑐 has mean w𝑝 (task parameter vector of the
parent node) and covariance matrix 𝑞𝑝𝐼𝑑, where 𝐼𝑑 is the identity matrix making all 𝑑

features having the same variance 𝑞𝑝.

𝑝(𝒲 |𝒮,𝒜)⏟  ⏞  
Posterior probability

∝
𝑀∏︁

𝑘=1

𝑛𝑘∏︁
𝑖=1

𝑝(y𝑖
𝑘|x𝑖

𝑘, w𝑘)⏟  ⏞  
Likelihood

∏︁
(𝑝,𝑐)∈𝒜

𝑝(w𝑐|w𝑝, 𝑞𝑝𝐼)
⏟  ⏞  

Prior probability

(A.1)

Focusing on the least squares regression and assuming the likelihood taking a
normal distribution, the posterior over 𝒲 is developed step-by-step in Equation (A.2).
Similarly, the same process can be done for logistic regression, assuming the likelihood
taking a Bernoulli distribution, which applies to binary classification problems.
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𝑃 (𝒲 |𝒮,𝒜) ∝
𝑀∏︁

𝑘=1

𝑛𝑘∏︁
𝑖=1
𝒩 (y𝑖

𝑘|w⊤
𝑘 x𝑖

𝑘, 𝜎2
𝑘)

∏︁
(𝑝,𝑐)∈𝒜

𝒩 (w𝑐|w𝑝, 𝑞𝑝𝐼𝑑)

∝
𝑀∏︁

𝑘=1

𝑛𝑘∏︁
𝑖=1

(2𝜋𝜎2
𝑘)−1/2 exp

⎛⎝− 1
2𝜎2

𝑘

(y𝑖
𝑘 −w⊤

𝑘 x𝑖
𝑘)2

⎞⎠
∏︁

(𝑝,𝑐)∈𝒜
(2𝜋)−𝑑/2 |𝑞𝑝𝐼𝑑|−1/2 exp

⎛⎝−1
2 (w𝑐 −w𝑝)⊤ (𝑞𝑝𝐼𝑑)−1 (w𝑐 −w𝑝)

⎞⎠
∝

𝑀∏︁
𝑘=1

𝑛𝑘∏︁
𝑖=1

(2𝜋𝜎2
𝑘)−1/2 exp

⎛⎝− 1
2𝜎2

𝑘

(y𝑖
𝑘 −w⊤

𝑘 x𝑖
𝑘)2

⎞⎠
∏︁

(𝑝,𝑐)∈𝒜
(2𝜋)−𝑑/2 (𝑞𝑝)−𝑑/2 exp

⎛⎝−1
2 (w𝑐 −w𝑝)⊤ (𝑞𝑝𝐼𝑑)−1 (w𝑐 −w𝑝)

⎞⎠
∝

𝑀∏︁
𝑘=1

𝑛𝑘∏︁
𝑖=1

(2𝜋𝜎2
𝑘)−1/2 exp

⎛⎝− 1
2𝜎2

𝑘

(y𝑖
𝑘 −w⊤

𝑘 x𝑖
𝑘)2

⎞⎠
∏︁

(𝑝,𝑐)∈𝒜
(2𝜋𝑞𝑝)−𝑑/2 exp

⎛⎝−1
2 (w𝑐 −w𝑝)⊤ (𝑞𝑝𝐼𝑑)−1 (w𝑐 −w𝑝)

⎞⎠
log∝

𝑀∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1
−

1
2 log(𝜎2

𝑘)−
1

2𝜎2
𝑘

(y𝑖
𝑘 −w⊤

𝑘 x𝑖
𝑘)2+

∑︁
(𝑝,𝑐)∈𝒜

−
𝑑

2 log(𝑞𝑝)−
1
2 (w𝑐 −w𝑝)⊤ (𝑞𝑝𝐼𝑑)−1 (w𝑐 −w𝑝)

∝ −
𝑀∑︁

𝑘=1

𝑛𝑘∑︁
𝑖=1

log(𝜎2
𝑘) +

1
𝜎2

𝑘

(y𝑖
𝑘 −w⊤

𝑘 x𝑖
𝑘)2−

∑︁
(𝑝,𝑐)∈𝒜

𝑑 log(𝑞𝑝) + (w𝑐 −w𝑝)⊤ (𝑞𝑝𝐼𝑑)−1 (w𝑐 −w𝑝)

∝ −
𝑀∑︁

𝑘=1

𝑛𝑘∑︁
𝑖=1

log(𝜎2
𝑘) +

1
𝜎2

𝑘

(y𝑖
𝑘 −w⊤

𝑘 x𝑖
𝑘)2−

∑︁
(𝑝,𝑐)∈𝒜

𝑑 log(𝑞𝑝) +
1
𝑞𝑝

(w𝑐 −w𝑝)⊤ 𝐼−1
𝑑 (w𝑐 −w𝑝)

∝ −
𝑀∑︁

𝑘=1

𝑛𝑘∑︁
𝑖=1

log(𝜎2
𝑘) +

1
𝜎2

𝑘

(y𝑖
𝑘 −w⊤

𝑘 x𝑖
𝑘)2−

∑︁
(𝑝,𝑐)∈𝒜

𝑑 log(𝑞𝑝) +
1
𝑞𝑝

(w𝑐 −w𝑝)⊤ 𝐼𝑑 (w𝑐 −w𝑝)

∝ −
𝑀∑︁

𝑘=1

𝑛𝑘∑︁
𝑖=1

log(𝜎2
𝑘) +

1
𝜎2

𝑘

(y𝑖
𝑘 −w⊤

𝑘 x𝑖
𝑘)2 −

∑︁
(𝑝,𝑐)∈𝒜

𝑑 log(𝑞𝑝) +
1
𝑞𝑝

‖w𝑐 −w𝑝‖2
2

(A.2)
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A MAP inference on 𝒲 can be performed by maximizing the logarithm of the
posterior developed in Equation (A.2), which is equivalent to minimizing the negative
logarithm of the posterior. Assuming 𝜎2

𝑘 = 1 and 𝑞𝑝 = 1, though their values may be
learned as well, and adding a hyper-parameter 𝜆 ≥ 0 to control the regularization influence,
the optimization problem boils down to minimizing the regularized squared loss, as written
in Equation (A.3).

𝒲* = arg min
𝒲

𝑀∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

(y𝑖
𝑘 −w⊤

𝑘 x𝑖
𝑘)2 + 𝜆

∑︁
(𝑝,𝑐)∈𝒜

‖w𝑐 −w𝑝‖2
2 (A.3)
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