3 research outputs found

    Pre-filters in-transit malware packets detection in the network

    Get PDF
    Conventional malware detection systems cannot detect most of the new malware in the network without the availability of their signatures. In order to solve this problem, this paper proposes a technique to detect both metamorphic (mutated malware) and general (non-mutated) malware in the network using a combination of known malware sub-signature and machine learning classification. This network-based malware detection is achieved through a middle path for efficient processing of non-malware packets. The proposed technique has been tested and verified using multiple data sets (metamorphic malware, non-mutated malware, and UTM real traffic), this technique can detect most of malware packets in the network-based before they reached the host better than the previous works which detect malware in host-based. Experimental results showed that the proposed technique can speed up the transmission of more than 98% normal packets without sending them to the slow path, and more than 97% of malware packets are detected and dropped in the middle path. Furthermore, more than 75% of metamorphic malware packets in the test dataset could be detected. The proposed technique is 37 times faster than existing technique

    Comparative analysis of various machine learning algorithms for ransomware detection

    Get PDF
    Recently, the ransomware attack posed a serious threat that targets a wide range of organizations and individuals for financial gain. So, there is a real need to initiate more innovative methods that are capable of proactively detect and prevent this type of attack. Multiple approaches were innovated to detect attacks using different techniques. One of these techniques is machine learning techniques which provide reasonable results, in most attack detection systems. In the current article, different machine learning techniques are tested to analyze its ability in a detection ransomware attack. The top 1000 features extracted from raw byte with the use of gain ratio as a feature selection method. Three different classifiers (decision tree (J48), random forest, radial basis function (RBF) network) available in Waikato Environment for Knowledge Analysis (WEKA) based machine learning tool are evaluated to achieve significant detection accuracy of ransomware. The result shows that random forest gave the best detection accuracy almost around 98%

    Incorporating known malware signatures to classify new malware variants in network traffic

    No full text
    Content-based malware classification technique using n-gram features required high computational overhead because of the size of feature space. This paper proposes the augmentation of domain knowledge in the form of known Snort malware signatures to machine learning techniques to reduce resources (in terms of the time to generate machine learning model and the memory usage to store generative model). Although current malware can be encrypted or mutated, these malware still exhibit prevalent contents or payloads as their predecessors. Using a dataset of traffic captured from a campus network, our approach is able to reduce initial generated million n-gram features to only around 90000 features, which significantly reduces processing time to generate naive Bayes model by 95%. The generated model that has been trained by the most descriptive features (4-gram Snort signatures with high information gain) produces lower false negative, about 2% compared with other models. Moreover, the proposed method is capable of detecting 10 new malware variants with 0% false negative. The findings from this paper can be the basis for improving malware classification based on content classification to detect known and new malwar
    corecore