174 research outputs found

    General Features in Knowledge Tracing to Model Multiple Subskills, Temporal Item Response Theory, and Expert Knowledge

    Get PDF
    Knowledge Tracing is the de-facto standard for inferring student knowledge from performance data. Unfortunately, it does not allow modeling the feature-rich data that is now possible to collect in modern digital learning environments. Because of this, many ad hoc Knowledge Tracing variants have been proposed to model a specific feature of interest. For example, variants have studied the effect of students’ individual characteristics, the effect of help in a tutor, and subskills. These ad hoc models are successful for their own specific purpose, but are specified to only model a single specific feature. We present FAST (Feature Aware Student knowledge Tracing), an efficient, novel method that allows integrating general features into Knowledge Tracing. We demonstrate FAST’s flexibility with three examples of feature sets that are relevant to a wide audience. We use features in FAST to model (i) multiple subskill tracing, (ii) a temporal Item Response Model implementation, and (iii) expert knowledge. We present empirical results using data collected from an Intelligent Tutoring System. We report that using features can improve up to 25% in classification performance of the task of predicting student performance. Moreover, for fitting and inferencing, FAST can be 300 times faster than models created in BNT-SM, a toolkit that facilitates the creation of ad hoc Knowledge Tracing variants

    EDM 2011: 4th international conference on educational data mining : Eindhoven, July 6-8, 2011 : proceedings

    Get PDF

    Integrating knowledge tracing and item response theory: A tale of two frameworks

    Get PDF
    Traditionally, the assessment and learning science commu-nities rely on different paradigms to model student performance. The assessment community uses Item Response Theory which allows modeling different student abilities and problem difficulties, while the learning science community uses Knowledge Tracing, which captures skill acquisition. These two paradigms are complementary - IRT cannot be used to model student learning, while Knowledge Tracing assumes all students and problems are the same. Recently, two highly related models based on a principled synthesis of IRT and Knowledge Tracing were introduced. However, these two models were evaluated on different data sets, using different evaluation metrics and with different ways of splitting the data into training and testing sets. In this paper we reconcile the models' results by presenting a unified view of the two models, and by evaluating the models under a common evaluation metric. We find that both models are equivalent and only differ in their training procedure. Our results show that the combined IRT and Knowledge Tracing models offer the best of assessment and learning sciences - high prediction accuracy like the IRT model, and the ability to model student learning like Knowledge Tracing

    Integrating Socially Assistive Robots into Language Tutoring Systems. A Computational Model for Scaffolding Young Children's Foreign Language Learning

    Get PDF
    Schodde T. Integrating Socially Assistive Robots into Language Tutoring Systems. A Computational Model for Scaffolding Young Children's Foreign Language Learning. Bielefeld: Universität Bielefeld; 2019.Language education is a global and important issue nowadays, especially for young children since their later educational success build on it. But learning a language is a complex task that is known to work best in a social interaction and, thus, personalized sessions tailored to the individual knowledge and needs of each child are needed to allow for teachers to optimally support them. However, this is often costly regarding time and personnel resources, which is one reasons why research of the past decades investigated the benefits of Intelligent Tutoring Systems (ITSs). But although ITSs can help out to provide individualized one-on-one tutoring interactions, they often lack of social support. This dissertation provides new insights on how a Socially Assistive Robot (SAR) can be employed as a part of an ITS, building a so-called "Socially Assistive Robot Tutoring System" (SARTS), to provide social support as well as to personalize and scaffold foreign language learning for young children in the age of 4-6 years. As basis for the SARTS a novel approach called A-BKT is presented, which allows to autonomously adapt the tutoring interaction to the children's individual knowledge and needs. The corresponding evaluation studies show that the A-BKT model can significantly increase student's learning gains and maintain a higher engagement during the tutoring interaction. This is partly due to the models ability to simulate the influences of potential actions on all dimensions of the learning interaction, i.e., the children's learning progress (cognitive learning), affective state, engagement (affective learning) and believed knowledge acquisition (perceived learning). This is particularly important since all dimensions are strongly interconnected and influence each other, for example, a low engagement can cause bad learning results although the learner is already quite proficient. However, this also yields the necessity to not only focus on the learner's cognitive learning but to equally support all dimensions with appropriate scaffolding actions. Therefore an extensive literature review, observational video recordings and expert interviews were conducted to find appropriate actions applicable for a SARTS to support each learning dimension. The subsequent evaluation study confirms that the developed scaffolding techniques are able to support young children’s learning process either by re-engaging them or by providing transparency to support their perception of the learning process and to reduce uncertainty. Finally, based on educated guesses derived from the previous studies, all identified strategies are integrated into the A-BKT model. The resulting model called ProTM is evaluated by simulating different learner types, which highlight its ability to autonomously adapt the tutoring interactions based on the learner's answers and provided dis-engagement cues. Summarized, this dissertation yields new insights into the field of SARTS to provide personalized foreign language learning interactions for young children, while also rising new important questions to be studied in the future

    Towards Scalable Assessment of Performance-Based Skills: Generalizing a Detector of Systematic Science Inquiry to a Simulation with a Complex Structure

    Get PDF
    Abstract. There are well-acknowledged challenges to scaling computerized performance-based assessments. One such challenge is reliably and validly identifying ill-defined skills. We describe an approach that leverages a data mining framework to build and validate a detector that evaluates an ill-defined inquiry process skill, designing controlled experiments. The detector was originally built and validated for use with physical science simulations that have a simpler, linear causal structure. In this paper, we show that the detector can be used to identify demonstration of skill within a life science simulation on Ecosystems that has a complex underlying causal structure. The detector is evaluated in three ways: 1) identifying skill demonstration for a new student cohort, 2) handling the variability in how students conduct experiments, and 3) using it to determine when students are off-track before they finish collecting data

    Temporal pathways to learning: how learning emerges in an open-ended collaborative activity

    Get PDF
    The learning process depends on the nature of the learning environment, particularly in the case of open-ended learning environments, where the learning process is considered to be non-linear. In this paper, we report on the findings of employing a multimodal Hidden Markov Model (HMM) based methodology to investigate the temporal learning processes of two types of learners that have learning gains and a type that does not have learning gains in an open-ended collaborative learning activity. Considering log data, speech behavior, affective states and gaze patterns, we find that all learners start from a similar state of non-productivity, but once out of it they are unlikely to fall back into that state, especially in the case of the learners that have learning gains. Those who have learning gains shift between two problem solving strategies, each characterized by both exploratory and reflective actions, as well as demonstrate speech and gaze patterns associated with these strategies, that differ from those who don't have learning gains. Further, the teams that have learning gains also differ between themselves in the manner in which they employ the problem solving strategies over the interaction, as well as in the manner they express negative emotions while exhibiting a particular strategy. These outcomes contribute to understanding the multiple pathways of learning in an open-ended collaborative learning environment, and provide actionable insights for designing effective interventions

    Domain Modeling for Personalized Guidance

    Get PDF
    This chapter attempts to untangle the relationships between personalized guidance and domain modeling, as well as to explain how domain modeling could be used to provide personalized guidance. The problem of personalized guidance has a long history in the area of adaptive educational systems (AES). In fact, the very first recognized AES SCHOLAR (Carbonell, 1970) focused on guiding students to the most relevant facts and questions about the geography of South America. The SCHOLAR functionality was based on a domain model in the form of a semantic network and an overlay student model. Since that time, a considerable share of research in the field of AES has focused on different kinds of personalized guidance, and the majority of this work relied heavily on domain modeling—which makes these two research directions heavily interconnected
    • …
    corecore