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Abstract. There are well-acknowledged challenges to scaling computerized 
performance-based assessments. One such challenge is reliably and validly 
identifying ill-defined skills. We describe an approach that leverages a data 
mining framework to build and validate a detector that evaluates an ill-defined 
inquiry process skill, designing controlled experiments. The detector was origi-
nally built and validated for use with physical science simulations that have a 
simpler, linear causal structure. In this paper, we show that the detector can be 
used to identify demonstration of skill within a life science simulation on Eco-
systems that has a complex underlying causal structure. The detector is evaluat-
ed in three ways: 1) identifying skill demonstration for a new student cohort, 2) 
handling the variability in how students conduct experiments, and 3) using it to 
determine when students are off-track before they finish collecting data. 

Keywords: science simulations, science inquiry, inquiry assessment, perfor-
mance assessment, behavior detector, reliability, educational data mining 

1 Introduction 

Performance-based assessment tasks, complex tasks that require students to create 
work artifacts and/or follow processes, are being seen as alternatives to multiple-
choice questions because the latter have been criticized as not capturing authentic and 
relevant “21st century skills” such as critical and creative thinking (e.g. [1]), and sci-
entific inquiry (e.g. [2]). When implemented using computerized simulations [3], 
games [1] and virtual worlds [2], they have the potential to be scaled because they can 
be deployed consistently, can automatically evaluate students’ work products and 
processes they follow to create those work products [1], [2], [3], [4], and by virtue of 
automatic assessment, can provide real-time feedback to students and educators [1], 
[3]. However, an assessment challenge arises when skills are ill-defined (cf. [1]), 
meaning that there are many correct or incorrect ways for students to demonstrate 
skills [5]. How can assessment designers guarantee that the evaluation rules or models 
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they author [1] to identify demonstration of skill within a given task are consistently 
and accurately doing so? Furthermore, how can they guarantee models will work 
across different contexts (tasks)? 

In this paper, we explore the challenge of creating reliable, scalable evaluation of 
an ill-defined scientific inquiry process skills in the context of Inq-ITS [3], a simula-
tion-based intelligent tutoring system that also acts as a performance assessment of 
students’ inquiry skills. We determine whether an evaluation model (detector) of an 
inquiry process skill already shown to generalize for physical science simulations 
with simple, linear causal structures [6], [7], [8], [9] can also identify the skill in a 
Life Sciences simulation on Ecosystems that has a complex causal structure (cf. [10]).  

2 Prior Work: Validating a Designing Controlled Experiments 
Detector for Inq-ITS Physical Science Activities 

Inq-ITS [3] is a web-based virtual lab environment in which students conduct inquiry 
with interactive simulations and inquiry support tools. The simulations were designed 
to tap content areas aligned to middle school Physical, Life, and Earth Science de-
scribed in Massachusetts’ curricular frameworks. Each Inq-ITS activity provides stu-
dents a driving question, and requires them to investigate that question using the sim-
ulation and tools (see Figure 1 for an example Ecosystems activity) in a semi-
structured inquiry. More specifically, students attempt to form a testable hypothesis 
using a pulldown menu-based sentence builder, collect data by changing the simula-
tion’s variables and running trials (Figure 1), analyze their data using pulldown menus 
to construct a claim and by selecting trials as evidence, and communicate findings in 
an open text field (see [3]). A key aspect of the system is that activities are perfor-
mance assessments of inquiry skill, because skills are inferred from the inquiry pro-
cesses they follow and the work products they create with the support tools. 

The process skill of focus in this paper is designing controlled experiments when 
collecting data with the simulation. Students design controlled experiments when they 
generate trials that make it possible to infer how changeable factors (e.g. seaweed, 
shrimp, small fish, and large fish within an Ecosystem) affect outcomes (e.g., the 
overall balance of the ecosystem) [6]. This skill relates to application of the Control of 
Variables Strategy (CVS; cf. [11]), but unlike CVS, it takes into consideration all the 
experimental design setups run with the simulation, not just isolated, sequential pairs 
of trials [6], [3]. The challenge in assessing this skill is that it is ill-defined; students’ 
data collection patterns can vary widely and there are many ways to successfully 
demonstrate (or not demonstrate) this process skill [12]. The added difficulty of con-
ducting inquiry in a complex system whose variables interact in nonlinear ways (as 
opposed to simpler linear systems in which variables have more straightforward de-
pendencies [13]) also contributes to the multitude of ways in which students collect 
data. This in turn also affects the complexity of assessing this skill. 

To address this assessment difficulty, we developed and validated a data-mined de-
tector to determine whether students designed controlled experiments within Inq-ITS 
physical science activities [6], [7], [8], [9]. We chose a data mining approach to over-

 
 



  
 

come limitations of other models that could under- or over-estimate students’ mastery 
of this skill (e.g. [14]), and to enable easier validation of how well it would perform 
by testing it against data not used to build it, thereby addressing issues of reliability 
and scalability (see [12], [9] for a discussion). Data mining was applied to build mod-
els that could replicate human judgment of whether or not students designed con-
trolled experiments. Training and testing labels were generated using text replay tag-
ging of students’ log files [15], [6], a process in which human coders tag segments of 
logfiles (clips) with behaviors or skills. This detector was originally built for a physi-
cal science topic on Phase Change as a J48 decision tree. In subsequent work, the 
decision tree was further improved by choosing features that increased the theoretical 
construct validity of the detector, and by iterative refinement of the decision tree to 
find an optimal feature set [7], [9]. Examples of chosen features included the number 
of data trials collected, how many times the simulation variables were changed, vari-
ous counts of controlled trials in which only one variable was changed, and various 
counts for repeated trials with the exact same simulation setup. The detector uses 
cutoffs of feature values to predict if a student designs controlled experiments. 

Overall, we have strong evidence for using this detector to evaluate the designing 
controlled experiments skill for physical science inquiry activities at scale. For exam-
ple, as well as being able to predict skill demonstration on held-out test data for Phase 
Change (the same student sample and simulation from which it was constructed [7]), 
the models also generalized to predict the same skill within two other physical science 
topics on energy during free fall [8] and density [9]. The generalization test to the 
Energy activities also addressed how well the model could handle both new students, 
and the variability in how they collect data and demonstrate skill [8]. The detector 
was also validated for a second purpose, determining if a student was off-track when 
collecting data [7]. In follow-on work, the detector was deployed in Inq-ITS to drive 
proactive interventions, before they finished collecting data in the Phase Change sim-
ulation [16], [12]. Thus, the detector could both assess the skill when students finish 
collecting data, and to drive interventions. 

The present study extends this prior work to determine if this detector built and 
validated for physical science simulations can evaluate the skill and drive interven-
tions for a more complex Life Science simulation on Ecosystems. We adapt our for-
mer analytical techniques [6], [7], [8], [9] to address this question.  

3 Inq-ITS EcoLife Ecosystems Activities 

The EcoLife simulation assesses students’ inquiry skills and hones their knowledge of 
ecosystems. It addresses the two strands of the Massachusetts Curricular Frameworks: 
1) the ways in which organisms interact and have different functions within an eco-
system to enable survival, and 2) the roles and relationships among producers, con-
sumers, and decomposers in the process of energy transfer in a food web. The EcoL-
ife simulation (Figure 1) consists of an ocean ecosystem containing big fish, small 
fish, shrimp, and seaweed. Two inquiry scenarios were developed for this simulation. 
In the first, students are explicitly told to stabilize the ecosystem. In the second, stu-



dents are to stabilize the shrimp population (or alternatively, ensure that the shrimp 
population is at its highest). Students then address the questions by engaging in the 
inquiry process described earlier. 

There are key differences between our physical science simulations and the Eco-
systems simulation that can make assessing the designing controlled experiments skill 
more difficult. For example, unlike the physical science simulations that have discrete 
choices for variable values [3], in Ecosystems students add and remove organisms 
with varying numbers. The Ecosystems simulation model is also complex causal sys-
tem whose multiple variables are interconnected in a non-linear fashion [13], [10], 
unlike the physical science simulations which have simple linear dependencies [3]. 
This added complexity increases the hypothesis search space [17], and makes under-
standing the effects of the independent variables on dependent variable(s) more chal-
lenging. As such, the simple control for variables strategy (cf. [11]) may not be ap-
plied in a straightforward manner for this task. 

 

Fig. 1. EcoLife experiment stage. Here, students add and remove organisms, and scan the eco-
system to determine how the population changes over time. 

4 Dataset: Distilling Clips from Ecosystems Activities 

We collected interaction data from 101 students from a Central Massachusetts middle 
school who engaged in inquiry with the Ecosystems activities. Then, text replay tag-
ging of log files (clips) [15] was again used to generate a test set for evaluating the 
applicability of the detector to Ecosystems. A clip contains all actions associated with 

 
 



  
 

formulating hypotheses (hypothesize phase actions) and all actions associated with 
designing and running experiments (experiment phase) [6].  

One human coder (the third author) tagged all the clips distilled from the Ecosys-
tems logfiles. A second coder who originally tagged clips in physical science also 
tagged the first 50 clips to test for agreement. Aside from training the first coder, de-
termining inter-rater reliability was particularly important because, in addition to its 
complexity, the Ecosystems environment has a substantially different UI and interac-
tion pattern than the previous physical science simulations [3]. Agreement for the 50 
clips tagged by both coders was high overall, κ = .71, on par with our prior work cod-
ing for this skill [6]. In total, 226 clips were tagged, and of those, 52.2% were tagged 
as the student having demonstrated skill at designing controlled experiments. 

5 Results: Generalizability of the Detector to Ecosystems 

The overarching goal of this paper is to determine how well the designing controlled 
experiments detector built and validated for physical science simulations with a sim-
pler, linear causal model, generalizes to predict skill demonstration in a second topic, 
Ecosystems with a more complex simulation. This goal is important to ensure the 
model can correctly identify skill in multiple simulation contexts, students and stu-
dents’ experimentation patterns. To do so, three questions are addressed: First, ac-
knowledging that there might be individual differences in how students conduct in-
quiry in general, can the detector be applied to new students who used the Ecosystems 
simulation [8]? Second, can the detector handle the variability in how students collect 
data in Ecosystems [8]? Finally, can the detector be used to determine when scaffold-
ing could be applied when a student is “off-track” [7]? 

Commensurate with our prior work on testing the goodness of detectors [6], [7], 
[8], [9], the degree to which the detector agrees with human judgment (the clip labels 
described previously) is summarized using two metrics, A’ computed as the Wilcoxon 
statistic [18] and Cohen’s Kappa. Briefly, A' is the probability that the detector can 
distinguish a clip where skill is demonstrated from a clip where skill is not demon-
strated, given one clip of each kind. The chance value of A’ is .50. Cohen’s Kappa (κ) 
estimates whether the detector is better than chance (κ = 0.0) at agreeing with the 
human coder’s judgment. A’ and Kappa were chosen because, unlike accuracy, they 
attempt to compensate for successful classifications occurring by chance (cf. [19]). A’ 
can be more sensitive to uncertainty in classification than Kappa, because Kappa 
looks only at the final label, whereas A’ looks at the classifier’s degree of confidence.  

5.1 Can the detector be applied to new students in Ecosystems? 

The following analysis benchmarks how well the detector handles new students in the 
new science domain with a more complex simulation [8]. As mentioned earlier, this 
cohort of students came from a different school than those from which the original 
detector was built. As shown in Table 1, the detector’s performance was quite high 
and indicate that the detector can be used to evaluate new students’ performance in 



the Ecosystems activities [8]. It could distinguish when a student designed controlled 
experiments in Ecosystems from when they did not A’ = 75% of time. The detector’s 
overall agreement with human judgment of whether a student designed controlled 
experiments was also quite high, κ = .61. This performance is on par with previous 
metrics computed at the student-level across three physical science topics, A’ ranging 
from .82 to .94 and κ ranging from .45 to .65 across studies [7], [8], [9]. 

Table 1. Confusion matrix and performance metrics computed when applying the designing 
controlled experiments detector to the Ecosystems clips. 

 

Table 2. Performance metrics for the designing controlled experiments detector disaggregated 
by number of trials in students’ experimentation.  

 

5.2 Can the detector handle the variability in how students collect data? 

Though the previous results are highly encouraging, they only reveal one aspect of 
generalizability. We found in prior work that by sampling data according to the varia-
bility in students’ experimentation patterns, specifically how many trials they collect-
ed, we could reveal weaknesses in the detector [8]. We follow a similar process here 
to characterize how well the detector handles the experimentation variability within 
Ecosystems. Unlike [8] in which clips were sampled to balance exact counts of trials 
collected by students (e.g. clips where students collected exactly 4 trials, clips with 
exactly 5 trials, etc.), here clips were binned into different groups of variability. As an 
example, one bin contained 40 clips where students collected exactly 2 or 3 trials 
(Table 2). This deviation was performed because there was greater variability in the 
number of trials run by students in Ecosystems than in Physical Science. In addition, 
the number of clips for any specific number of runs was not large enough to generate 
valid performance metrics. Bins were chosen to both balance the number of clips per 
bin and to ensure each had enough set of clips for generating metrics. 

As shown in Table 2, the detector handled the variability in students’ experimenta-
tion reasonably well. Performance was high for clips with 2 or 3 simulation runs (A’ 

True N True Y
Pred N 91 27
Pred Y 17 91

* Pc = precision; Rc = recall

Pc = .84, Rc = .77
K = .61, A'=.75

Runs # Clips A' K Pc Rc
[2,3] 40 .90 .76 .83 .83
[4,5] 39 .64 .44 .78 .67

[6-10] 38 .53 .07 .82 .60
>10 65 .66 .20 .88 .89

* Pc = precision; Rc = recall

 
 



  
 

= .90, κ = .76) and clips with 4 or 5 runs (A’ = .64, κ = .44). The detector did, howev-
er, struggle on predicting clips with 6 to 10 runs as indicated by A’ = .53 and κ = .07 
values close to chance. It also did not perform as well for clips with more than 10 
runs, A’ = .66 and κ = .20, albeit better than chance.  

5.3 Can the detector identify when students are “off-track” when designing 
controlled experiments so that scaffolds can be effectively applied?  

As mentioned, it is also of interest to determine if the detector can be used to identify 
when students are off-track by not designing controlled experiments. This is im-
portant so that a timely intervention can be given before they finish collecting data to 
prevent floundering [16]. We can determined this by measuring how well the detector 
can identify skill using less data than was used by the human coder to identify skill 
[7]. More specifically, we can use a subset of a student’s interaction data up to and 
including the nth time the student ran the simulation to predict if a student ultimately 
did/did not design a controlled experiment. The grain size of “simulation run” was 
chosen because an intervention given at this point may prevent students from floun-
dering and collecting more confounded data [3], [16]. 

Like [7], detector performance was measured using data up to a given number of 
simulation runs. Since there was more variation in how many times the simulation 
was run in Ecosystem and its increased complexity, detector performance was meas-
ured by varying the number of simulation runs from 1 to 10. Again, A' and κ were 
computed for each simulation run. As shown in Figure 2, the detector can predict if a 
student is “off-track” when collecting data in Ecosystem in as few as 3 simulation 
runs, indicated by A’ and κ values well above chance, replicating earlier findings [7]. 
We note the detector performs at chance level for exactly one simulation run because 
the designing controlled experiments skill can be only identified after the student has 
collected two or more trials with the simulation (cf. [11]). We also note, however, that 
as the number of runs exceeds 6, the detector has difficulty distinguishing positive 
from negative examples. This is indicated by A’ values ranging from .58 to .66. The 
detector, though, still agrees with human judgment fairly well, κ = .41 to .52. The 
implications of this finding are discussed in the next section.  

6 Discussion and Conclusions 

Performance-based assessments (e.g. [1], [2], [3]) present added assessment challeng-
es when the underlying skills they tap are ill-defined (cf. [1]). The main challenge is 
that such skills may be demonstrated in many correct or incorrect ways by the student 
(e.g. [5]) which calls to question the reliability and applicability of the underlying 
assessment models aimed at identifying such skills. Towards the goal of providing 
reliable, scalable performance-based assessment of inquiry, we determined if a data-
mined detector for designing controlled experiments [6], originally built for Physical 
Sciences simulations [7], [8], [4] that have simpler, linear dependencies between sim-
ulation variables, could be applied to the same skill in Ecosystems, a more complex 



 
Fig. 2. Designing controlled experiments performance (A’ and κ) predicting skill demonstra-
tion using data up to and including the nth simulation run, n = [1,10]. As shown, the detector 
can be applied in as few as three simulation runs. However, as the number of runs exceeds 6, 
the detector has difficulty time distinguishing positive from negative examples (indicated by A’ 
closer to chance = .5) even though it still agrees well with human labels (κ >= .40).  

simulation. In brief, we addressed if the detector could: 1) handle student-level valida-
tion, 2) assess the multi-faceted ways in which students’ conduct inquiry in a complex 
system, and 3) predict when scaffolding in this domain is needed, a question of im-
portance since the system aims to provide feedback to students as they experiment to 
prevent them from floundering [3], [16]. 

The results indicated that the detector had broad generalizability (cf. [20]) given 
that it could reliably assess the skill within Ecosystems and given its prior success at 
doing so for physical science simulations [7], [8], [4]. Its performance on the Ecosys-
tems data was akin to that of the physical science simulations [7], [8], [4] under stu-
dent-level validation. When assessing variability of how students experimented, the 
detector could identify skill demonstration well when students ran between 2 and 5 
trials, but performance dropped when students collected more data than 5 trials. Final-
ly, we found evidence that the detector could detect if a student was “off track” in as 
few as three simulation runs, commensurate with prior findings within a physical 
science simulation [7], but also had lower performance as the number of runs in-
creased above 5. One possible way to overcome this limitation as the number of runs 
increases is to reset the ‘window’ of students’ experimentation patterns after they 
receive scaffolding, i.e., after a student receives scaffolding, the system could treat the 
student as if they had not conducted any actions with the simulation. Then, after three 
more data collections, the system could again determine if the student is still off-track.  

This work makes two contributions towards performance-based assessment and 
generalizability of EDM detectors. First, this study complements prior work on build-
ing generalizable detectors of affect (e.g. [21]) and other undesirable behaviors within 
ITS’s (e.g. [20], [22]) with its focus on skill assessment. The power of using the EDM 
approach to build models that identify skill demonstration is in the ability to learn 
evaluation rules (cf. [1]) from student data, and the ability to quantify how reliable the 
model is at identifying skills for new students and within different tasks (e.g. physical 
science vs. life science) by testing detector performance with new student data. Sec-
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ond, as in [7], [8], [9], this study employs additional validation techniques in addition 
to student-level generalizability tests (e.g. [21], [22]) to determine the extent to which 
the detector can be used to evaluate skill and drive scaffolding in the more complex 
domain of Ecosystems. While student-level validation is important, other aspects 
specific to assessment such as handling variability in how students engage in perfor-
mance-based tasks and specific to formative assessment such as students get timely 
feedback so they do not flounder [3] are also necessary if such models are to general-
ize to multiple situations. Overall, these results are promising towards realizing scala-
ble assessment and real-time formative feedback of inquiry skill development across 
science topics. In particular, our computer-based approach complements other as-
sessments of deep science knowledge (e.g. [23]) by focusing on inquiry skills. In 
addition, since our assessments are performance-based, they may help overcome the 
limitations associated with assessing inquiry via traditional methods [2].  

The generalizability and reusability of the detector has been hypothesized to be due 
to judicious feature engineering [7]. As such, including other types of features may 
improve prediction and generalizability. For example, [8] suggests that using ratio-
based features instead of a raw counts for features may improve generalizability. For 
future work, issues such as improved feature engineering will be explored to ensure 
this detector can work for new students, handle the variability in students experiment, 
and ensure that scaffolding will be applied at an appropriate time across all Inq-ITS 
activities for physical, life, and earth science. 
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