254 research outputs found

    Three Dimensional Tissue Motion Analysis from Tagged Magnetic Resonance Imaging

    Get PDF
    Motion estimation of soft tissues during organ deformation has been an important topic in medical imaging studies. Its application involves a variety of internal and external organs including the heart, the lung, the brain, and the tongue. Tagged magnetic resonance imaging has been used for decades to observe and quantify motion and strain of deforming tissues. It places temporary noninvasive markers—so called "tags"—in the tissue of interest that deform together with the tissue during motion, producing images that carry motion information in the deformed tagged patterns. These images can later be processed using phase-extraction algorithms to achieve motion estimation and strain computation. In this dissertation, we study three-dimensional (3D) motion estimation and analysis using tagged magnetic resonance images with applications focused on speech studies and traumatic brain injury modeling. Novel algorithms are developed to assist tagged motion analysis. Firstly, a pipeline of methods—TMAP—is proposed to compute 3D motion from tagged and cine images of the tongue during speech. TMAP produces an estimation of motion along with a multi-subject analysis of motion pattern differences between healthy control subjects and post-glossectomy patients. Secondly, an enhanced 3D motion estimation algorithm—E-IDEA—is proposed. E-IDEA tackles the incompressible motion both on the internal tissue region and the tissue boundaries, reducing the boundary errors and yielding a motion estimate that is more accurate overall. Thirdly, a novel 3D motion estimation algorithm—PVIRA—is developed. Based on image registration and tracking, PVIRA is a faster and more robust method that performs phase extraction in a novel way. Lastly, a method to reveal muscles' activity using strain in the line of action of muscle fiber directions is presented. It is a first step toward relating motion production with individual muscles and provides a new tool for future clinical and scientific use

    DRIMET: Deep Registration for 3D Incompressible Motion Estimation in Tagged-MRI with Application to the Tongue

    Full text link
    Tagged magnetic resonance imaging (MRI) has been used for decades to observe and quantify the detailed motion of deforming tissue. However, this technique faces several challenges such as tag fading, large motion, long computation times, and difficulties in obtaining diffeomorphic incompressible flow fields. To address these issues, this paper presents a novel unsupervised phase-based 3D motion estimation technique for tagged MRI. We introduce two key innovations. First, we apply a sinusoidal transformation to the harmonic phase input, which enables end-to-end training and avoids the need for phase interpolation. Second, we propose a Jacobian determinant-based learning objective to encourage incompressible flow fields for deforming biological tissues. Our method efficiently estimates 3D motion fields that are accurate, dense, and approximately diffeomorphic and incompressible. The efficacy of the method is assessed using human tongue motion during speech, and includes both healthy controls and patients that have undergone glossectomy. We show that the method outperforms existing approaches, and also exhibits improvements in speed, robustness to tag fading, and large tongue motion.Comment: Accepted to MIDL 2023 (full paper

    Dynamic Deformation and Mechanical Properties of Brain Tissue

    Get PDF
    Traumatic brain injury is an important medical problem affecting millions of people. Mathematical models of brain biomechanics are being developed to simulate the mechanics of brain injury and to design protective devices. However, because of a lack of quantitative data on brain-skull boundary conditions and deformations, the predictions of mathematical models remain uncertain. The objectives of this dissertation are to develop methods and obtain experimental data that will be used to parameterize and validate models of traumatic brain injury. To that end, this dissertation first addresses the brain-skull boundary conditions by measuring human brain motion using tagged magnetic resonance imaging. Magnetic resonance elastography was performed in the ferret brain to measure its mechanical properties in vivo. Brain tissue is not only heterogeneous, but may also be anisotropic. To characterize tissue anisotropy, an experimental procedure combining both shear testing and indentation was developed and applied to white matter and gray matter. These measurements of brain-skull interactions and mechanical properties of the brain will be valuable in the development and validation of finite element simulations of brain biomechanics

    WarpPINN: Cine-MR image registration with physics-informed neural networks

    Full text link
    Heart failure is typically diagnosed with a global function assessment, such as ejection fraction. However, these metrics have low discriminate power, failing to distinguish different types of this disease. Quantifying local deformations in the form of cardiac strain can provide helpful information, but it remains a challenge. In this work, we introduce WarpPINN, a physics-informed neural network to perform image registration to obtain local metrics of the heart deformation. We apply this method to cine magnetic resonance images to estimate the motion during the cardiac cycle. We inform our neural network of near-incompressibility of cardiac tissue by penalizing the jacobian of the deformation field. The loss function has two components: an intensity-based similarity term between the reference and the warped template images, and a regularizer that represents the hyperelastic behavior of the tissue. The architecture of the neural network allows us to easily compute the strain via automatic differentiation to assess cardiac activity. We use Fourier feature mappings to overcome the spectral bias of neural networks, allowing us to capture discontinuities in the strain field. We test our algorithm on a synthetic example and on a cine-MRI benchmark of 15 healthy volunteers. We outperform current methodologies both landmark tracking and strain estimation. We expect that WarpPINN will enable more precise diagnostics of heart failure based on local deformation information. Source code is available at https://github.com/fsahli/WarpPINN.Comment: 18 pages, 10 figure

    Filter Design and Consistency Evaluation for 3D Tongue Motion Estimation using Harmonic Phase Analysis Method

    Get PDF
    Understanding patterns of tongue motion in speech using 3D motion estimation is challenging. Harmonic phase analysis has been used to perform noninvasive tongue motion and strain estimation using tagged magnetic resonance imaging (MRI). Two main contributions have been made in this thesis. First, the filtering process, which is used to produce harmonic phase images used for tissue tracking, influences the estimation accuracy. For this work, we evaluated different filtering approaches, and propose a novel high-pass filter for volumes tagged in individual directions. Testing was done using an open benchmarking dataset and synthetic images obtained using a mechanical model. Second, the datasets with inconsistent motion need to be excluded to yield meaningful motion estimation. For this work, we used a tracking-based method to evaluate the motion consistency between datasets and gave a strategy to identify the inconsistent dataset. Experiments including 2 normal subjects were done to validate our method. In all, the first work about 3D filter design improves the motion estimation accuracy and the second work about motion consistency test ensures the meaningfulness of the estimation results

    MulViMotion: shape-aware 3D myocardial motion tracking from multi-view cardiac MRI

    Get PDF
    Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods

    Motion tracking tMRI datasets to quantify abnormal left ventricle motion using finite element modelling

    Get PDF
    According to `The Atlas of Heart Disease and Stroke'[MMMG04] published by the World Health Organization, heart disease accounts for nearly half the deaths in both the developed and developing countries and is the world's single biggest killer. However, early detection of a diseased heart condition can prevent many of these fatalities. Regional wall motion abnormalities of the heart precede both ECG abnormalities and chest pain as an indicator of myocardial ischaemia and are an excellent indicator of coronary stenosis [GZM97]. These motion abnormalities of the heart muscle are difficult to observe and track, because the heart is a relatively smooth organ with few landmarks and non-rigid motion with a twisting motion or tangential component. The MRI tissue-tagging technique gives researchers the first glimpse into how the heart actually beats. This research uses the tagged MRI images of the heart to create a three dimensional model of a beating heart indicating the stress of a region. Tagged MRI techniques are still developing and vary vastly, meaning that there needs to be a methodology that can adapt to these changes rapidly and effectively, to meet the needs of the evolving technology. The focus of this research is to develop and test such a methodology by the means of a Strain Estimation Pipeline along with an effective way of validating any changes made to the individual processes that it comprises of
    • …
    corecore