208 research outputs found

    Topic-Sensitive Epistemic 2D Truthmaker ZFC and Absolute Decidability

    Get PDF
    This paper aims to contribute to the analysis of the nature of mathematical modality, and to the applications of the latter to unrestricted quantification and absolute decidability. Rather than countenancing the interpretational type of mathematical modality as a primitive, I argue that the interpretational type of mathematical modality is a species of epistemic modality. I argue, then, that the framework of two-dimensional semantics ought to be applied to the mathematical setting. The framework permits of a formally precise account of the priority and relation between epistemic mathematical modality and metaphysical mathematical modality. The discrepancy between the modal systems governing the parameters in the two-dimensional intensional setting provides an explanation of the difference between the metaphysical possibility of absolute decidability and our knowledge thereof. I also advance an epistemic two-dimensional truthmaker semantics, if hyperintenisonal approaches are to be preferred to possible worlds semantics. I examine the relation between epistemic truthmakers and epistemic set theory

    Mid-Century American Philosophy

    Get PDF

    Actuality and the a priori

    Get PDF
    We consider a natural-language sentence that cannot be formally represented in a first-order language for epistemic two-dimensional semantics. We also prove this claim in the “Appendix” section. It turns out, however, that the most natural ways to repair the expressive inadequacy of the first-order language render moot the original philosophical motivation of formalizing a priori knowability as necessity along the diagonal

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    Counterfactual Logic and the Necessity of Mathematics

    Get PDF
    This paper is concerned with counterfactual logic and its implications for the modal status of mathematical claims. It is most directly a response to an ambitious program by Yli-Vakkuri and Hawthorne (2018), who seek to establish that mathematics is committed to its own necessity. I claim that their argument fails to establish this result for two reasons. First, their assumptions force our hand on a controversial debate within counterfactual logic. In particular, they license counterfactual strengthening— the inference from ‘If A were true then C would be true’ to ‘If A and B were true then C would be true’—which many reject. Second, the system they develop is provably equivalent to appending Deduction Theorem to a T modal logic. It is unsurprising that the combination of Deduction Theorem with T results in necessitation; indeed, it is precisely for this reason that many logicians reject Deduction Theorem in modal contexts. If Deduction Theorem is unacceptable for modal logic, it cannot be assumed to derive the necessity of mathematic

    Abstracta and Possibilia: Modal Foundations of Mathematical Platonism

    Get PDF
    This paper aims to provide modal foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by Hale and Wright and examined in Hale (2013); and demonstrate how a two-dimensional approach to the epistemology of mathematics is consistent with Hale and Wright's notion of there being non-evidential epistemic entitlement rationally to trust that abstraction principles are true. A choice point that I flag is that between availing of intensional or hyperintensional semantics. The hyperintensional semantic approach that I advance is a topic-sensitive epistemic two-dimensional truthmaker semantics. Epistemic and metaphysical states and possibilities may thus be shown to play a constitutive role in vindicating the reality of mathematical objects and truth, and in providing a conceivability-based route to the truth of abstraction principles as well as other axioms and propositions in mathematics

    An Objection to Naturalism and Atheism from Logic

    Get PDF
    I proffer a success argument for classical logical consequence. I articulate in what sense that notion of consequence should be regarded as the privileged notion for metaphysical inquiry aimed at uncovering the fundamental nature of the world. Classical logic breeds necessitism. I use necessitism to produce problems for both ontological naturalism and atheism
    corecore