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A UNIFIED COMPLETENESS THEOREM
FOR QUANTIFIED MODAL LOGICS

GIOVANNA CORSI

Abstract. A general strategy for proving completeness theorems for quantified modal

logics is provided. Starting from free quantified modal logic K, with or without identity,

extensions obtained either by adding the principle of universal instantiation or the converse

of the Barcan formula or the Barcan formula are considered and proved complete in a

uniform way. Completeness theorems are also shown for systems with the extended Barcan

rule as well as for some quantified extensions of the modal logic B. The incompleteness

of Q◦.B+BF is also proved.

In this paper we consider all free and classical quantified extensions of the
propositional modal logic K obtained by adding either the axioms of identity or
the Converse of the Barcan Formula or the Barcan Formula or the Extended Bar-
can Rule. Quantified extensions of the propositional logic B are also examined.1

The lack of “... a common completeness proof that can cover constant domains,
varying domains, and models meeting other conditions...” has often been felt,
see [3], p.132. In [4] and [5], p.273, we read “Ideally, we would like to find a
completely general completeness proof.” The production of such a proof is the
aim of this paper. We proceed by presenting a completeness proof for the system
Q◦.K, Kripke’s original one2 with the addition of individual constants, we then
show that such a proof yields completeness results for extensions of Q◦.K such
as those characterized by models with increasing or constant domains, with or
without non-existing objects, with or without identity. Our main goal is to offer
a clear framework in which each completeness result considered, old or new, will
find its natural place. Sometimes we will follow through the proof of a known
result just to show how it fits into our framework. In the first part of the paper
we will deal with the systems mentioned in the diagram below:

This paper was written in the Fall 2001 during my visit to the Institute of Logic, Language

and Computation in Amsterdam. I am very grateful to Prof. Dick de Jongh who made my stay
at ILLC profitable and enjoyable. His comments to the present paper have been most valuable.
My thanks also to the Netherlands Institute for Advanced Study, NIAS, who provided me, even

if indirectly, with a very pleasant place to live near the Wassenaarseslag.
1The first part of this paper was presented at the workshop “Methods for Modalities 2”,

Amsterdam, 29-30 November 2001.
2See [7].

c© 0000, Association for Symbolic Logic

0022-4812/00/0000-0000/$00.00

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Almae Matris Studiorum Campus

https://core.ac.uk/display/16377994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 GIOVANNA CORSI

Q◦.K
Q◦.K + CBF

Q◦.K + CBF + BF

Q.K
Q.K + BF

In the second part we will consider systems containing the identity relation.
As we will see, Q◦.K (Q.K) is obtained by adding to the normal propositional
modal logic K the quantificational axioms and rules of free (classical) logic. The
main feature of Q◦.K is that the principle of Universal Instantiation, UI, is not
a theorem, but only its universal closure, UI◦, is. Semantically this fact has
the important consequence that each world w of a model for Q◦.K is endowed
both with an inner domain, Dw, that represents the set of objects existing at w
and coincides with the domain of variation of the quantifiers, and with an outer
domain Uw ⊇ Dw that also contains non-existing possible objects and coincides
with the domain of interpretation at w of the variables, the predicates and the
individual constants. Once the full axiom of Universal Instantiation is present,
no distinction is made between existing and non-existing objects and only one
domain is associated with each world. Here are the four formulas we shall be
most concerned with:

UI◦ ∀y(∀xA(x) → A(y/x))
UI ∀xA(x) → A(t/x)
CBF 2∀xA → ∀x2A
BF ∀x2A → 2∀xA

§1. Modal systems without identity.

First Order Modal Languages and Kripke Semantics. The alphabet of
first-order modal language L (without identity) contains the unary connective
2 (box) in addition to the Boolean connectives ¬ (not) and ∨ (or) and the
quantifier ∃ (there is). Moreover L contains a countable set, Var, of variables,
x1, x2, x3, . . . , the symbol of falsehood, ⊥, and the following two sets, at most
countable, of, respectively, individual constants a, b, c, d, a1, b1, c1, d1, . . . , and
predicate symbols, Pn, Qn, Rn, . . . of arity n, 0 ≤ n < ω.
A term is either a variable or an individual constant. s, s1, s2, ... t, t1, t2, ...
are metavariables for terms.

Well formed formulas (wffs)
1. ⊥ is a wff,
2. If Pn is an n-ary predicate symbol and t1, . . . , tn are n terms, then
Pn(t1, . . . , tn) is a wff,
3. If A and B are wffs and x is a variable, then ¬A, 2A, A ∨ B,∃xA are
wffs,
4. Nothing else is a well formed formula.

The formulas A∧B,A → B,3A,∀xA are defined in the usual way. By A(t/s) we
denote the formula obtained from the wff A(s) by replacing all free occurrences
of s by t, changing the name of bound variables, if necessary, to avoid rendering
the new occurrences of t bound in A(t/s). A(t//s) denotes that some (all,
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none) free occurrences of s are replaced by t. A(s1, ..., t/si, ...sn) stands for
A(s1, ..., si, ...sn)(t/si).

A Kripke-frame, K-frame, is a quadruple F = 〈W,R, D, U〉 where
W is a non-empty set,
R is a binary relation on W , the accessibility relation,
D is a function which associates to each w ∈ W a set Dw. Dw is the inner

domain of w, and it can be empty,
U is a function which associates to each w ∈ W a set Uw such that:
Uw 6= ∅ and if wRv than Uw ⊆ Uv. Uw is the outer domain of w.

The fact that Uw ⊆ Uv, if wRv, does not prevent Dw from being disjoint from
Dv. In [7], Kripke stipulates that for all v ∈ W , Uv =

⋃
w∈W Dw. We generalize

Kripke’s original semantics by allowing Uw ⊆ Uv if wRv, and
⋃

w∈W Uw ⊇⋃
w∈W Dw.

⋃
w∈W Uw may contain individuals that never happen to come into

existence.

When no condition is imposed on the domain function D, F is said to have
varying domains, when wRv implies Dw ⊆ Dv (Dw ⊇ Dv, Dw = Dv), F is
said to have increasing (decreasing, constant) domains. The outer domains are
always increasing.

A K-model M is given by a K-frame F plus a function I that together with
every w ∈ W determines an interpretation Iw of the descriptive symbols of the
language. In particular,

Iw(Pn) ⊆ (Uw)n and Iw(c) ∈ Uw.

Whenever M = 〈F , I〉, M is said to be based on F . For each w ∈ W , a w-
assignment is a function σ : V ar → Uw. Let σ and τ be two w-assignments. τ
is said to be an x-variant of σ if σ and τ agree on all variables except possibly
on the variable x. If σ is a w-assignment, it is also a v-assignment for any v
such that wRv, because Uw ⊆ Uv. Given a w-assignment σ, we can interpret all
terms of the language, by letting Iσ

w(c) = Iw(c) and Iσ
w(x) = σ(x).

The notion of a formula being satisfied by a w-assignment σ at w in a K-model
M is defined so:
M |=σ

w Pn(t1, . . . , tn) iff 〈Iσ
w(t1), . . . , Iσ

w(tn)〉 ∈ Iw(Pn)
M 6|=σ

w ⊥
M |=σ

w ¬B iff M 6|=σ
w B

M |=σ
w B ∨ C iff M |=σ

w B or M |=σ
w C

M |=σ
w ∃xB iff for some x-variant τ of σ, such that τ(x) ∈ Dw,

M |=τ
w B

M |=σ
w 2B iff for all v such that wRv, M |=σ

v B.

M satisfies a set of formulas ∆ iff for some w and w-assignment σ, M |=σ
w D,

for all D ∈ ∆.
A formula B is true in a K-model M at w, M |=w B, iff for all w-assignments
σ, M |=σ

w B.
A formula B is valid on a K-model M, M |= B, iff for all w ∈ W , M |=w B.
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A formula B is valid on a K-frame F , F |= B, iff for all K-models M based on
F , M |= B.
A formula B is K-valid iff for all K-frames F , F |= B.
M is a model for a logic L iff M |= A, for all theorems A of L.

As is well-known, the following formulas are not K-valid:3
∀x2A → 2∀xA (BF ) ∃x2A → 2∃xA (GF ) ∀xA(x) → A(t/x)
2∀xA → ∀x2A (CBF ) 2∃xA → ∃x2A (CGF ) ∀xA(x) → ∃xA(x)

Denotation, existence and rigidity. In the K-semantics just introduced, every
constant is denoting, in fact for all w ∈ W and for all constants c, Iw(c) is
defined, but nothing is said about whether it denotes an existing or a non-
existing individual, Iw(c) can be in Dw as well as in (Uw - Dw). Moreover it is
not assumed that constants are rigid designators, where an individual constant
c is said to be a rigid designator iff

wRv implies Iw(c) = Iv(c).

In a language without identity no formula expresses that a constant is a rigid des-
ignator. At the semantical level, rigidity corresponds to the classical correlation
between satisfaction and substitution as stated by the following lemma.

Lemma 1.1. Let M be a K-model and σ a w-assignment. An individual con-
stant c is a rigid designator iff (M |=σ

w A(c/x) iff M |=τ
w A(x)), for any w-

assignment τ which is an x-variant of σ such that τ(x) = Iw(c).4

Proof. Suppose c is a rigid designator. The proof is by induction on A, we
consider just one case. M |=σ

w 2B(c/x) iff for all v.wRv. M |=σ
v B(c/x) iff, by

induction hypothesis, M |=τ
v B(x), where τ is a v-assignment and an x-variant

of σ such that τ(x) = Iv(c). Since c is a rigid designator, τ(x) = Iw(c), whence
τ is a w-assignment and so M |=τ

w 2B(x).
Suppose c is not a rigid designator. Take a model M based on two worlds w
and v such that wRv, moreover let Dw = {u1}, Dv = {u1, u2}, Iw(c) = u1,
Iv(c) = u2, Iw(P ) = Iv(P ) = {u1}, where P is a unary predicate letter. Then
M 6|=σ

w 2P (c/x) and M |=τ
w 2P (x). a

A particular case of Kripke semantics which has been widely studied in the
literature is the one we will call Tarski-Kripke semantics, TK-semantics, in order
to stress the fact that a Tarski-Kripke model is just a family of classical models
interconnected by the accessibility relation. A TK-frame is a K-frame in which
for all w ∈ W , Uw = Dw, so each world w is endowed with just one domain, Dw,
which is both the domain of variation of the quantifiers, of the free variables and
the domain of interpretation of the constant and predicate symbols. Of course
Dw 6= ∅ and wRv implies that Dw ⊆ Dv. TK-models are defined exactly as K-
models. Each world of a TK-model is a Tarskian model, and so classically valid
formulas such as ∀xA(x) → A(x) or ∀xA(x) → A(c/x) or ∀xA(x) → ∃xA(x) turn

3As to the role of the Ghilardi formula (GF ) in counterpart semantics, see [2].
4The equivalence stated in the lemma corresponds to the equivalence between de dicto and

de re readings of substituted formulas, 2P (c) versus 〈c〉2P (x), see [2].
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out to be valid. Moreover CBF and GF are TK-valid too. On the contrary BF
and CGF are not TK-valid.

A comparison with the semantics as presented in Kripke, 1963.
We will use the expression original Kripke semantics, OK-semantics, to refer

to the semantics of Kripke, [7], 1963. An OK-model is a quadruple 〈W,R,D, I〉
where W , R and D are defined as in K-semantics. The interpretation function I,
on the other hand, differs for now I is such that Iw(Pn) ⊆ V and Iw(c) ∈ V ,
where V =

⋃
w∈W Dw. Analogously, the codomain of any assignment function

is V . At first sight, OK-models look more general than K-models because both
the assignment and the interpretation functions are not world-bound, in the sense
that the interpretation at w of, say, a unary predicate P need not be a subset of
Dw, and the interpretation at w of a constant c need not be an element of Dw.
A way of looking at this semantics is that each world has an ‘inner’ domain, Dw,
the domain of variation of the quantifiers, that varies from world to world and
can be empty, and an ‘outer’ domain, V , which remains fixed and is the domain
of interpretation of the variables, the predicates and the individual constants. V
is the global domain of discourse, the set of all things of which we are entitled to
say at each world if a predicate is true or false of them at that world. Moreover
each element of V is bound to exist in some world. Keeping the outer domain
V fixed is a heavy limitation in building canonical models, for suppose that we
want to define a model based on a frame with two worlds, w and v, and that we
want to define first Dw and Iw and then, Dv and Iv. In defining the function
Iw, we are bound to establish once and for all what the set V is like, so that
there will be no way to add new individuals when we come to define either Dv

or Iv. A further and most important advantage of K-semantics is that TK-
models are particular cases of K-models, just let Uw = Dw. This is particularly
relevant in the present context since we aim at a unique semantic framework
that can accommodate both OK-models and TK-models.5 This has induced
us to generalize OK-semantics by allowing the outer domains to increase and
at the same time to have world-bound interpretations and assignment functions.
But this is no limitation because in K-semantics, as we have defined it, the
codomain of Iw as well as of any w-assignment is Uw, the outer domain, and
nothing prevents each Uw from including

⋃
w∈W Dw.

The system Q◦.K and some of its extensions.

The system Q◦.K contains the following axioms and inference rules.6

Axiom schemata: truth-functional tautologies,
2(A → B) → (2A → 2B) ∀y(∀xA(x) → A(y/x)) ∀x∀yA ↔ ∀y∀xA
∀x(A → B) → (∀xA → ∀xB) A → ∀xA, x not free in A

Inference rules : Modus Ponens (from A and A → B infer B), Necessitation
(from A infer 2A), and Universal Generalization (from A infer ∀xA).

5Hughes and Cresswell’s models with undefined formulas, [6] pp.277-280, are equivalent to
TK-models.

6We follow Fitting and Mendelsohn, [3], for the choice of this axiom system.
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The system Q.K is just the system Q◦.K with ∀y(∀xA(x) → A(y/x)) replaced
by ∀xA(x) → A(t/x).7

Definition 1.2. Let L be any quantified modal logic which extends Q◦.K,
L ⊇ Q◦.K. A proof in L is a sequence of formulas such that each of them is
either an axiom of L or it is obtained from preceding formulas in the sequence
by application of an inference rule.
A wff A is a theorem of L, `L A,iff there is a proof in L whose last formula is A.
A wff A is derivable in L from a set ∆ of formulas, ∆ `L A, iff for some finite
number of formulas A1, ..., An in ∆, `L A1 ∧ ... ∧An → A.

Lemma 1.3. Theorems of Q◦.K that we will use in the sequel (often without
mentioning them).

(i) ∀y(A(y) → ∃xA(x//y)), (EI◦).
(ii) ∀y1 . . .∀yn∀y[∀xA(y1 . . . yn, x) → A(y1 . . . yn, y/x)],

(y may or may not occur in A(y1 . . . yn, x)).
(ii∗) ∀w1∀yi1 . . .∀y . . .∀wm∀yin [∀xA(y1 . . . yn, x) → A(y1 . . . yn, y/x)], where

{yi1 . . . yin} ⊆ {y1 . . . yn} and w1 . . . wm do not occur in A(y1 . . . yn, x).
(iii) If `Q◦.K A1 ∧ · · · ∧An → B, then `Q◦.K ∀~xA1 ∧ · · · ∧ ∀~xAn → ∀~xB,

where ∀~x = ∀x1 . . .∀xk, for some k ≥ 0.
(iv) (A ∨ ∀yB(y)) ↔ ∀y(A ∨B(y)), where y is not free in A.
(v) (A → ∀yB(y)) ↔ ∀y(A → B(y)), where y is not free in A.
(vi) ∀x(A(x) → B) ↔ (∃xA(x) → B), where y is not free in B.
(vii) ∀xA ↔ ∀yA(y/x), where y doesn’t occur in ∀xA.
(viii) ∀xA(x) ∧ ∃yB(y) → ∃y(A(y/x) ∧B(y)), where y doesn’t occur in ∀xA.

Lemma 1.4. Here is a list of well-known soundness results.
q.m.l. is sound w.r.t. the class of K-frames with domains

inner outer
Q◦.K varying increasing
Q◦.K+CBF increasing increasing
Q◦.K+BF decreasing increasing
Q◦.K+CBF+BF constant increasing
Q.K increasing = inner
Q.K+BF constant = inner

Completeness results
The main idea behind the completeness proof we are going to present stems from
a simple observation: the affinity of meaning between CBF and UI. Take an
instance of UI, ∀xP (x) → P (x). The falsity at a world w of ∀xP (x) → P (x)
under a w-assignment σ, implies that the individual σ(x) does not belong to
the domain of variation of the quantifiers, so σ(x) does not exist at w. The
falsity of an instance of CBF , 2∀xP (x) → ∀x2P (x), at a world w implies
that ∀xP (x) is true at some future moment v, whereas P (x) is false at v under
some w-assignment σ such that σ(x) ∈ Dw, and so at v under σ it is false that

7To rule out empty domains add to Q◦.K the axiom ∀xA → A, where x is not free in A.
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∀xP (x) → P (x). UI discriminates between existing and non-existing individuals
in the current world, whereas CBF discriminates between existing and non-
existing individuals in future worlds. Falsifying CBF has fatal consequences for
some individual: any u which is a witness for ∃x3¬P (x) at a world w where
2∀xP (x) is true, is bound to die in some subsequent world. This induces us to
stipulate that

an individual constant c denotes an existing individual at w iff
for all sentences ∀xA(x), ∀xA(x) → A(c/x) is true at w.

So, no wonder that validity of CBF yields that existing individuals never die. We
would like to stress that in this way we are able to distinguish between existing
and non-existing individuals without having recourse to the identity relation (or
the existence predicate), as is usually the case,

c denotes an existing individual at w iff ∃x(x = c) is true at w,

and so without becoming entangled in problems linked to identity, modalities
and rigid designators.

Notational convention. By L we shall denote any q.m.l. which extends Q◦.K. If
L is a q.m.l. with language L and C is a denumerable set of individual constants
not occurring in L, then LC denotes the language obtained by adding all the
constants of C to L, and LC denotes the logic L in the language LC . From now
on we agree that L is the language of L and LC is the language of LC . Moreover,
Const(L) denotes the set of individual constants of L.

Definition 1.5. A set ∆ of formulas is L-consistent iff ∆ 6`L ⊥.

Note. It might well be that a set of sentences ∆ is L-consistent and at the same
time ∆ `L ∀u1 . . .∀uk⊥, for some k ≥ 1. Take ∆ = {∀xA ∧ ¬A}, where x does
not occcur in A or ∆ = {∀x⊥}.

Lemma 1.6. on constants.
(i) If `LC A(c1, . . . , cn) then `LC A(w1/c1, . . . , wn/cn),

where w1, . . . wn are variables not occurring in A(c1, . . . , cn).
(ii) If `LC A and no constant of C occurs in A, then `L A.
(iii) If ∆ is an L-consistent set of sentences and no constant of C occurs

in ∆, then ∆ is LC-consistent.

Proof. (i) As for classical logic, by choosing variables w1, . . . , wn not oc-
curring in the proof D of A(c1, . . . , cn) and by replacing uniformly in D, ci by
wi, 1 ≤ i ≤ n. (ii) follows from (i), and (iii) from (ii). a

Let C be a not-empty set of individual constants. Now we define a set of sen-
tences, which if true, guarantee that C is a set of constants denoting ’existing’
individuals.

Definition 1.7. E(C) =df {∀xA(x) → A(c/x) : c ∈ C and ∀xA(x) is a
sentence of LC}.

Lemma 1.8. Let C be a not-empty set of constants. If ∆ is an L-consistent set
of sentences and no constants of C occur in ∆, then either ∆ `LC ∀z1...∀zh⊥,
for some h ≥ 1 or E(C) ∪∆ is LC-consistent.
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Proof. Assume that ∆ 6`LC ∀z1...∀zh⊥, for any h ≥ 1 and suppose by reduc-
tio that E(C)∪∆ `LC ⊥. Then (*) `LC E1 ∧ · · · ∧Ej → [D1 ∧ · · · ∧Dk → ⊥],
where {E1, . . . , Ej} ⊆ E(C) and {D1, . . . , Dk} ⊆ ∆. Let ~c = c1, . . . , cn be all
the individual constants of C occurring in (*). Then `LC E1(~c) ∧ · · · ∧Ej(~c) →
[D1∧· · ·∧Dk → ⊥]. (By Ei(~c) we mean that the constants of C actually occuring
in Ei are among c1, . . . , cn.)
If n = 0 then j = 0 too, and so ∆ would be L-inconsistent, contrary to the
hypothesis.
If n ≥ 1, let ~z = z1 . . . zn be variables not occurring in (*), so by lemma 1.6(i),
`LC E1(~z/~c) ∧ · · · ∧ Ej(~z/~c) → [D1 ∧ · · · ∧ Dk → ⊥], where (~z/~c) stands for
(z1/c1 . . . zn/cn, z/c). Then, by lemma 1.3(iii),
`LC ∀~zE1(~z) ∧ · · · ∧ ∀~zEj(~z) → [∀~zD1 ∧ · · · ∧ ∀~zDk → ∀~z⊥].

Now, each ∀~zEi(~z), 1 ≤ i ≤ j, is of the form ∀~z(∀xA(~z, x) → A(~z, zl/x)), for
some 1 ≤ l ≤ n and wff A(~z, x) (zl may or may not occur in ∀xA), so by lemma
1.3(ii∗), ∀~z(∀xA(~z, x) → A(~z, zl/x)) is a theorem of LC . Consequently
`LC ∀~zD1 ∧ · · · ∧ ∀~zDk → ∀~z⊥. Since D1 . . . Dk are sentences, ∆ `LC ∀~zD1 ∧
· · · ∧ ∀~zDk, so ∆ `LC ∀~z⊥, contrary to the assumption. a
When the principle of Universal Instantiation is present, lemma 1.8 is nothing
but lemma 1.6(iii).

Lemma 1.9. Let ∆ be a set of sentences of LC not containing the individual
constant c ∈ C. Then E(C)∪∆ `LC A(c) only if E(C)∪∆ `LC ∀zA(z/c), where
z doesn’t occur in A(c).

Proof. First observe that since C 6= ∅, all vacuous universal instantiations
∀xB → B, where x doesn’t occur free in B, are derivable from E(C). In fact
let >(x) be any tautology containing the free variable x. Then ∀x(B ∧>(x)) →
B ∧ >(c/x) ∈ E(C), hence E(C) ` ∀x(B ∧ >(x)) → B, so E(C) ` ∀xB → B.

Now let E(C) ∪∆ `LC A(c). Then
(*) `LC E1 ∧ · · · ∧ Ej → (D1 ∧ · · · ∧Dk → A(c)), where {E1, . . . , Ej} ⊆ E(C),
{D1, . . . , Dk} ⊆ ∆. Let ~c = c1, . . . , cn, c be all the constants of C occurring
in (*), then `LC E1(~c) ∧ · · · ∧ Ej(~c) → (D1(~c) ∧ · · · ∧ Dk(~c) → A(~c)). Let
~z = z1, . . . , zn, z be variables not occurring in (*), so by lemma 1.6(i),
`LC E1(~z/~c) ∧ · · · ∧ Ej(~z/~c) → (D1(~z/~c) ∧ · · · ∧Dk(~z/~c) → A(~z/~c)). Then
`LC ∀~zE1(~z) ∧ · · · ∧ ∀~zEj(~z) → ∀~z[D1(~z) ∧ · · · ∧Dk(~z) → A(~z)].

Now, each Ei(~c), 1 ≤ i ≤ j, is of the form ∀xA(ci1 . . . cik
, x) → A(ci1 . . . cik

, cik+1),
where {ci1 . . . cik

, cik+1} ⊆ {c1, . . . , cn, c}, so ∀~zEi(~z) is a theorem of LC by
lemma 1.3(ii∗), consequently `LC ∀~z[D1(~z)∧· · ·∧Dk(~z) → A(~z)]. Since z doesn’t
occur in D1(~z)∧· · ·∧Dk(~z), `LC ∀z1 . . .∀zn[D1(z1, . . . zn)∧· · ·∧Dk(z1, . . . zn) →
∀zA(z1, . . . zn, z)]. Then, by Modus Ponens with sentences of E(C) or with
vacuous universal instantiations (derivable from E(C)), it obtains E(C) `LC

∀z2 . . .∀zn[D1(c1/z1, z2 . . . zn)∧· · ·∧Dk(c1/z1, z2 . . . zn) → ∀zA(c1/z1, z2 . . . zn, z)],
E(C) `LC ∀z3 . . .∀zn[D1(c1/z1, c2/z2, z3 . . . zn)∧· · ·∧Dk(c1/z1, c2/z2, z3 . . . zn) →

∀zA(c1/z1, c2/z2, z3 . . . zn, z)],
...

E(C) `LC D1(c1 . . . cn) ∧ · · · ∧Dk(c1 . . . cn) → ∀zA(c1 . . . cn, z), therefore
E(C) ∪∆ `LC ∀zA(z). a
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When the principle of Universal Instantiation is present, lemma 1.9 is an imme-
diate corollary of lemma 1.6(i).

Definition 1.10. Let ∆ be a set of sentences of L and Q ⊆ Const(L).
∆ is L-deductively closed iff for any sentence A of L, ∆ `L A iff A ∈ ∆.
∆ is L-complete iff for any sentence A of L, either A ∈ ∆ or ¬A ∈ ∆.
∆ is L-maximal iff ∆ is L-consistent and L-complete.

Let A(x) be any wff of L with one free variable, then
∆ is Q-universal iff if ∀xA(x) ∈ ∆, then A(c/x) ∈ ∆, for all individual

constants c ∈ Q.
∆ is Q-existential iff if A(c/x) ∈ ∆ for some constant c ∈ Q, ∃xA(x) ∈ ∆.
∆ is Q-inductive iff if A(c/x) ∈ ∆ for all constants c ∈ Q, ∀xA(x) ∈ ∆.
∆ is Q-rich iff if ∃xA(x) ∈ ∆, then A(c/x) ∈ ∆, for some individual

constant c ∈ Q.
∆ is L-saturated iff ∆ is L-maximal and for some set Q ⊆ Const(L),

∆ is Q-universal and Q-rich.

Lemma 1.11. Let ∆ be a set of sentences of L and Q ⊆ Const(L).
(i) If ∆ is Q-universal and Q∗ ⊆ Q, then ∆ is Q∗-universal.
(ii) If ∆ is Q-rich and Q∗ ⊇ Q, then ∆ is Q∗-rich.

If ∆ is L-maximal, then
(iii) ∆ is Q-universal iff ∆ is Q-existential,
(iv) ∆ is Q-inductive iff ∆ is Q-rich.

Definition 1.12. Let ∆ be a set of sentences.
ClL(∆) = {A : ∆ `L A}, ClL(∆) is said to be the L-deductive closure of ∆.

When no confusion can possibly arise, we write Cl(∆) instead of ClL(∆).
2−(∆) = {A : 2A ∈ ∆}.
Lemma 1.13. Let ∆ be a set of sentences.

(i) ∆ is L-consistent iff ClL(∆) is L-consistent.
(ii) If ∆ is L-consistent and 3B ∈ ∆, then 2−(∆) ∪ {B} is L-consistent.
(iii) If ∆ is L-deductively closed, then 2−(∆) is L-deductively closed.
(iv) If 2−(∆) `L A, then ∆ `L 2A.

Lemma 1.14. For any L-consistent set of sentences ∆ there is an L-maximal
set Γ such that Γ ⊇ ∆.

Lemma 1.15. Let ∆ ∪ {∃yA} be a set of sentences of LC not containing the
constant c ∈ C. If E(C)∪∆∪{∃yA} is LC-consistent, then E(C)∪∆∪{A(c/y)}
is LC-consistent.

Proof. Suppose by reductio that E(C) ∪∆ ∪ {A(c/y)} `LC ⊥, then E(C) ∪
∆ `LC ¬A(c). Hence by lemma 1.9, E(C) ∪∆ `LC ∀z¬A(z/c), where z doesn’t
occur in ¬A(c), so E(C) ∪ ∆ `LC ¬∃zA, contrary to the LC-consistency of
E(C) ∪∆ ∪ {∃yA}. a

Lemma 1.16. Let ∆ be an L-consistent set of sentences of L. Then for some
not-empty denumerable set C of new constants, there is a set Π of sentences of
LC such that ∆ ⊆ Π, Π is LC-maximal, Π is Q-universal and Q-rich for some
set Q ⊆ Const(LC).
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Proof. (a): ∆ `L ∀z1...∀zh⊥, for some h ≥ 1. Let Π be an LC-maximal
extension of ∆. By induction on h we see that if an existential sentence ∃xA(x)
is in Π, then ⊥ ∈ Π, therefore no existential sentence is in Π. Let ∃xA(x) ∈ Π, for
some A(x). Then by lemma 1.3(viii), ∃x(A(x)∧∀z2...∀zh⊥) ∈ Π, ∃x∀z2...∀zh⊥ ∈
Π, ∀z2...∀zh⊥ ∈ Π (from axiom A → ∀xA, where x does not occur in A), and so
by induction hypothesis, ⊥ ∈ w contrary to the L-consistency of Π. Let Q = ∅.
Trivially Π is ∅-universal and ∅-rich.
(b): ∆ 6`L ∀z1...∀zh⊥, for any h ≥ 1. Let H1,H2, ... be an enumeration of all
the existential sentences of LC . Define the following chain of sets of sentences of
LC .

Γ0 = ∆ ∪ E(C).
Suppose the set Γn has already been defined and the constants of C occurring in
Γn are c1, ..., ck. Choose the first sentence in the given enumeration (and cancel
it) which from C contains at most the constants c1, ..., ck. Let it be ∃xF (x).
Case(1). Γn∪{∃xF (x)} is LC-consistent. Take a constant c ∈ C not occurring
in L ∪ {c1, ..., ck} and define Γn+1 = Γn ∪ {F (c/x)}.
Case(2). Γn ∪ {∃xF (x)} is not LC-consistent. Define Γn+1 = Γn.

Then let Γ =
⋃

n∈N Cl(Γn).
Γ0 is LC-consistent in virtue of lemma 1.8 and so is Cl(Γ0). Each Γn+1 is
LC-consistent in virtue of lemma 1.15, and so is Cl(Γn+1), consequently Γ is
LC-consistent. Γ is C-universal because it includes Γ0, and C ′-rich for some
C ′ ⊆ C by construction, therefore Γ is C-rich by lemma 1.11(ii). In virtue of
lemma 1.14, Γ can be extended to a set Π which is LC-maximal. Therefore Π is
Q-universal and Q-rich for some Q ⊆ Const(LC). a

Definition 1.17. Let a q.m.l. L ⊇ Q◦.K be given with language L. Let V be
a set of constants of cardinality ℵ0 such that V ⊃ Const(L) and |V −Const(L)| =
ℵ0. A canonical model ML = 〈W,R,D, U, I〉 for L is defined as follows:
◦ W is the class of all Lw-saturated sets of sentences w, where Lw = LC , for some

set C of constants such that Const(LC) 6= ∅, C ⊂ V and |V − Const(LC)| = ℵ0,
◦ wRv iff 2−(w) ⊆ v, for any w, v ∈ W ,
◦ Dw = {c ∈ Const(Lw) : ∀xA → A(c/x) ∈ w, for all sentences ∀xA of Lw},
◦ Uw = Const(Lw),
◦ Iw(c) = c,
◦ Iw(Pn) = {〈c1, ..., cn〉 : Pn(c1, ..., cn) ∈ w}.

Let us check that every canonical model is based on a K-frame. If a logic L
is consistent, then the empty set of sentences is L-consistent, so by lemma 1.16
there is an LC-saturated set of sentences for some set C of constants, therefore
W 6= ∅. Const(Lw) 6= ∅ by definition of W , so Uw 6= ∅. If wRv then Uw ⊆ Uv, for
if A(c1 . . . cn) is a tautology containing the constants c1 . . . cn, 2A(c1 . . . cn) ∈
w and so A(c1 . . . cn) ∈ v; therefore Const(Lw) ⊆ Const(Lv). Dw ⊆ Uw by
definition.

Fact 1.18. (a) Every w ∈ W is Dw-universal and Dw-rich. For, by the defi-
nition of Dw, w is Dw-universal and Dw is the greatest Q∗ with respect to which
w is Q∗-universal. Therefore w is Q-universal and Q-rich for some Q ⊆ Dw,
whence by lemma 1.11(ii) w is Dw-rich.
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(b) If ∀z1...zh⊥ ∈ w, for some h ≥ 1, then Dw = ∅. For, if Dw 6= ∅, then for
some tautology >(x) and constant c ∈ Dw, ∀x¬>(x) → ¬>(c/x) ∈ w and so
∃x>(x) ∈ w, contrary to the Lw-consistency of w, as we saw in (a) of the proof
of lemma 1.16.

Lemma 1.19. Let ML = 〈W,R,D, U, I〉 be a canonical model for L ⊇ Q◦.K.
If w ∈ W and 3A ∈ w, then there is a v ∈ W such that 2−(w) ⊆ v, A ∈ v and
Const(Lw) ⊆ Const(Lv).

Proof. By lemma 1.13(ii), 2−(w)∪{A} is Lw-consistent. Since, by definition
of canonical model, |V − Const(Lw)| = ℵ0, there exists a countable set C of
constants such that (Const(Lw)∩C) = ∅, C ⊂ V and |V−(Const(Lw∪C))| = ℵ0.
Let Lv = LC

w . By lemma 1.16, there is an Lv-saturated set of sentences v such
that v ⊇ (2−(w) ∪ {A}). a

Lemma 1.20. Let ML be a canonical model for L ⊇ Q◦.K. For all formulas
A(x1, . . . , xn) of L and for any w-assignment σ,

ML |=σ
w A(x1, . . . , xn) iff A(σ(x1)/x1, . . . , σ(xn)/xn) ∈ w,

where x1, . . . , xn are all the variables occurring free in A.

Proof. For simplicity’s sake we will write in the following A(σ(x1), . . . , σ(xn))
instead of A(σ(x1)/x1, . . . , σ(xn)/xn).
ML |=σ

w P k(xi1 , . . . , xin , cin+1 , . . . , cik
) iff 〈σ(xi1), . . . , σ(xin), Iw(cin+1), . . . , Iw(cik

)〉 ∈
Iw(P k) iff by the definition of Iw in ML, 〈σ(xi1), . . . , σ(xin

), cin+1 , . . . , cik
〉 ∈

Iw(P k) iff, again by definition of Iw inML, P k(σ(xi1), . . . , σ(xin), cin+1 , . . . , cik
) ∈

w.
⊥ /∈ w, since w is Lw-consistent.
If ML 6|=σ

w 2B(x1, . . . , xn), then there is a v, such that 2−(w) ⊆ v and ML 6|=σ
v

B(x1, . . . , xn). Hence by induction hypothesis, B(σ(x1), . . . , σ(xn)) /∈ v, and so
2B(σ(x1), . . . , σ(xn)) /∈ w.
If 2B(σ(x1), . . . , σ(xn)) /∈ w, then, by the Lw-maximality of w, 3¬B(σ(x1), . . . , σ(xn)) ∈
w. By lemma 1.19, there is a v ∈ W such that 2−(w) ⊆ v and ¬B(σ(x1), . . . , σ(xn)) ∈
v, so B(σ(x1), . . . , σ(xn)) /∈ v. By induction hypothesis, ML 6|=σ

v B(x1, . . . , xn).
Moreover, by definition of R, wRv holds, so ML 6|=σ

w 2B(x1, . . . , xn).
Before examining the case of the quantifiers, let us recall that in canonical models
individual constants are rigid designators, for Iw(c) = c, for all w ∈ W .
If ML |=σ

w ∃xB(x, x1, . . . , xn) then ML |=τ
w B(x, x1, . . . , xn), for some w-

assignment τ which is an x-variant of σ such that τ(x) = d for some d ∈ Dw.
By lemma 1.1, ML |=σ

w B(d, x1, . . . , xn), therefore by induction hypothesis,
B(d, σ(x1), . . . , σ(xn)) ∈ w, consequently ∃xB(x, σ(x1), . . . , σ(xn)) ∈ w, since w
is Dw-existential.
If ∃xB(x, σ(x1), . . . , σ(xn)) ∈ w, then B(d, σ(x1), . . . , σ(xn)) ∈ w, for some
constant d ∈ Dw, since w is Dw-rich. By induction hypothesis, ML |=σ

w

B(d, x1, . . . , xn) and by lemma 1.1, ML |=τ
w B(x, x1, . . . , xn), where τ is an

x-variant of σ such that τ(x) = d, therefore ML |=σ
w ∃xB(x, x1, . . . , xn). a

Lemma 1.21. Let ML = 〈W,R,D, U, I〉 be a canonical model for L ⊇ Q◦.K.
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(i) If ∆ is an L-consistent set of formulas, then for some w ∈ W and some
w-assignment σ, ML |=σ

w D, for all D ∈ ∆.
(ii) If ∆ is an L-consistent set of sentences, then for some w ∈ W ,

ML |=w D, for all D ∈ ∆.
(iii) ML is a model for L.
(iv) If 6`L A, then ML 6|= A.

Proof. (i) Let C = {c1, c2, c3, ...} be a set of constants not occurring in
L and z1, z2, z3, ... be all the variables occurring free in formulas of ∆. Then
∆C = {D(ci1/zi1 , . . . , cin

/zin
) : D(zi1 , . . . , zin

) ∈ ∆ and ci1 . . . cin
∈ C} is LC-

consistent by lemma 1.6(i). Then by lemma 1.16 there is a set Π ⊇ ∆C which is
LC∪C∗

-saturated, for some set C∗ of new constants. Consider a canonical model
ML for L such that V ⊃ Const(LC∪C∗

) and |V − Const(LC∪C∗
)| = ℵ0. Then

Π is a world, say w, of ML and so ∆C ⊆ w. Given a w-assignment σ such that
σ(zij

) = cij
, ML |=σ

w D(zi1 , . . . , zin
) for any D(zi1 , . . . , zin

) ∈ ∆, in virtue of
lemma 1.20. a

The standard pattern to show that a logic L ⊇ Q◦.K is complete with respect
to a class H of frames goes as follows. Take any wff A which is not a theorem of
L, so {¬A} is L-consistent. By lemma 1.21(i), there is a world w of a canonical
modelML for L and a w-assignment σ, such thatML 6|=σ

w A, thereforeML 6|= A.
If ML is based on a frame of H, then L is complete with respect to H.

Now, lemma 1.19 allows us to build canonical models of the most general kind:
nothing is said about the inner domains and the outer domains are increasing.
In order to prove that ML is based on a frame of a given class H, we need to
prove variations of lemma 1.19 to the effect that the inner and outer domains
fulfill the specific conditions of the frames of H.

Actually, all the completeness proofs we shall present yield that the logics
L under consideration are strongly complete, in fact we shall prove that every
L-consistent set of wffs is satisfied on a model based on a frame for L.

Q◦.K

Since no condition is required on frames for Q◦.K, lemma 1.19 yields

Theorem 1.22. Q◦.K is strongly complete with respect to the class of all K-
frames.8

Q◦.K+CBF

The core fact to notice is that for any world w of a canonical model for Q◦.K+
CBF , 2−(w) is Dw-universal. So individuals ’existing’ at w, are bound to exist
in all accessible worlds. The following lemma elaborates this fact.

Lemma 1.23. Let w be a world of a canonical model for L ⊇ Q◦.K + CBF .

8Hughes and Cresswell in [6], pp.306-309, present, to our knowledge, the first completeness

proof for a Kripke’s style system, LPCK, without individual constants, characterized by the
class of K-frames with varying not-empty domains (and outer increasing domains!). The
present approach is more general and leads, as far as we can tell, to new completeness results
such as those for Q◦.K+CBF , Q◦.K+CBF+BF , Q◦=.K, Q◦=.K+CBF , Q◦=.K+BF , Q◦=.B
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(i) ∀xA(x) → A(d/x) ∈ 2−(w), for all sentences ∀xA(x) ∈ Lw and d ∈ Dw.
(ii) ∀~z(∀xA(~z, x) → A(~z, d/x)) ∈ 2−(w), for all for all wffs A(~z, x) ∈ Lw and
d ∈ Dw.

Proof. .
(ii) `Q◦.K+CBF ∀y∀~z(∀xA(~z, x) → A(~z, y/x)), by lemma 1.3(ii∗),

`Q◦.K+CBF 2∀y∀~z(∀xA(~z, x) → A(~z, y/x)) by Necessitation,
`Q◦.K+CBF ∀y2∀~z(∀xA(~z, x) → A(~z, y/x)) by CBF , consequently

∀y2∀~z(∀xA(~z, x) → A(~z, y/x)) ∈ w. Since w is Dw-universal, for all d ∈ Dw,
2∀~z(∀xA(~z, x) → A(~z, d/x)) ∈ w and so ∀~z(∀xA(~z, x) → A(~z, d/x)) ∈ 2−(w),
for all d ∈ Dw. a

Lemma 1.24. Let w be a world of a canonical model for L ⊇ Q◦.K + CBF
and C be a set of constants disjoint from Const(Lw). If ∀z1...zh⊥ 6∈ w, for any
h ≥ 1, and 3B ∈ w, then E(Dw ∪ C) ∪2−(w) ∪ {B} is LC

w-consistent.

Proof. We recall that E(Dw ∪ C) = {∀xA(x) → A(b/x) : ∀xA(x) ∈ LC
w and

b ∈ (Dw ∪ C)}.
Suppose by reductio that E(Dw ∪ C) ∪2−(w) ∪ {B} is not LC

w-consistent, then
(*) `LC

w
E1∧· · ·∧Ej → [D1∧· · ·∧Dk → ¬B], where {E1, . . . , Ej} ⊆ E(Dw∪C)

and {D1, . . . , Dk} ⊆ 2−(w). Let ~d = d1 . . . dm (~c = c1 . . . cn) be all the individual
constants of Lw (C) occurring in E1 ∧ · · · ∧ Ej . Then
`LC

w
E1(~d,~c) ∧ · · · ∧ Ej(~d,~c) → [D1 ∧ · · · ∧Dk → ¬B]. Each Ei(~d,~c), 1 ≤ i ≤ j,

is of the form ∀xA(~d,~c, x) → A(~d,~c, b) with either b ∈ ~d or b ∈ ~c.
If n = 0, then each Ei(~d,~c), 1 ≤ i ≤ j is of the form ∀xA(~d, x) → A(~d, b) with
b ∈ ~d and so b ∈ Dw, therefore, as we saw in lemma 1.23(i), it is in 2−(w).
Consequently 2−(w) `LC

w
¬B contrary to the fact that 2−(w) ∪ {B} is LC

w-
consistent.
If n ≥ 1, let z1 . . . zn be variables not occurring in (*), so by the lemma 1.6(i),
`LC

w
E1(~d, ~z/~c) ∧ · · · ∧ Ej(~d, ~z/~c) → [D1 ∧ · · · ∧Dk → ¬B],

`LC
w
∀~zE1(~d, ~z) ∧ · · · ∧ ∀~zEj(~d, ~z) → [∀~zD1 ∧ · · · ∧ ∀~zDk → ∀~z¬B].

Now, each ∀~zEi(~d, ~z), 1 ≤ i ≤ j, either is of the form ∀~z[∀xA(~d, ~z, x) →
A(~d, ~z, zk/x)] for some k, 1 ≤ k ≤ n, (this is the case when b ∈ ~c) and so it is a the-
orem of Q◦.K by lemma 1.3(ii), or is of the form ∀~z(∀xA(~d, ~z, x) → A(~d, ~z, dh/x))
for some h, 1 ≤ h ≤ m, (this is the case when b ∈ ~d) and so it is in 2−(w), by
lemma 1.23(ii). Hence
2−(w) `LC

w
∀~zD1 ∧ · · · ∧ ∀~zDk → ∀~z¬B. Since D1, . . . , Dk are sentences,

2−(w) `LC
w
∀~zD1 ∧ · · · ∧ ∀~zDk, therefore

2−(w) `LC
w
∀~z¬B. Then by lemma 1.13(iv), w `LC

w
2∀~z¬B, w `LC

w
∀~z2¬B

by CBF . But 3B ∈ w, hence w `LC
w
∀~z3B, so w `LC

w
∀~z⊥, contrary to the

hypothesis of the lemma. a

Lemma 1.25. (CBF -variation of lemma 1.19) Let ML = 〈W,R, D, U, I〉 be a
canonical model for L ⊇ Q◦.K + CBF . If w ∈ W and 3A ∈ w, then there is a
v ∈ W such that 2−(w) ⊆ v, A ∈ v, Const(Lw) ⊆ Const(Lv) and Dw ⊆ Dv.
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Proof. As for lemma 1.19 provided that in lemma 1.16 at point (b), Γ0 =
E(Dw ∪ C) ∪ 2−(w) ∪ {A}. Γ0 is LC

w-consistent by lemma 1.24 and, trivially,
Dw ⊆ Dv. a

Theorem 1.26. Q◦.K +CBF is strongly complete with respect to the class of
K-frames with increasing inner and outer domains.

Q.K

Consider the system Q.K obtained from Q◦.K by adding the axiom of Universal
Instantiation. As is well known, CBF is a theorem of Q.K,9 so by lemma 1.25,
if wRv, Dw ⊆ Dv. Moreover, because of axiom UI, each w is Uw-universal,
consequently Uw = Dw, therefore

Theorem 1.27. Q.K is strongly complete with respect to the class of TK-
frames with increasing domains.

Q◦.K + CBF + BF

Let us now turn our attention to the Barcan Formula and consider canonical
models for systems L ⊇ Q◦.K+CBF+BF . The core fact to notice is that for
any world w of a canonical model for Q◦.K + BF (CBF is not needed), 2−(w)
is Dw-inductive.

Lemma 1.28. Let w be a world of a canonical model for L ⊇ Q◦.K+BF .
(i) 2−(w) is Dw-inductive.
(ii) If {B1, . . . , Bn} is a finite set of sentences of L and 2−(w)∪{B1, . . . , Bn} `Lw

A(c), for all c ∈ Dw, then 2−(w) ∪ {B1, . . . , Bn} `Lw
∀xA(x). Consequently,

Cl(2−(w) ∪ {B1, . . . , Bn}) is Dw-inductive.

Proof. 10 (i) If A(c) ∈ 2−(w) for all c ∈ Dw, then 2A(c) ∈ w for all c ∈ Dw,
so, since w is Dw-inductive, ∀x2A(x/c) ∈ w, and by BF , 2∀xA(x) ∈ w, whence
∀xA(x) ∈ 2−(w).
(ii) Suppose that 2−(w) ∪ {B1, . . . , Bn} `Lw A(c), for all c ∈ Dw, then where
B = B1 ∧ · · · ∧Bn, 2−(w) `Lw B → A(c), for all c ∈ Dw, hence w `Lw 2(B →
A(c)), for all c ∈ Dw. So 2(B → A(c)) ∈ w, for all c ∈ Dw. (The constant c could
occur also in B and Dw could be a finite set.) Take a variable y not occurring
either in B or in A(c) and consider the wff ∀y2(B → A(y/c)). Since, 2(B →
A(c)) ∈ w, for all c ∈ Dw and w is Dw-inductive, then ∀y2(B → A(y/c) ∈ w,
and by BF , 2∀y(B → A(y/c)) ∈ w. Therefore, 2(B → ∀yA(y/c)) ∈ w,
(B → ∀yA(y/c)) ∈ 2−(w), 2−(w)∪{B1, . . . , Bn} `Lw ∀yA(y), and so 2−(w)∪
{B1, . . . , Bn} `Lw

∀xA(x). a

Now, if w is a world of a canonical model for L ⊇ Q◦.K+CBF+BF and 3A ∈ w,
then Cl(2−(w) ∪ {A}) is Dw-universal because of CBF (lemma 1.23), and Dw-
inductive because of BF (lemma 1.28). This leads to the following lemma.

9Q.K ` ∀xA(x) → A(x), Q.K ` 2∀xA(x) → 2A(x), Q.K ` 2∀xA(x) → ∀x2A(x).
10This proof is standard and it is due to Thomason [8].
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Lemma 1.29. (CBF+BF -variation of lemma 1.19) Let ML = 〈W,R,D, U, I〉
be a canonical model for L ⊇ Q◦.K + CBF + BF . If w ∈ W and 3A ∈ w, then
there is a v ∈ W such that 2−(w) ⊆ v, A ∈ v, Const(Lw) = Const(Lv) and
moreover v is Dw-universal and Dw-rich, therefore Dw = Dv.

Proof. As for lemma 1.19 with C = ∅ and the set v constructed as follows.
Let H1,H2,H3... be an enumeration of all the existential sentences of Lw. Define
the following chain of sets of sentences of Lw.

Γ0 = 2−(w) ∪ {A}.
Suppose the set Γn has already been defined. Consider the sentence Hn+1. Let
it be ∃xF (x).
Case(1). Γn∪{∃xF (x)} is Lw-consistent. Define Γn+1 = Γn∪{F (c/x)}, where
c is a constant of Dw such that Γn ∪ {F (c/x)} is Lw-consistent.
Case(2). Γn ∪ {∃xF (x)} is not Lw-consistent. Define Γn+1 = Γn.

Then let Γ =
⋃

n∈N Cl(Γn). Extend Γ to a set v which is Lw-maximal.
The existence of a c ∈ Dw such that Γn+1 = Γn ∪ {F (c/x)} is Lw-consistent is
guaranteed by the fact that otherwise Γn ` ¬F (c/x) for all c ∈ Dw. But Γn is
2−(w) united with a finite set of sentences, say, {A,B1, . . . Bk}, so by lemma
1.28, Γn ` ∀x¬F (x/c), contrary to the fact that Γn∪{∃xF (x)} is Lw-consistent.
Therefore F (c/x) ∈ ClL(Γn), for some c ∈ Dw and so Γ is Dw-rich. Trivially
Const(Lw) = Const(Lv). Because of CBF , 2−(w) is Dw-universal (lemma
1.23), therefore v is Dw-universal. a

Theorem 1.30. Q◦.K + CBF + BF is strongly complete with respect to the
class of K-frames with constant inner and outer domains.

Q.K + BF

Let L ⊇ Q.K + BF . Since Q.K ` CBF and each w is Uw-universal thanks to
UI, lemma 1.29 yields

Theorem 1.31. Q.K + BF is strongly complete with respect to the class of
TK-frames with constant domains.

Theorems 1.22 and 1.26 can be improved to the effect that any model for Q◦.K
(Q◦.K + CBF ) can be transformed into one with constant outer domains.

Theorem 1.32. Q◦.K (Q◦.K +CBF ) is strongly complete with respect to the
class of K-frames with varying (increasing) inner domains and constant outer
domains.

Proof. Take any K-model M = 〈W,R, D, U, I〉 and build the model M∗ =
〈W,R, D, U∗, I〉, where for all w ∈ W , U∗

w =
⋃

v∈W Uv. Then for any w ∈ W
and w-assignment σ of M, M |=σ

w A iff M∗ |=σ
w A. In fact, σ is a w-assignment

in M∗ too, and moreover any x-variant of σ in M∗ such that σ(x) ∈ Dw is also
an x-variant of σ in M since the inner domains of the two models are identical.
Now, if Q◦.K 6` A, then, by lemma 1.22, for some M, and w-assignment σ in
M, M 6|=σ

w A, and so by the construction above, for some M∗ with constant
outer domains, M∗ 6|=σ

w A. a
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Note The fact that the outer domains are constant, say they are equal to V ,
doesn’t imply that V =

⋃
w Dw. Just consider a model for a set of sentences like

{2⊥,∀xP (x),¬P (a)}. Therefore K-frames with constant outer domains differ,
in general, from original Kripke frames.

The following table summarizes the completeness results obtained so far.

q.m.l. is strongly complete w.r.t. the class of K-frames with
domains
inner outer

Q◦.K varying constant
Q◦.K + CBF increasing constant
Q◦.K + CBF + BF constant constant
Q.K increasing = inner
Q.K+BF constant = inner

§2. Modal systems with identity. We will start by examining the systems
of the diagram below.

Q◦=.K
Q◦=.K + CBF Q◦=.K + BF

Q=.K Q◦=.K + CBF + BF
Q.K= + BF

Let us add to Q◦.K the identity predicate ’ = ’ together with the following three
axioms and let Q◦

=.K be the resulting system.11

REF t = t
SUBS s = t → (A(s//x) → A(t//x)).
ND s 6= t → 2(s 6= t).

Lemma 2.1. Some theorems about identity.
i `Q◦

=.K s = t → 2(s = t), Necessity of Identity, NI
ii `Q◦

=.K ∀x∃y(x = y)
iii `Q◦

=.K ∃y(y = c) → (∀xA(x) → A(c/x)), for all wffs A(x)
iv `Q◦

=.K ∃y(y = z) ∧A(z/x) → ∃xA(x)
v `Q◦

=.K ∃y(y = c) if `Q◦
=.K ∀xA(x) → A(c/x), for all wffs A(x)

vi `Q◦
=.K+CBF ∀x2∃y(x = y)

vii `Q◦
=.K+BF 3∃y(x = y) → ∃y3(x = y)

viii `Q◦
=.K+BF 3∃y(x = y) → ∃y(x = y)

Proof. .
(i) `Q◦

=.K s = t → (2(s = s)(s//s) → 2(s = s)(t//s))
`Q◦

=.K s = t → (2(s = s) → 2(s = t))
`Q◦

=.K s = s
`Q◦

=.K 2(s = s)
`Q◦

=.K s = t → 2(s = t).

11The system Q◦=.K is often called in the literature FK, free quantified K.
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(ii) `Q◦
=.K ∀y[y = y → ∃x((y = y)(x//y))] by 1.3(i)

`Q◦
=.K ∀y(y = y → ∃x(x = y))

`Q◦
=.K ∀y(y = y) → ∀y∃x(x = y)

`Q◦
=.K ∀y∃x(x = y).

(iii) `Q◦
=.K ∃y(y = c) → [∃y(y = c) ∧ ∀y(∀xA → A(y/x))]

`Q◦
=.K ∃y(y = c) → ∃y[(y = c) ∧ (∀xA → A(y/x))] by 1.3(viii)

`Q◦
=.K y = c → [(∀xA → A)(y//x) → (∀xA → A)(c//x)]

`Q◦
=.K y = c ∧ (∀xA → A(y/x)) → (∀xA → A(c/x))

`Q◦
=.K ∃y[y = c ∧ (∀xA → A(y/x))] → (∀xA → A(c/x))

`Q◦
=.K ∃y(y = c) → (∀xA → A(c/x)).

(iv) `Q◦
=.K ∃y(y = z) → (∀x¬A → ¬A(z/x)) by (iii)

`Q◦
=.K ∃y(y = z) ∧A(z/x) → ∃xA.

(v) `Q◦
=.K ∀x∃y(x = y) → ∃y(c = y), let A(x) be ∃y(x = y)

`Q◦
=.K ∀x∃y(x = y) (ii)

`Q◦
=.K ∃y(c = y).

(vi) `Q◦
=.K+CBF ∀x∃y(x = y) by (ii)

`Q◦
=.K+CBF 2∀x∃y(x = y)

`Q◦
=.K+CBF ∀x2∃y(x = y) by CBF .

(vii) `Q◦
=.K+BF x = y → x = y

`Q◦
=.K+BF 3(x = y) → 3(x = y)

`Q◦
=.K+BF ∃y3(x = y) → ∃y3(x = y)

`Q◦
=.K+BF 3∃y(x = y) → ∃y3(x = y) by BF .

(viii)`Q◦
=.K+BF 3(x = y) → (x = y) by ND

`Q◦
=.K+BF ∃y3(x = y) → ∃y(x = y)

`Q◦
=.K+BF 3∃y(x = y) → ∃y3(x = y) (vii)

`Q◦
=.K+BF 3∃y(x = y) → ∃y(x = y).

a

Again on rigidity In a language with identity the fact that a constant c is a rigid
designator is expressed by the formula x = c → 2(x = c). Therefore, thanks
to lemma 2.1(i), all the systems of q.m.l. with identity we are going to discuss
are bound to be systems with rigid terms. Notice however that this is the case
given general features of the K-semantics. The main feature is that universes of
accessible worlds are related by the inclusion function: Uw ⊆ Uv. Therefore if we
think of individuals of Uv as counterparts of individuals of Uw, each individual
has one and only one counterpart in each related world (in fact it is the very same
individual). It is because of this correlation that rigidity corresponds to NI or
to the equivalence between de dicto and de re readings of substituted formulas,
as pointed out in the footnote of lemma 1.1. For a more general semantics in
which these notions are shown to be distinct from one another, see [2].
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Definition 2.2. Let M = 〈W,R, D, U, I〉 be a K-model. M is said to be
normal iff
(a) for all w ∈ W , Iw(=) = {〈d, d〉 : d ∈ Uw}, and
(b) for all individual constants c, wRv implies Iw(c) = Iv(c).

Lemma 2.3. Each of the logics mentioned in the diagram at the beginning of
this section is sound with respect to the class of normal K-models based on frames
with respect to which the corresponding system without identity is sound.

As to canonical models for systems L ⊇ Q◦
=.K, if w is an L-saturated set of

sentences, the relation
a ∼ b iff (a = b) ∈ w

is an equivalence relation and hence divides Const(Lw) into disjoint partitions.
A problem presents itself immediately: the standard canonical model tecnique
does not, in general, satisfy both the conditions (a) and (b) of definition 2.2. In
fact, one way of matching condition (a) is to interpret each constant c in w on
its equivalence classs [c]w, and to define Uw as the set of equivalence classes of
the constants mentioned in w. But by so doing we, in general, violate condition
(b), because it might well happen that wRv, [c]w ∈ Uw and that a new constant
c∗ belongs to [c]v, i.e. (c = c∗) ∈ v, with the consequence that [c]w 6= [c]v. We
show how to overcome this difficulty by constructing canonical models where W
is a class of sets satisfying the following condition:

(#) if wRv then [c]w = [c]v, for all constants c ∈ Const(Lw).

This can be achieved because each time we need to introduce a new constant c,
we add that c is different from all the constants present so far.

Fact 2.4. If Const(Lw) = Const(Lv), then condition (#) always holds. For,
if b ∈ [c]w, then(b = c) ∈ w, so 2(b = c) ∈ w by NI, hence (b = c) ∈ v, therefore
b ∈ [c]v. If b ∈ [c]v, then (b = c) ∈ v, so 3(b = c) ∈ w since b ∈ Const(Lw), so
by ND, (b = c) ∈ w, hence b ∈ [c]w.

Definition 2.5. Let L ⊇ Q◦
=.K be given with language L. Let V be a set of

constants of cardinality ℵ0 such that V ⊃ Const(L) and |V − Const(L)| = ℵ0.
A normal canonical model for L is a quintuple NL = 〈W,R,D, U, I〉 such that
◦ W is the class of all Lw-saturated sets w, where Lw = LC for some set C

of constants such that Const(LC) 6= ∅, C ⊂ V and |V − Const(LC)| = ℵ0,
◦ wRv iff 2−(w) ⊆ v and for all c ∈ Const(Lw), [c]w = [c]v, where

[c]v = {b ∈ Const(Lv) : (c = b) ∈ v},
◦ Dw = {[c]w : ∃y(y = c) ∈ w},
◦ Uw = {[c]w : c ∈ Const(Lw)},
◦ Iw(c) = [c]w,
◦ Iw(Pn) = {〈[c1]w, ..., [cn]w〉 : Pn(c1, ..., cn) ∈ w}.

It is easy to see that canonical models so defined are normal K-models. That
W 6= ∅ is due, as before, to lemma 1.16. Each w is Dw-universal thanks to lemma
2.1(iii). Condition (#) is trivially satisfied, so wRv implies that Uw ⊆ Uv and
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Iw(c) = Iv(c) for all constants c ∈ Const(Lw). Moreover Iw(=) = {〈u, u〉 : u ∈
Uw〉}.

Q◦
=.K Q◦

=.K+CBF Q=.K

To make sure that (#) holds also when Const(Lw) 6= Const(Lv), we prove
the following lemma:

Lemma 2.6. (Variation of lemma 1.19 for systems with identity) Let NL =
〈W,R, D, U, I〉 be a normal canonical model for L ⊇ Q◦

=.K. If w ∈ W and 3A ∈
w, then there is a v ∈ W such that A ∈ v, 2−(w) ⊆ v, Const(Lw) ⊆ Const(Lv)
and for all c ∈ Const(Lw), [c]w = [c]v.

Proof. As for lemma 1.19 with the set v constructed as follows. Let C be a
countable set of new constants and let H1,H2, ... be an enumeration of all the
existential sentences of LC

w . Define the following chain of sets of sentences of LC
w .

Γ0 = 2−(w) ∪ {A}.
Suppose the set Γn has already been defined and the constants of C occurring in
Γn are c1, ..., ck. Choose the first sentence in the given enumeration (and cancel
it) which from C contains at most the constants c1, ..., ck. Let it be ∃xF (x).
Case(1). Γn ∪ {∃xF (x)} is LC

w-consistent.
Case(1.1) For some constant b of Lw∪{c1, ..., ck}, Γn∪{F (b/x)}∪{∃y(y = b)}
is LC

w-consistent. Define Γn+1 = Γn ∪ {F (b/x)} ∪ {∃y(y = b)}.
Case(1.2) For all constants b of Lw ∪{c1, ..., ck}, Γn ∪{F (b/x)}∪ {∃y(y = b)}
is not LC

w-consistent. Take a constant c ∈ C not occurring in Lw ∪ {c1, ..., ck}
and define Γn+1 = Γn ∪ {F (c/x)} ∪ {∃y(c = y)} ∪ {c 6= b : for all constants b of
Lw ∪ {c1, ..., ck}}.
Case(2). Γn ∪ {∃xF (x)} is not LC

w-consistent. Define Γn+1 = Γn.
Then let Γ =

⋃
n∈N Cl(Γn) and Q = {c : ∃y(y = c) ∈ Γ}. Extend Γ to a set v

which is LQ
w -maximal.

Γ is Q-rich by construction and Q-universal because of lemma 2.1(iii), so is v.
Let us show that condition (#) holds. In virtue of the way in which Γ has been
defined, every constant occuring in formulas of Γn+1 either belongs to Const(Lw)
or has been introduced as a witness for an existential sentence containing no
variables of C other than those occurring already in Γn. In addition, v is LQ

w -
maximal, so no constants occur in v which do not occur also in Γ. It follows that
for all b ∈ Const(Lv), either b ∈ Const(Lw) or (b 6= c) ∈ v for all c ∈ Const(Lw).
Consequently, b ∈ (Const(Lv) − Const(Lw)) only if b 6∈ [c]v. Moreover, if
b ∈ Const(Lw), then, as we saw in fact 2.4, b ∈ [c]w iff b ∈ [c]v. So (#) is
proved.

What remains to be proved is that Γn+1 as defined in case (1.2) is LC
w-

consistent. First we prove that Γn ∪ {F (c/x)} ∪ {∃y(c = y)} is LC
w-consistent,

where c doesn’t occur in Γn. Suppose not, then Γn `LC
w
∃y(y = c) → ¬F (c). So

for some variable z not occurring in ¬F (c), Γn `LC
w
∃y(y = z) → ¬F (z/c). Since

Γn is a set of sentences Γn `LC
w
∀z(∃y(y = z) → ¬F (z)), so Γn `LC

w
∀z∃y(y =

z) → ∀z¬F (z), then by lemma 2.1(ii) Γn `LC
w
∀z¬F (z), contrary to the LC

w-
consistency of Γn ∪ {∃xF (x)}. Suppose now that Γn+1 is not LC

w-consistent,
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then Γn `LC
w
∃y(y = c)∧F (c) → [(c 6= b1∧ ...∧ c 6= bh) → ⊥], for some constants

b1 . . . bh ∈ Lw ∪ {c1, ..., ck}, so Γn `LC
w
∃y(y = c)∧F (c) → (c = b1 ∨ ...∨ c = bh).

Therefore Γn ∪ {∃y(y = c)} ∪ {F (c)} ∪ {c = bj} is LC
w-consistent for some j,

1 ≤ j ≤ h, consequently Γn ∪ {∃y(y = bj)} ∪ {F (bj/c)} is LC
w-consistent, con-

trary to the fact that for no b ∈ Lw ∪ {c1, . . . , ck}, Γn ∪ {F (b)} ∪ {∃y(y = b)} is
LC

w-consistent. a

Definition 2.7. For each equivalence class [c]w ∈ Uw, f [c]w is the canonical
representative of [c]w. When no confusion can possibly occur, we write f [c].

Lemma 2.8. Let NL be a normal canonical model for L ⊇ Q◦
=.K. For all

formulas A(x1, . . . , xn) of L and for any w-assignment σ,
NL |=σ

w A(x1, . . . , xn) iff A(fσ(x1)/x1, . . . , fσ(xn)/xn) ∈ w,
where x1, . . . , xn are all the variables occurring free in A.

Proof. NL |=σ
w P k(xi1 , ..., xin

, cin+1 , ..., cik
) iff 〈σ(xi1), ..., σ(xin

), Iw(cin+1)
, ..., Iw(cik

)〉 ∈ Iw(P k) iff 〈σ(xi1), ..., σ(xin), [cin+1 ], ..., [cik
]〉 ∈ Iw(P k) iff

since ∼ is a congruence relation, P k(fσ(xi1), ..., fσ(xin
), cin+1 , ..., cik

) ∈ w. The
other cases are as in lemma 1.20. a

Theorem 2.9. (i) Q◦
=.K is strongly complete with respect to the class of

normal K-models based on all K-frames with constant outer domains.
(ii) Q◦

=.K+CBF is strongly complete with respect to the class of normal K-
models based on all K-frames with increasing inner domains and constant outer
domains.
(iii) Q=.K is strongly complete with respect to the class of normal K-models
based on TK-frames with increasing domains.

Proof. (i) Lemmas 2.6 and 2.8 yield that Q◦
=.K is complete w.r.to the

class of all K-frames and by the construction of theorem 1.32 it obtains that
Q◦

=.K is complete w.r.to the class of all K-frames with constant outer domains.
(ii) Dw ⊆ Dv. For if c ∈ Dw, then ∃y(y = c) ∈ w, so by lemma 2.1(vi),
2∃y(y = c) ∈ w, therefore ∃y(y = c) ∈ v, so c ∈ Dv. Whence Q◦

=.K+CBF
is complete w.r.to the class of all K-frames with increasing inner domains and,
by the construction of theorem 1.32, with constant outer domains. (iii) follows
from (ii) and the fact that Q=.K ` ∃y(y = c), for all constants c. a

Q◦
=.K+BF Q◦

=.K+CBF+BF Q=.K+BF

Lemma 2.10. (BF-variation of lemma 1.19) Let NL = 〈W,R,D, U, I〉 be a
normal canonical model for L ⊇ Q◦

=.K+BF . If w ∈ W and 3A ∈ w, then there
is a v ∈ W such that 2−(w) ⊆ v, A ∈ v, Const(Lw) = Const(Lv) and moreover
v is Q-universal and Q-rich for some Q ⊆ Dw.

Proof. The proof is the same as that of lemma 1.29 except that,
Case(1.) Γn ∪ {∃xF (x)} is Lw-consistent. Define Γn+1 = Γn ∪ {∃y(y =
c)}∪{F (c/x)} for some constant c ∈ Dw such that Γn ∪{∃y(y = c)}∪{F (c/x)}
is Lw-consistent.
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We show that such a constant c is always available. Suppose not, then Γn `Lw

∃y(y = c) → ¬F (c), for all c ∈ Dw. But Cl(Γn) is Dw-inductive by lemma
1.28, so Γn `Lw

∀z(∃y(y = z) → ¬F (z/c)), where z does not occur in ¬F (c),
then Γn `Lw

∀z∃y(y = z) → ∀z¬F (z), Γn `Lw
∀z¬F (z)), contrary to the

Lw-consistency of Γn ∪ {∃xF (x)}. a

Since Const(Lw) = Const(Lv), it always holds that for all c ∈ Const(Lw),
[c]w = [c]v, see fact 2.4.

Let us show that, in general, Dv ⊆ Dw if wRv. Since CBF is not a theo-
rem of Q◦

=.K + BF , the set {2∀xP (x),∃x3¬P (x)} is Q◦
=.K + BF -consistent,

therefore there is a world w of the canonical model for Q◦
=.K + BF such that

{2∀xP (x),∃x3¬P (x)} ⊆ w. Then for some [d] ∈ Dw, 3¬P (d) ∈ w. But
then there is a v, related to w, such that {∀xP (x),¬P (d)} ⊆ v, so [d] 6∈ Dv

consequently v is bound to be Dv-universal and Dv-rich for some Dv ⊂ Dw.

Theorem 2.11. (i) Q◦
=.K +BF is strongly complete with respect to the class

of normal models based on K-frames with decreasing inner domains and constant
outer domains.
(ii) Q◦

=.K+CBF+BF is strongly complete with respect to the class of nor-
mal models based on K-frames with constant inner domains and constant outer
domains.
(iii) Q=.K+BF is strongly complete with respect to the class of normal models
based on TK-frames with constant domains.

Systems with the Extended Barcan Rule

A0 → 2(A1 → · · · → 2(An → 2An+1) . . . ) where x is not free
BR(n+1) ——————————————————— in A0, ..., An

A0 → 2(A1 → · · · → 2(An → 2∀xAn+1) . . . )

By EBR, Extended Barcan Rule, we denote the set of all rules BR(n + 1), n ≥
0. The rule EBR was first introduced by R.Thomason in [8] and since then
discussed at various points in the literature.12

Lemma 2.12. EBR is valid on K-frames with constant outer domains, i.e.
for any K-model M with constant outer domains, if the premise of EBR is
valid on M, then the conclusion is also valid on M.

Proof. Suppose that for some M, w and w-assignment σ, M 6|=σ
w A0 →

2(A1 → · · · → 2(An → 2∀xAn+1(x))...). Therefore for some v, wRn+1v, M 6|=σ
v

∀xAn+1(x), hence for some x-variant τ of σ such that τ(x) ∈ Dv ⊆ Uv, M 6|=τ
v

An+1(x). Since Uw = Uv, this is impossible because τ is also a w-assignment
and, by hypothesis, M |=τ

w A0 → 2(A1 → · · · → 2(An → 2An+1(x)) . . . ),
consequently, M |=τ

v An+1(x). a
If the outer domains of a given K-frame F are not constant, then it might

well be that, e.g., BR(1) is valid on F (just take K-frames in which wRv implies
Dv ⊆ Uw) and BR(2) is not. Here is an instance in case. Let F = 〈W,R, D, U〉,

12Our treatment of Q◦=.K + EBR has similarities with [6], pp.296-302.
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where W = {w, v, z}, R = {〈w, v〉, 〈v, z〉}, Dw = Dv = {u}, Dz = {u, u∗},
Uw = {u}, Uv = Uz = {u, u∗}. We can easily see that BR(1), i.e.

A0 → 2A1(x)
——————
A0 → 2∀xA1(x)

is valid on F . On the contrary, if M = 〈F , I〉 is such that Iw(P ) = Iv(Q) =
Iz(R) = {u}, Iw(a) = Iv(a) = Iz(a) = u, then
M |=w P (a),
M 6|=v P (a), M |=v Q(a),
M 6|=z P (a), M |=z R(a), M 6|=z ∀xR(x),

therefore the following instance of BR(2) is not valid on M:

P (a) → 2(Q(a) → 2R(x))
———————————–
P (a) → 2(Q(a) → 2∀xR(x))

Let us add EBR to the systems considered so far.

Lemma 2.13. (a)

Q◦.K is equivalent to Q◦.K+EBR,
Q◦.K+CBF is equivalent to Q◦.K+EBR+CBF ,

Q◦
=.K is equivalent to Q◦

=.K+EBR,
Q◦

=.K+CBF is equivalent to Q◦
=.K+EBR+CBF .

(b)

Q.K+BF is equivalent to Q.K+EBR.

Proof. (a) If Q◦.K 6` A, then by theorem 1.32 for some K-model M with
constant outer domains, M 6|= A, consequently, by lemma 2.12, Q◦.K+EBR 6`
A.
(b) Q.K +EBR ` ∀x2A(x) → 2A(x), so Q.K +EBR ` ∀x2A(x) → 2∀xA(x),
therefore adding EBR to Q.K gives a stronger system: Q.K+BF . Consequently
Q.K+EBR is complete with respect to TK-frames with constant domains. a

The following table summarizes the results obtained so far for systems with
identity.

q.m.l. is strongly complete w.r.t. the class of normal models
based on K-frames with domains
inner outer

Q◦
=.K varying constant

Q◦
=.K+EBR varying constant

Q◦
=.K+CBF increasing constant

Q◦
=.K+CBF+EBR increasing constant

Q◦
=.K+BF decreasing constant
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Q◦
=.K+CBF+BF constant constant

Q=.K increasing = inner
Q=.K+BF constant = inner

As a matter of fact, the construction of canonical models for Q◦.K as described
in the first part of this paper, allows us to build models for Q◦.K with increasing
outer domains and we do not know of any way of building canonical models for
Q◦.K or Q◦.K+EBR with constant outer domains. When identity is present,
a second strategy, to be described below, is at our disposal and it provides us
with canonical models with constant outer domains. Both strategies are needed
since, for example, the completeness proof of Q=.K requires the first, whereas
the completeness proof of Q◦

=.B (see lemma 2.21(b)) requires the second.

Building canonical models with constant outer domains requires going through
lemmas analogous to 1.16, 1.28 and 2.10.

Lemma 2.14. (EBR-counterpart of lemma 1.16) Let L ⊇ Q◦
=.K+EBR, and

let ∆ be an L-consistent set of sentences. Then for some not-empty denumerable
set C of new constants there is an extension Π of ∆ which is LC-maximal, Q-
rich and Q-universal, for some Q ⊆ Const(LC) and moreover Π is 3-LC-rich,
where Π is 3-LC-rich iff

if A0 ∧ 3(A1 ∧ · · · ∧ 3(An ∧ 3∃xAn+1(x)) . . . ) ∈ Π, where x is not free in
A1, . . . , An, then for some c ∈ LC , A0∧3(A1∧· · ·∧3(An∧3An+1(c/x)) . . . ) ∈ Π.

Proof. Let H1,H2,H3, ... be an enumeration of all the sentences of LC which
are either of the form ∃xF (x), for some wff F (x) or of the form A0 ∧ 3(A1 ∧
· · · ∧3(An ∧3∃xAn+1(x)) . . . ) for some wffs A0 . . . An+1 such that x is not free
in A0 . . . An. Define the following chain of sets of sentences of LC .

Γ0 = ∆.
Suppose the set Γn = ∆ ∪ {B1, . . . , Bk} has already been defined. Consider the
sentence Hn+1 in the given enumeration.
Case(1) Γn ∪ {Hn+1} is LC-consistent.
Case(1.1) Hn+1 is ∃xF (x). Define Γn+1 = Γn ∪ {∃y(c = y)} ∪ {F (c/x)}, for
some c ∈ LC such that Γn ∪ {∃y(c = y)} ∪ {F (c/x)} is LC-consistent.
Case(1.2) Hn+1 is A0∧3(A1∧· · ·∧3(An∧3∃xAn+1(x)) . . . ). Define Γn+1 =
Γn ∪ {A0 ∧3(A1 ∧ · · · ∧3(An ∧3An+1(c/x)) . . . )}, for some c ∈ LC such that
Γn ∪ {A0 ∧3(A1 ∧ · · · ∧3(An ∧3An+1(c/x)) . . . )} is LC-consistent.
Case(2) Γn ∪ {Hn+1} is not LC-consistent. Define Γn+1 = Γn. Then let
Γ =

⋃
n∈N Cl(Γn) and let Π be an LC-maximal extension of Γ. It is easy to see

that Π is 3-rich, Q-rich and Q-universal, where Q = {c ∈ LC : ∃y(y = c) ∈ Π}.
Now we show that in cases (1.1) and (1.2) the appropriate constant c is always
available.
Case(1.1) Suppose that Γn ∪{∃y(c = y)}∪{F (c/x)} is not LC-consistent for all
c ∈ LC . Then, for any c ∈ LC not occurring in Γn, Γn `LC ∃y(y = c) → ¬F (c),
therefore for some variable z not occurring in ¬F (c), Γn `LC ∃y(y = z) →
¬F (z/c), hence, since Γn is a set of sentences, Γn `LC ∀z(∃y(y = z) → ¬F (z)),
so Γn `LC ∀z∃y(y = z) → ∀z¬F (z), then by lemma 2.1(ii) Γn `LC ∀z¬F (z),
contrary to the LC-consistency of Γn ∪ {∃xF (x)}.
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Case(1.2) Suppose that Γn+1 is not LC-consistent, then Γn ` A0 ∧3(A1 ∧ · · · ∧
3(An ∧ 3An+1(c/x)) . . . ) → ⊥, for all c ∈ LC . Therefore for some c which
doesn’t occur either in B = (B1 ∧ · · · ∧ Bk) or in A0 . . . An, ∆ `LC B ∧ A0 ∧
3(A1 ∧ · · · ∧3(An ∧3An+1(c/x)) . . . ) → ⊥. Therefore for some conjunction D
of sentences of ∆, `LC D∧B∧A0∧3(A1∧· · ·∧3(An∧3An+1(c/x)) . . . ) → ⊥.
Let z be a variable not occurring in this last formula, then `LC D ∧ B ∧ A0 ∧
3(A1∧· · ·∧3(An∧3An+1(z/c)) . . . ) → ⊥. Whence `LC D∧B∧A0 → 2(A1 →
· · · → 2(An → 2¬An+1(z)) . . . ), `LC D ∧ B ∧ A0 → 2(A1 → · · · → 2(An →
2∀x¬An+1(x/z)) . . . ), via EBR. But then Γn ∪ {A0 ∧ 3(A1 ∧ · · · ∧ 3(An ∧
3∃xAn+1(x)) . . . )} ` 3 . . .33⊥, therefore Γn ∪ {A0 ∧ 3(A1 ∧ · · · ∧ 3(An ∧
3∃xAn+1(x)) . . . )} ` ⊥, contrary to the LC-consistency of Γn ∪ {A0 ∧ 3(A1 ∧
· · · ∧3(An ∧3∃xAn+1(x)) . . . )}. a

Lemma 2.15. Let L ⊇ Q◦
=.K+EBR. If ∆ is a set of sentences which is

LC-maximal and 3-LC-rich, then it is 2-LC-inductive, where ∆ is said to be
2-LC-inductive iff if

A0 → 2(A1 → · · · → 2(An → 2An+1(c)) . . . ) ∈ ∆, for all c ∈ Const(LC), then

A0 → 2(A1 → · · · → 2(An → 2∀xAn+1(x)) . . . ) ∈ ∆.

Definition 2.16. Let L ⊇ Q◦
=.K+EBR. Let C be a set of constants such

that C ⊃ Const(L) and |C − Const(L)| = ℵ0. A normal canonical model NL

= 〈W,R,D, U, I〉 for L is defined as follows:

◦ W is the class of all LC-saturated and 2-LC-inductive set of sentences,
◦ wRv iff 2−(w) ⊆ v, for any w, v ∈ W ,
◦ Dw = {[c] : ∃y(y = c) ∈ w},
◦ Uw = {[c] : c ∈ Const(LC)},
◦ Iw(c) = [c],
◦ Iw(Pn) = {〈[c1], ..., [cn]〉 : Pn(c1, ..., cn) ∈ w}.

Lemmas 2.14 and 2.15 guarantee that W 6= ∅.
Lemma 2.17. Let NL = 〈W,R,D, U, I〉 be a normal canonical model for L ⊇

Q◦
=.K+EBR. For all w ∈ W , Cl(2−(w) ∪ {B1, . . . , Bk}) is 2-LC-inductive.

Proof. Let B = B1 ∧ · · · ∧Bk. Suppose that for all c ∈ Const(Lw),
2−(w) ∪ {B} ` A0 → 2(A1 → · · · → 2(An → 2An+1(c)) . . . ), then 2−(w) `
(B ∧ A0) → 2(A1 → · · · → 2(An → 2An+1(c)) . . . ), for all c ∈ Const(Lw),
w ` 2[(B ∧ A0) → 2(A1 → · · · → 2(An → 2An+1(c)) . . . )], but w is 2-LC-
inductive,13 so w ` 2[(B ∧ A0) → 2(A1 → · · · → 2(An → 2∀An+1(x)) . . . )],
[(B ∧ A0) → 2(A1 → · · · → 2(An → 2∀An+1(x)) . . . )] ∈ 2−(w), 2−(w) ∪
{B1, . . . , Bk} ` A0 → 2(A1 → · · · → 2(An → 2∀xAn+1(x)) . . . ). a

Lemma 2.18. (EBR-variation of lemma 1.19) Let NL = 〈W,R,D, U, I〉 be a
normal canonical model for L ⊇ Q◦

=.K+EBR. If w ∈ W and 3A ∈ w then
there is a v ∈ W such that 2−(w) ⊆ v, A ∈ v and Const(Lw) = Const(Lv).

13Being 2-LC -inductive can be paraphrased as being EBR-closed. Now, in order to show

that 2−(w) ∪ {B1, . . . , Bk} is BR(n + 1) closed, we need to make use of the fact that w is
BR(n + 2) closed. Therefore we cannot limit ourselves to any finite set BR(1) .... BR(n + 1)

of rules.
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Proof. The proof is exactly as that of lemmas 1.19 and 1.16 except that,
Case(1.) Γn ∪ {∃xF (x)} is Lw-consistent. Define Γn+1 = Γn ∪ {∃y(y =
c)}∪ {F (c/x)} for some constant c ∈ Lw such that Γn ∪{∃y(y = c)}∪ {F (c/x)}
is Lw-consistent.
We show that such a constant c is always available. Suppose not, then for all
c ∈ Lw, 2−(w) ` G ∧ ∃y(y = c) → ¬F (c), where G is the conjunction of all
the sentences of (Γn − 2−(w)), so w ` 2(G ∧ ∃y(y = c) → ¬F (c)). Since w is
2-LC-inductive, w ` 2∀z(G∧∃y(y = z) → ¬F (z/c)), w ` 2(G∧∀z∃y(y = z) →
∀z¬F (z)), w ` 2(G → ∀z¬F (z)), (G → ∀z¬F (z)) ∈ 2−(w), Γn ` ∀z¬F (z),
contrary to the fact that Γn ∪ {∃xF (x)} is Lw-consistent. a

Again, since Const(Lw) = Const(Lv), it always holds that for all c ∈ Const(Lw),
[c]w = [c]v. Lemmas 2.14-2.18 yield that

Theorem 2.19. Q◦
=.K + EBR is strongly complete with respect to the class

of normal models based on K-frames with constant outer domains.

Quantified extensions of the propositional modal logic B.

By Q◦.B, (Q.B, Q◦
=.B) we denote the logic Q◦.K, (Q.K, Q◦

=.K) plus the propo-
sitional axiom B: A → 23A, i.e. the axiom characteristic of frames whose
accessibility relation is symmetric. The rule EBR is derivable in Q◦.B. For the
reader’s sake, here is the proof of EBR as given in [6], p.295, for n = 2.

`Q◦.B A0 → 2(A1 → 2(A2 → 2A3(x))) premise of BR(3),
`Q◦.B 3A0 → (A1 → 2(A2 → 2A3(x)))
`Q◦.B 3A0 ∧A1 → 2(A2 → 2A3(x))
`Q◦.B 3(3A0 ∧A1) → (A2 → 2A3(x))
`Q◦.B 3(3A0 ∧A1) ∧A2 → 2A3(x)
`Q◦.B 3(3(3A0 ∧A1) ∧A2) → A3(x)
`Q◦.B 3(3(3A0 ∧A1) ∧A2) → ∀xA3(x)
`Q◦.B 3(3A0 ∧A1) ∧A2 → 2∀xA3(x)
`Q◦.B 3(3A0 ∧A1) → (A2 → 2∀xA3(x))
`Q◦.B (3A0 → A1) → 2(A2 → 2∀xA3(x))
`Q◦.B 3A0 → (A1 → 2(A2 → 2∀xA3(x)))
`Q◦.B A0 → 2(A1 → 2(A2 → 2∀xA3(x)))

Lemma 2.20. `Q◦
=.B−ND ND and `Q◦

=.B+BF ∃y(x = y) → 2∃y(x = y).

Proof. .
`Q◦

=.B x = y → 2(x = y) NI
`Q◦

=.B 3(x 6= y) → (x 6= y)
`Q◦

=.B 23(x 6= y) → 2(x 6= y)
`Q◦

=.B (x 6= y) → 2(x 6= y) by B
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`Q◦
=.B+BF x = y → 2(x = y) NI

`Q◦
=.B+BF 3(x = y) → (x = y) via B

`Q◦
=.B+BF ∃y3(x = y) → ∃y(x = y),

`Q◦
=.B+BF 3∃y(x = y) → ∃y(x = y) via BF

`Q◦
=.B+BF 23∃y(x = y) → 2∃y(x = y),

`Q◦
=.B+BF ∃y(x = y) → 2∃y(x = y) via B.

a

Lemma 2.21. .
q.m.l. is strongly complete w.r.t. the class of K-frames

where R is symmetric and the domains are
inner outer

(a) Q◦.B + CBF constant constant
(b) Q◦

=.B varying constant
(c) Q◦

=.B + CBF constant constant
(d) Q◦

=.B + BF constant constant
(e) Q.B constant = inner
(f) Q=.B constant = inner

Proof. That the accessibility relation R is symmetric is easily seen as for the
propositional case because the languages of all the worlds of a given canonical
model are equal.

(a) Since Q◦.B+CBF ` BF , the completeness proof of Q◦.B + CBF is anal-
ogous to that for Q◦.K+CBF+BF . For the reader’s sake here is the proof of
BF as given in [3], p.138.

`Q◦.B+CBF ∀x[∀x2A(x) → 2A(x)]
`Q◦.B+CBF 2∀x[∀x2A(x) → 2A(x)]
`Q◦.B+CBF ∀x2[∀x2A(x) → 2A(x)] by CBF ,
`Q◦.B+CBF ∀x[3∀x2A(x) → 32A(x)]
`Q◦.B+CBF ∀x[3∀x2A(x) → A(x)] via B
`Q◦.B+CBF ∀x3∀x2A(x) → ∀xA(x)
`Q◦.B+CBF 3∀x2A(x) → ∀xA(x)
`Q◦.B+CBF 23∀x2A(x) → 2∀xA(x)
`Q◦.B+CBF ∀x2A(x) → 2∀xA(x), via B.

(b) Since, as we have seen, EBR is derivable in Q◦.B, the completeness proof
of Q◦

=.B is obtained through lemmas 2.14-2.18 as for Q◦
=.K+EBR, see theorem

2.19.

(c) from (a).

(d) Since CBF is a theorem of Q◦
=.B+BF , the completeness proof of Q◦

=.B+BF
is analogous to that for Q◦

=.K+BF+CBF . Here is a proof of CBF in Q◦
=.B+BF .

`Q◦
=.B+BF ∃y(x = y) → 2∃y(x = y) lemma 2.20,

`Q◦
=.B+BF ¬[∃y(x = y) ∧3∀y¬(x = y)].
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Let A be any wff and let B = A(x/y), where x is a variable not occurring in A.
Trivially y doesn’t occur free in B. Then
`Q◦

=.B+BF ¬[∃y(x = y) ∧3[B ∧ (B → ∀y¬(x = y))]]
`Q◦

=.B+BF ¬[∃y(x = y) ∧ [3B ∧2(B → ∀y¬(x = y))]]
`Q◦

=.B+BF ¬[∃y(x = y) ∧3B ∧2∀y(x = y → ¬B)]
`Q◦

=.B+BF ¬[∃y(x = y) ∧3B ∧2∀y¬A(y)] since ¬A(y) → (x = y → ¬A(x/y)),
`Q◦

=.B+BF ¬∃y(x = y) ∨ ¬3B ∨3∃yA(y)
`Q◦

=.B+BF ¬(∃y(x = y) ∧3B) ∨3∃yA(y)
`Q◦

=.B+BF ¬∃y3A(y) ∨3∃yA(y) since ∃y3A(y) → (∃y(x = y) ∧3A(x/y)),
`Q◦

=.B+BF ∃y3A(y) → 3∃yA(y).

(e) Since CBF , BF and UI are all theorems of Q.B, Q.B is complete with
respect to the class of TK-frames with constant domains. a

(f) from (e).

Q◦.B+BF is K-incomplete

Here is a model for Q◦.B+BF in which CBF fails.14 The model is based on a
counterpart Kripke frame. For details about counterpart semantics, see [2]. A
counterpart Kripke frame, CK-frame, is a quintuple F = 〈W,R,D, U, C〉, where
〈W,R,D, U〉 is a K-frame and C, the counterpart relation, is such that

C =df

⊎
w,v∈W {C〈w,v〉}, where for any w, v ∈ W such that wRv, C〈w,v〉 ⊆ (Uw ×

Uv).

It can be easily shown that Q◦.K formulated in a language with types is valid
with respect to the class of all CK-models, where the notion of satisfaction is
defined thus:

〈a1, ..., an〉 |=w Pn(n : x1, . . . , xn) iff 〈a1, ..., an〉 ∈ Iw(Pn)
〈a1, ..., an〉 |=w 〈n : s1, ..., sk〉B iff 〈a1, ..., an〉[n : s1, ..., sk]w |=w B

〈a1, ..., an〉 |=w ¬C iff 〈a1, ..., an〉 6|=w C

〈a1, ..., an〉 |=w C ∨D iff 〈a1, ..., an〉 |=w C or 〈a1, ..., an〉 |=w D

〈a1, ..., an〉 |=w ∃xn+1G iff for some b ∈ Dw, 〈a1, ..., an, b〉 |=w G
〈a1, ..., an〉 |=w 2C iff for all v such that wRv and for all

counterparts a∗1, . . . , a
∗
n in Dv of a1, . . . ,

an, respectively, 〈a∗1, ..., a∗n〉 |=v C.
A counterpart frame is said to be symmetric iff both R and C are symmetric.
A counterpart relation is said to be surijective iff if wRv, then for all b ∈ Uv

there is an a ∈ Uw such that aCb holds. From [2] we know that BF is valid on
a counterpart K-frame iff the counterpart relation is surijective.
Consider the following counterpart K-frame F = 〈W,R,D, U, C〉, where

W = {w, v},
R = {〈w, v〉, 〈v, w〉}
Dw = {a, b}, Dv = {a∗}
Uw = {a, b}, Uv = {a∗, b∗}
C = {〈a, a∗〉, 〈b, a∗〉, 〈b, b∗〉, 〈a∗, a〉, 〈a∗, b〉, 〈b∗, b〉}

14This answers a question raised in [3], p.138, whether CBF is a theorem of Q◦.B+BF .



28 GIOVANNA CORSI

Both R and C are symmetric relations and C is surijective, so F is a frame for
Q◦.B+BF . Consider now a model M = 〈F , I〉 such that Iw(P ) = {a, b} and
Iv(P ) = {a∗}. Then M |=w 2∀xP (x) because a∗ ∈ Iv(P ) and M 6|=w ∀x2P (x)
because bCb∗ and b∗ /∈ Iv(P ), so M 6|=w 2∀xP (x) → ∀x2P (x). Therefore
Q◦.B+BF 6` CBF . But CBF is valid on all K-frames for Q◦.B+BF since each
of them is bound to have inner constant domains, whence

Theorem 2.22. Q◦.B+BF is not characterized by any class of K-frames.

Open problems Completeness property of Q◦.K+BF and Q◦.B.
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