2,908 research outputs found

    Femtosecond wave packet spectroscopy: Coherences, the potential, and structural determination

    Get PDF
    Recently, we presented a formalism for extracting highly resolved spectral information and the potential of bound isolated systems from coherent ultrafast laser experiments, using I2 as a model system [Gruebele et al., Chem. Phys. Lett. 166, 459 (1990)]. The key to this approach is the formation of coherent wave packets on the potential energy curve (or surface) of interest, and the measurement of their scalar and vector properties. Here we give a full account of the method by analyzing the coherences of the wave packet in the temporal transients of molecules excited by ultrashort laser pulses, either at room temperature, or in a molecular beam. From this, some general considerations for properly treating temporal data can be derived. We also present a direct inversion to the potential and quantum and classical calculations for comparison with the experiments

    The beamformer and correlator for the Large European Array for Pulsars

    Get PDF
    The Large European Array for Pulsars combines Europe's largest radio telescopes to form a tied-array telescope that provides high signal-to-noise observations of millisecond pulsars (MSPs) with the objective to increase the sensitivity of detecting low-frequency gravitational waves. As part of this endeavor we have developed a software correlator and beamformer which enables the formation of a tied-array beam from the raw voltages from each of telescopes. We explain the concepts and techniques involved in the process of adding the raw voltages coherently. We further present the software processing pipeline that is specifically designed to deal with data from widely spaced, inhomogeneous radio telescopes and describe the steps involved in preparing, correlating and creating the tied-array beam. This includes polarization calibration, bandpass correction, frequency dependent phase correction, interference mitigation and pulsar gating. A link is provided where the software can be obtained.Comment: 10 pages, 6 figures, accepted for publication in Astronomy and Computin

    Exploring Methods to Enhance Appearance-Based Video Object Tracking using Dynamics Theory

    Get PDF
    To be defined upon arrival.The task of Video Object Tracking has for a long time received attention within the field of Computer Vision, and many different approaches have tried to tackle its challenges, being the ones based on appearance and motion some of the most popular ones. The main focus of this thesis is to fuse both strategies in order to exploit their strengths and overcome each other's flaws. To achieve this goal, we propose a unified framework that combines, in an online manner, an off-the-shelf single-object siamese tracker, which is modified to perform multi-object tracking and to provide more than one detection candidate, with a novel motion module. This module detects when the proposed target position is not dynamically consistent and, if that is the case, predicts an alternative which is used to choose the best among the rest of candidates. Our approach is evaluated on the challenging Similar Multi-Object Tracking (SMOT) dataset and achieves a relevant precision improvement of the 5% with respect to the baseline. We present an extension to the SMOT dataset, the eSMOT, including more sequences with complex dynamic scenarios, where the performance of our model is excellent, therefore we use its predictions to label the Ground Truth. Although there is still room for enhancement mainly regarding the efficiency of the approach, this work has served as a relevant proof of concept for the intuitions behind it and consequently, research in this direction will surely continue

    Luminescence Spectra of Quantum Dots in Microcavities. II. Fermions

    Full text link
    We discuss the luminescence spectra of coupled light-matter systems realized with semiconductor heterostructures in microcavities in the presence of a continuous, incoherent pumping, when the matter field is Fermionic. The linear regime--which has been the main topic of investigation both experimentally and theoretically--converges to the case of coupling to a Bosonic material field, and has been amply discussed in the first part of this work. We address here the nonlinear regime, and argue that, counter to intuition, it is better observed at low pumping intensities. We support our discussion with particular cases representative of, and beyond, the experimental state of the art. We explore the transition from the quantum to the classical regime, by decomposing the total spectrum into individual transitions between the dressed states of the light-matter coupling Hamiltonian, reducing the problem to the positions and broadenings of all possible transitions. As the system crosses to the classical limit, rich multiplet structures mapping the quantized energy levels melt and turn to cavity lasing and to an incoherent Mollow triplet in the direct exciton emission for very good structure. Less ideal figures of merit can still betray the quantum regime, with a proper balance of cavity versus electronic pumping.Comment: Correct a silly confusion with parameters from the literature (fig. 3). Parameters of the text are changed as a result but qualitative results are not affected. Consider 3 points only (instead of 5) as sufficiently representative. Minor corrections of typos. 46 pages, 17 figures (in low quality

    Holography: A survey

    Get PDF
    The development of holography and the state of the art in recording and displaying information, microscopy, motion, pictures, and television applications are discussed. In addition to optical holography, information is presented on microwave, acoustic, ultrasonic, and seismic holography. Other subjects include data processing, data storage, pattern recognition, and computer-generated holography. Diagrams of holographic installations are provided. Photographs of typical holographic applications are used to support the theoretical aspects

    Intrinsic dissipation in high-frequency micromechanical resonators

    Get PDF
    We report measurements of intrinsic dissipation in micron-sized suspended resonators machined from single crystals of galium arsenide and silicon. In these experiments on high-frequency micromechanical resonators, designed to understand intrinsic mechanisms of dissipation, we explore dependence of dissipation on temperature, magnetic field, frequency, and size. In contrast to most of the previous measurements of acoustic attenuation in crystalline and amorphous structures in this frequency range, ours is a resonant measurement; dissipation is measured at the natural frequencies of structural resonance, or modes of the structure associated with flexural and torsional motion. In all our samples we find a weakly temperature dependent dissipation at low temperatures. We compare and contrast our data to various probable mechanisms, including thermoelasticity, clamping, anharmonic mode-coupling, surface anisotropy and defect motion, both in bulk and on surface. The observed parametric dependencies indicate that the internal defect motion is the dominant mechanism of intrinsic dissipation in our samples
    • …
    corecore