11 research outputs found

    Approximating subset kk-connectivity problems

    Get PDF
    A subset TVT \subseteq V of terminals is kk-connected to a root ss in a directed/undirected graph JJ if JJ has kk internally-disjoint vsvs-paths for every vTv \in T; TT is kk-connected in JJ if TT is kk-connected to every sTs \in T. We consider the {\sf Subset kk-Connectivity Augmentation} problem: given a graph G=(V,E)G=(V,E) with edge/node-costs, node subset TVT \subseteq V, and a subgraph J=(V,EJ)J=(V,E_J) of GG such that TT is kk-connected in JJ, find a minimum-cost augmenting edge-set FEEJF \subseteq E \setminus E_J such that TT is (k+1)(k+1)-connected in JFJ \cup F. The problem admits trivial ratio O(T2)O(|T|^2). We consider the case T>k|T|>k and prove that for directed/undirected graphs and edge/node-costs, a ρ\rho-approximation for {\sf Rooted Subset kk-Connectivity Augmentation} implies the following ratios for {\sf Subset kk-Connectivity Augmentation}: (i) b(ρ+k)+(3TTk)2H(3TTk)b(\rho+k) + {(\frac{3|T|}{|T|-k})}^2 H(\frac{3|T|}{|T|-k}); (ii) ρO(TTklogk)\rho \cdot O(\frac{|T|}{|T|-k} \log k), where b=1 for undirected graphs and b=2 for directed graphs, and H(k)H(k) is the kkth harmonic number. The best known values of ρ\rho on undirected graphs are min{T,O(k)}\min\{|T|,O(k)\} for edge-costs and min{T,O(klogT)}\min\{|T|,O(k \log |T|)\} for node-costs; for directed graphs ρ=T\rho=|T| for both versions. Our results imply that unless k=To(T)k=|T|-o(|T|), {\sf Subset kk-Connectivity Augmentation} admits the same ratios as the best known ones for the rooted version. This improves the ratios in \cite{N-focs,L}

    A Deterministic Algorithm for the Vertex Connectivity Survivable Network Design Problem

    Full text link
    In the vertex connectivity survivable network design problem we are given an undirected graph G = (V,E) and connectivity requirement r(u,v) for each pair of vertices u,v. We are also given a cost function on the set of edges. Our goal is to find the minimum cost subset of edges such that for every pair (u,v) of vertices we have r(u,v) vertex disjoint paths in the graph induced by the chosen edges. Recently, Chuzhoy and Khanna presented a randomized algorithm that achieves a factor of O(k^3 log n) for this problem where k is the maximum connectivity requirement. In this paper we derandomize their algorithm to get a deterministic O(k^3 log n) factor algorithm. Another problem of interest is the single source version of the problem, where there is a special vertex s and all non-zero connectivity requirements must involve s. We also give a deterministic O(k^2 log n) algorithm for this problem

    On rooted kk-connectivity problems in quasi-bipartite digraphs

    Full text link
    We consider the directed Rooted Subset kk-Edge-Connectivity problem: given a set TVT \subseteq V of terminals in a digraph G=(V+r,E)G=(V+r,E) with edge costs and an integer kk, find a min-cost subgraph of GG that contains kk edge disjoint rtrt-paths for all tTt \in T. The case when every edge of positive cost has head in TT admits a polynomial time algorithm due to Frank, and the case when all positive cost edges are incident to rr is equivalent to the kk-Multicover problem. Recently, [Chan et al. APPROX20] obtained ratio O(lnklnT)O(\ln k \ln |T|) for quasi-bipartite instances, when every edge in GG has an end in T+rT+r. We give a simple proof for the same ratio for a more general problem of covering an arbitrary TT-intersecting supermodular set function by a minimum cost edge set, and for the case when only every positive cost edge has an end in T+rT+r

    Approximating survivable networks with β-metric costs

    Get PDF
    AbstractThe Survivable Network Design (SND) problem seeks a minimum-cost subgraph that satisfies prescribed node-connectivity requirements. We consider SND on both directed and undirected complete graphs with β-metric costs when c(xz)⩽β[c(xy)+c(yz)] for all x,y,z∈V, which varies from uniform costs (β=1/2) to metric costs (β=1).For the k-Connected Subgraph (k-CS) problem our ratios are: 1+2βk(1−β)−12k−1 for undirected graphs, and 1+4β3k(1−3β2)−12k−1 for directed graphs and 12⩽β<13. For undirected graphs this improves the ratios β1−β of Böckenhauer et al. (2008) [3] and 2+βkn of Kortsarz and Nutov (2003) [11] for all k⩾4 and 12+3k−22(4k2−7k+2)⩽β⩽k2(k+1)2−2. We also show that SND admits the ratios 2β1−β for undirected graphs, and 4β31−3β2 for directed graphs with 1/2⩽β<1/3. For two important particular cases of SND, so-called Subset k-CS and Rooted SND, our ratios are 2β31−3β2 for directed graphs and β1−β for subset k-CS on undirected graphs

    Survivability and performance optimization in communication networks using network coding

    Get PDF
    The benefits of network coding are investigated in two types of communication networks: optical backbone networks and wireless networks. In backbone networks, network coding is used to improve survivability of the network against failures. In particular, network coding-based protection schemes are presented for unicast and multicast traffic models. In the unicast case, network coding was previously shown to offer near-instantaneous failure recovery at the bandwidth cost of shared backup path protection. Here, cost-effective polynomial-time heuristic algorithms are proposed for online provisioning and protection of unicast traffic. In the multicast case, network coding is used to extend the traditional live backup (1+1) unicast protection to multicast protection; hence called multicast 1+1 protection. It provides instantaneous recovery for single failures in any bi-connected network with the minimum bandwidth cost. Optimal formulation and efficient heuristic algorithms are proposed and experimentally evaluated. In wireless networks, performance benefits of network coding in multicast transmission are studied. Joint scheduling and performance optimization formulations are presented for rate, energy, and delay under routing and network coding assumptions. The scheduling component of the problem is simplified by timesharing over randomly-selected sets of non-interfering wireless links. Selecting only a linear number of such sets is shown to be rate and energy effective. While routing performs very close to network coding in terms of rate, the solution convergence time is around 1000-fold compared to network coding. It is shown that energy benefit of network coding increases as the multicast rate demand is increased. Investigation of energy-rate and delay-rate relationships shows both parameters increase non-linearly as the multicast rate is increased

    Approximation Algorithms for (S,T)-Connectivity Problems

    Get PDF
    We study a directed network design problem called the kk-(S,T)(S,T)-connectivity problem; we design and analyze approximation algorithms and give hardness results. For each positive integer kk, the minimum cost kk-vertex connected spanning subgraph problem is a special case of the kk-(S,T)(S,T)-connectivity problem. We defer precise statements of the problem and of our results to the introduction. For k=1k=1, we call the problem the (S,T)(S,T)-connectivity problem. We study three variants of the problem: the standard (S,T)(S,T)-connectivity problem, the relaxed (S,T)(S,T)-connectivity problem, and the unrestricted (S,T)(S,T)-connectivity problem. We give hardness results for these three variants. We design a 22-approximation algorithm for the standard (S,T)(S,T)-connectivity problem. We design tight approximation algorithms for the relaxed (S,T)(S,T)-connectivity problem and one of its special cases. For any kk, we give an O(logklogn)O(\log k\log n)-approximation algorithm, where nn denotes the number of vertices. The approximation guarantee almost matches the best approximation guarantee known for the minimum cost kk-vertex connected spanning subgraph problem which is O(logklognnk)O(\log k\log\frac{n}{n-k}) due to Nutov in 2009

    Inapproximability of survivable networks

    No full text
    In the Survivable Network Design Problem (SNDP) one seeks to find a minimum cost subgraph that satisfies prescribed node-connectivity requirements. We give a novel approximation ratio preserving reduction from Directed SNDP to Undirected SNDP. Our reduction extends and widely generalizes as well as significantly simplifies the main results of [9]. Using it, we derive some new hardness of approximation results, as follows. We show that directed and undirected variants of SNDP and of k-Connected Subgraph are equivalent w.r.t. approximation, and that a ρ-approximation for Undirected Rooted SNDP implies a ρ-approximation for Directed Steiner Tree.
    corecore