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Abstract

We study a directed network design problem called the k-(S, T )-connectivity problem; we de-
sign and analyze approximation algorithms and give hardness results. For each positive integer
k, the minimum cost k-vertex connected spanning subgraph problem is a special case of the k-
(S, T )-connectivity problem. We defer precise statements of the problem and of our results to the
introduction.

For k = 1, we call the problem the (S, T )-connectivity problem. We study three variants of the
problem: the standard (S, T )-connectivity problem, the relaxed (S, T )-connectivity problem, and
the unrestricted (S, T )-connectivity problem. We give hardness results for these three variants. We
design a 2-approximation algorithm for the standard (S, T )-connectivity problem. We design tight
approximation algorithms for the relaxed (S, T )-connectivity problem and one of its special cases.

For any k, we give an O(log k log n)-approximation algorithm, where n denotes the number of
vertices. The approximation guarantee almost matches the best approximation guarantee known
for the minimum cost k-vertex connected spanning subgraph problem which is O(log k log n

n−k )
due to Nutov in 2009 [62].
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Chapter 1

Introduction

Frank and Jordan in 1995 [38] introduced the following problem on the design of directed net-
works, based on earlier results of Schrijver [70, 71]. We are given a directed graph G = (V,E0)
and two sets of vertices S, T ⊆ V . We may assume that S ∩ T = ∅ (See Chapter 2). The goal is
to find the minimum number of edges whose addition to G results in an (S, T )-connected directed
graph. In this context, (S, T )-connected means that every pair of vertices s ∈ S and t ∈ T is
connected by a directed s → t path. In this setting, we are allowed to add any directed edge that
has tail in S and head in T . Frank and Jordan showed that this problem is polynomial-time solv-
able. However, they did not give a combinatorial algorithm. In fact, they showed that the natural
linear programming relaxation of this problem has an integral optimal solution. A combinatorial
algorithm for the case k = 1 was given by Enni in 1999 [23]. For the case that k can be arbitrary,
an algorithm based on the primal-dual scheme was given by Benczúr and Végh [75, 76] in 2005
based on earlier results of Benczúr [8].

Closely related to (S, T )-connectivity problems, the minimum cost k-vertex and k-edge con-
nected spanning subgraph problems in directed graphs have been studied for decades. When k = 1
both the vertex and edge connectivity problems are the same as the minimum cost strongly con-
nected subgraph problem, which is NP-Hard. A reduction from the vertex cover problem in cubic
graphs was given by Gabow, Goemans, Tardos, and Williamson in [40, 41] in 2005. This shows
that these two problems are APX-hard in general and thus have no PTAS. On the algorithmic side,
in 1992, Khuller and Vishkin [51, 52] gave a 2-approximation algorithm for the edge-connectivity
problem in both directed and undirected graphs. The vertex-connectivity problem seems to be
harder than the edge-connectivity problem. In 1995, an O(log k)-approximation algorithm was
claimed by Ravi and Williamson [66, 67], but it was later found to be flawed [68, 69]. Exploiting
the structure of 3-critically k-connected graph, in 2002, Cheriyan, Vempala and Vetta [15, 16] gave
an algorithm with an approximation guarantee of O(log k) for the special case where n < 6k2 in
undirected graphs. In 2005, the result has been generalized by Kortsarz and Nutov [56] to obtain
an approximation guarantee ofO(ln k ·min{

√
k, n

n−k ln k}) in both directed and undirected graphs.
Three years later, the result has been improved by Fakcharoenphol and Laekhanukit [24] to give
an approximation guarantee of O(log2 k) which is the first approximation algorithm that achieves
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a polylogarithmic approximation guarantee for all values of n and k. In 2009, Nutov [62] added a
preprocessing step to the algorithm and improved the approximation guarantee toO(log n

n−k log k).

The rooted k-connection problem is similar to the (S, T )-connectivity problem. In this prob-
lem, we are given a directed graph with a specified root vertex r and a set of terminals. The goal in
this problem is to find a set of edges with minimum cost that makes the directed graph connected
from r to every terminal by k-edge disjoint directed paths. The set of positive cost edges in this
problem are restricted to have heads in the set of terminals. The most common version of this
problem is when all the vertices in the graph except the root vertex are terminals; this is called the
optimal branching problem. Between 1960 to 1970, the special case where k = 1 has been studied
by several researchers. In 1967, Edmonds [22] gave an algorithm for the optimal branching prob-
lem. An algorithm based on a linear programming relaxation was given in 1974 by Fulkerson [39].
A faster implementation of the algorithm for the optimal branching problem was given by Tarjan in
1974 [72]. Fulkerson’s result has been extended by Frank [34] in 1979. Frank’s algorithm is more
general and can be applied to the problem of covering an intersecting family by a directed graph.
In particular, Frank’s algorithm applies to the case where the set of terminals is an arbitrary subset
of the vertex set of the directed graph, but every edge of positive cost has its head in the set of
terminals. In 1999, Frank [35] gave a polynomial-time algorithm for a special case of the problem.
Recently, in 2009, Frank [37] gave another algorithm for the rooted k-connection problem.

The problems studied in this thesis are the minimum cost (S, T )-connectivity problem and the
minimum cost k-(S, T )-connectivity problem. In both problems, we are given an initial directed
graph and a set of augmenting edges. The augmenting edges are associated with positive costs.
The goal in the minimum cost (S, T )-connectivity problem is to find a set of augmenting edges
with minimum cost that makes the directed graph (S, T )-connected. Please see Chapter 2 for a
precise statement.

1.1 Summary of Results

The following is the summary of our results.

The (S, T )-connectivity Problem (k = 1): We consider three variants of the (S, T )-connectivity
problem.

• The standard (S, T )-connectivity problem: In the first variant, we consider the case where
all augmenting edges have tails in S and heads in T . We show that the standard (S, T )-
connectivity problem is at least at hard as the minimum cost strongly connected subgraph
problem. Our main result for this variant is a 2-approximation algorithm.

• The relaxed (S, T )-connectivity problem: In this variant, all augmenting edges have heads
in T but there is no restriction on tails. We show that this problem is at least as hard as
the directed Steiner tree problem. We design an approximation algorithm and prove that
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it achieves the best known approximation guarantee for the directed Steiner tree problem,
which is a special case.

• The relaxed (S, T )-connectivity problem on a digraph that is acyclic on T : In this vari-
ant, we consider the relaxed (S, T )-connectivity problem, where the initial directed graph
has no directed circuits containing two vertices of T . We show that this problem is at least
as hard as the set cover problem. The main result on this variant is an approximation algo-
rithm whose approximation guarantee matches the approximation threshold of the set cover
problem.

• The unrestricted (S, T )-connectivity problem. We show that when there is no restriction
on augmenting edges, the problem is as hard as the directed Steiner forest problem. In fact,
there are reductions in both direction, that is, the unrestricted (S, T )-connectivity problem
is a special case of the directed Steiner forest problem, while the latter problem can also be
reduced to the former problem.

The k-(S, T )-connectivity problem (k > 1): We study the extension of the standard (S, T )-
connectivity problem. In the k-(S, T )-connectivity problem, the connectivity requirement between
S and T becomes an arbitrary number k. Please see Chapter 3 for a precise statement. We show
that the problem is at least as hard as the minimum cost k-vertex connected spanning subgraph
problem. Also, we design an approximation algorithm based on the framework of Fakcharoen-
phol and Laekhanukit [24]. Our approximation algorithm achieves an approximation guarantee
of O(log n log k). When k = nΩ(1)(e.g., k = n0.1), the approximation guarantee matches the ap-
proximation guarantee of the algorithm of Fakcharoenphol and Laekhanukit for the minimum cost
k-vertex connected spanning subgraph problem.

1.2 Organization

The organization of this thesis is as follows. In Chapter 2, we discuss the (S, T )-connectivity
problem. We present results on three variants of the (S, T )-connectivity problem. In Chapter 3, we
discuss the k-(S, T )-connectivity problem. We give a polylogarithmic-approximation algorithm
for this problem. In Chapter 4, the last chapter, we give some conclusions and open problems.
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Chapter 2

Approximation algorithms for
(S, T )-connectivity problems

2.1 Introduction

In this chapter, we discuss the (S, T )-connectivity problem. We study this problem in various
settings. The first setting is that all augmenting edges have tails in S and heads in T . In the second
setting, augmenting edges still have heads in T , but no restriction is placed on the tails. We also
consider the problem in the most general setting when there is no restriction at all. We show that
the hardness of this problem depends on the type of augmenting edges. The major contributions in
this chapter are approximation algorithms for the first two settings.

2.1.1 Organization

The organization of this chapter is as follows. Section 2.2 has key definitions. In Section 2.3,
we start our discussion by giving the hardness results of the (S, T )-connectivity problem. In Sec-
tion 2.4, we proceed to the case of the standard (S, T )-connectivity problem, where all augmenting
edges have tails in S and heads in T . In Section 2.5, we discuss the relaxed (S, T )-connectivity
problem, where all augmenting edges have heads in T , but there are no restriction on the tails.
In Section 2.6, we discuss the special case of the relaxed (S, T )-connectivity problem where the
given digraph is acyclic on T .

2.2 Preliminaries

In the minimum cost (S, T )-connectivity problem, we are given a digraphG = (V,E0∪E) , where
E0 ∩ E = ∅, and two sets of vertices S and T . We call G0 = (V,E0) the initial digraph and call
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Figure 2.1: The reduction from the instance of the (S, T )-connectivity problem where S ∩ T 6= ∅
to the instance such that S ∩ T = ∅. The left figure is the original instance where S = T = V , and
the right figure is the transformed instance where S ∩ T = ∅. The original instance is, in fact, the
instance of the minimum cost strongly connected subgraph problem. In this figure, the black lines
denote positive cost edges, and the grey lines denote zero-cost edges.

edges in E augmenting edges. We also have non-negative cost assigned to augmenting edges. We
may assume that the edges in E0 have zero-cost while the edges in E have positive cost. The set
of vertices S ∪ T might not contain all vertices. We call vertices that are in V − (S ∪ T ) optional
vertices. We say that a digraph is (S, T )-connected if there is an s → t-dipath connecting every
vertex s ∈ S and t ∈ T . The goal in this problems is to find a minimum cost subset of edges
E ′ ⊆ E so that the digraph G′ = (V,E0 ∪ E ′) is (S, T )-connected.

We call the problem when augmenting edges are restricted to have tails in S and heads in
T the standard (S, T )-connectivity problem. If all augmenting edges have heads in T , there are
no restriction on the tails, then we call the problem the relaxed (S, T )-connectivity problem. In
the most general version, when there is no restriction on augmenting edges, then we call it the
unrestricted (S, T )-connectivity problem.

The next result shows that there is no loss of generality in assuming that S and T are disjoint.

Proposition 2.2.1. There is a reduction from instances of the (S, T )-connectivity problem where
S ∩ T 6= ∅ to instances such that S ∩ T = ∅ that preserves the feasibility and the cost of solutions.

Proof. For each vertex v ∈ S ∩ T , we split v into two vertices v+ and v−; and join them by an
edge (v−, v+) with zero-cost. For all edges having v as tails (resp. heads), we change their tails
(resp. heads) to v+ (resp. v−). Finally, we include v+ to S and v− to T for all v ∈ S ∩ T . Since
all positive cost edges still have tails in S and heads in T , the reduction preserves the restriction on
augmenting edges. The reduction is illustrated in Figure 2.1.
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Notice that there is a one-to-one mapping between positive cost edges of the original and the
transformed instances. We can map any dipath in the original instance to a dipath in the trans-
formed one by replacing a vertex v ∈ S ∩ T by a subpath v− → v+. This does not increase
the cost because an edge (v−, v+) has zero-cost. Conversely, we can map any dipath in the trans-
formed instance to that in the original one by replacing subpath v− → v+ (or v+ if it is the start
vertex) by a single vertex v. Hence, the solution to the original instance is feasible if and only if its
corresponding solution is feasible to the transformed instance. Moreover, the cost of the optimal
solutions are the same in both instances.

Problems that are related to the (S, T )-connectivity problem are the directed Steiner tree prob-
lem and the directed Steiner forest problem. In the directed Steiner tree problem, we are given a
digraph G = (V,E) with a non-negative cost c(e) on each edge e ∈ E, a root vertex r ∈ V , and a
set of terminals T ⊆ V − {r}. There are two versions of the directed Steiner tree problem: the in-
directed Steiner tree problem and the out-directed Steiner tree problem. The goal in the in-directed
Steiner tree problem is to find a subgraph F ⊆ G with minimum cost so that F has a dipath from
every terminal t ∈ T to a root vertex r. Note that a minimal solution subgraph is acyclic. In the
out-directed Steiner tree problem, F is required to have a dipath from r to every terminal t ∈ T .
The directed Steiner forest problem is a generalization of the directed Steiner tree problem. In the
directed Steiner forest problem, we are give a digraphG = (V,E) with a non-negative cost c(e) on
each edge e ∈ E and a set of demandsD ⊆ V ×V . The goal in the directed Steiner forest problem
is to find a minimum cost set of edges E ′ ⊆ E so that G′ = (V,E ′) has an s→ t dipath for every
demand pair (s, t) ∈ D. In general, G′ may contain dicycles. However, in the setting of undirected
graphs, a minimal solution subgraph is acyclic, that is, G′ is a forest. Hence, the problem is called
the Steiner forest problem.

At the end of this section, we give the known hardness results of the minimum cost strongly
connected subgraph problem, the directed Steiner tree problem, and the directed Steiner forest
problem.

Theorem 2.2.2 ( [41, 49]). The minimum cost strongly connected subgraph problem is APX-hard.

Theorem 2.2.3 ( [46]). For every fixed ε > 0, the directed Steiner tree problem cannot be approx-
imated within a ratio of Ω(log2−ε n) unless NP ⊆ ZPTIME(npolylog(n)).

Theorem 2.2.4 ( [21]). For every fixed ε > 0, the directed Steiner forest problem cannot be ap-
proximated within a ratio of Ω(2log1−ε n) unless NP ⊆ DTIME(npolylog(n)).

Throughout this chapter, we use n and m to denote the number of vertices and the number of
edges, respectively. We denote the set of edges in an optimal solution by E∗ and denote its cost by
opt.
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2.3 The hardness of the (S, T )-connectivity problem

The hardness of the (S, T )-connectivity problem depends on the type of augmenting edges. We will
give reductions from three versions of the (S, T )-connectivity problem to other problems whose
hardness have been studied. Our reductions are approximation-preserving, that is, the reductions
preserve both feasibility and the cost of a solution. The following theorem states the hardness
results of the three versions of the (S, T )-connectivity problem.

Theorem 2.3.1. The hardness of (S, T )-connectivity problem depends on the type of augmenting
edges.

• The standard (S, T )-connectivity problem: If all augmenting edges have tails in S and
heads in T , then the problem is at least as hard as the minimum cost strongly connected
subgraph problem.

• The relaxed (S, T )-connectivity problem: If all augmenting edges have heads in T , but
there is no restriction on their tails, then the problem is at least as hard as the directed
Steiner tree problem.

• The unrestricted (S, T )-connectivity problem: If there is no restriction on augmenting
edges, then the problem is at least as hard as the directed Steiner forest problem.

Proof. We will describe the hardness construction of each version of the problem. We recall that
an instance of (S, T )-connectivity problem consists of a digraph G = (V,E0 ∪E), sets of vertices
S and T , and positive cost c(e) on each augmenting edge e ∈ E.

The standard (S, T )-connectivity problem: The reduction from the minimum cost strongly
connected subgraph problem to the standard (S, T )-connectivity problem is straightforward. Let
G = (V,E) be a digraph of the instance of the minimum cost strongly connected subgraph prob-
lem. We form the instance of the standard (S, T )-connectivity problem by setting S = T = V and
setting E0 = ∅. It is clear that the restriction on heads and tails of augmenting edges holds because
S = T = V . In fact, the minimum cost strongly connected subgraph problem is a special case of
the standard (S, T )-connectivity problem. Moreover, by Proposition 2.2.1, we can transform this
instance to an instance such that S ∩ T = ∅.

The relaxed (S, T )-connectivity problem: The reduction from the directed Steiner tree problem
is as follows. The given instance of the in-directed Steiner tree problem (See Section 2.2.) consists
of a digraph Ĝ = (V̂ , Ê) with non-negative cost on edges, a root vertex r ∈ V and a set of terminals
Ŝ ⊆ V̂ − {r}. We may assume that each terminal s ∈ Ŝ is incident to a unique edge which is
outgoing from s and has zero-cost. Otherwise, we can replace each terminal s ∈ Ŝ by a dummy
terminal s′ and attach s′ to s by a zero-cost edge (s′, s). Observe that the reduction does not increase
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Figure 2.2: The reduction from the instance of the directed Steiner tree problem to the instance of
the relaxed (S, T )-connectivity problem. The left figure is the instance of the former problem with
the root vertex r. The squares denote terminals, and the circles denote Steiner vertices. The right
figure is the instance of the relaxed (S, T )-connectivity problem. The black lines denote positive
cost edges, and the grey lines denote zero-cost edges.

the cost nor violate the feasibility of an optimal solution. We use Ĝ as the base construction and
add auxiliary edges with zero-cost from the root vertex r to all non-terminal vertices. Precisely,
the digraph of the instance of the relaxed (S, T )-connectivity problem is G = (V,E0 ∪ E), where
V = V̂ and E0 ∪ E = Ê ∪ {(r, v) : v ∈ V − Ŝ}. We define S to be the set of terminals Ŝ and T
to be the set of non-terminal vertices, that is, S = Ŝ and T = V − S. Note that T also includes
the root vertex r. We define the set of edges E0 of the initial digraph to be the set of all zero-cost
edges including the auxiliary ones. We define the set of augmenting edges E to be the set of all
positive cost edges. The construction is valid for the relaxed (S, T )-connectivity problem because
all positive cost edges have heads in T , the set of non-terminal vertices. The reduction is illustrated
in Figure 2.2.

The mapping between a solution of the directed Steiner tree problem and that of the relaxed
(S, T )-connectivity problem is straightforward. We can transform the solution of the directed
Steiner tree problem to that of the relaxed (S, T )-connectivity problem by adding auxiliary edges.
Conversely, we can transform the solution of the relaxed (S, T )-connectivity problem to that of the
directed Steiner tree problem by removing auxiliary edges. Observe that, for all vertices s ∈ S and
t ∈ T , we can extend any s→ r dipath to an s→ t dipath by adding an auxiliary edge (r, t). This
means that any feasible solution to the directed Steiner tree problem is also feasible to the relaxed
(S, T )-connectivity problem. Conversely, for all vertices s ∈ S, any simple s→ r dipath contains
no auxiliary edges because all auxiliary edges are leaving r. This means that removing auxiliary
and redundant edges from the (S, T )-connected subgraph gives us a directed Steiner tree. Thus,
the reduction is approximation-preserving.
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The unrestricted (S, T )-connectivity problem: The reduction from the directed Steiner forest
problem is as follows. The given instance of the directed Steiner forest problem (See Section 2.2.)
consists of a digraph Ĝ = (V̂ , Ê) with non-negative costs on edges, and a set of demands D ⊆
V × V . We may assume that there are a set of sources S and a set of sinks T , where S ∩ T = ∅.
Moreover, we may assume that each source s ∈ S is incident to one outgoing edge but incident to
no incoming edges. Similarly, we may assume that each sink t ∈ T is incident to one incoming
edge but incident to no outgoing edges. The reduction can be done similarly to that of the directed
Steiner tree problem. For each source s ∈ S, we add a dummy vertex s′ and attach it to s by a
zero-cost edge (s′, s). Likewise, for each sink t ∈ T , we add a dummy vertex t′ and attach it to t
by a zero-cost edge (t, t′). We then replace the demand (s, t) by (s′, t′) for all (s, t) ∈ D. Since
the dummy sources and sinks are attached to the original ones by zero-cost edges, the reduction
does not increase nor violate the feasibility. Note that each source and sink may occur in more
than one demands, e.g., we may have both (s, t1) and (s, t2) in D. To construct an instance of the
unrestricted (S, T )-connectivity problem, we start with the digraph Ĝ. We define S and T to be
the set of sources and sinks, respectively. For all ordered pairs (s, t) with s ∈ S and t ∈ T , if
(s, t) /∈ D, then we add an auxiliary edge (s, t) with zero-cost. In other words, we pad the digraph
with auxiliary edges to handle the new demands implicit in the unrestricted (S, T )-connectivity
problem. The set of edges E0 is defined to be the set of all zero-cost edges including the auxiliary
ones. The set of augmenting edges E is defined to be the set of positive cost edges. Clearly, the
construction is valid for the unrestricted (S, T )-connectivity problem because there is no restriction
on augmenting edges. The reduction is illustrated in Figure 2.3.

Given a solution to the directed Steiner forest problem, we can transform it to a solution to the
unrestricted (S, T )-connectivity problem by adding auxiliary edges. Conversely, given a solution
to the unrestricted (S, T )-connectivity problem, we can transform it to a solution to the directed
Steiner forest problem by removing auxiliary edges. The cost of the two solutions are the same
because all auxiliary edges have zero-cost. Consider any feasible solution Ĝ′ to the directed Steiner
forest problem. Since all demands are satisfied, there is an s → t dipath for all (s, t) ∈ D.
Moreover, in the corresponding solution G′ to the unrestricted (S, T )-connectivity problem, there
must be an auxiliary edge (s, t) for all (s, t) /∈ D. This implies that G′ is (S, T )-connected. In the
other direction, consider any feasible solution G′ to the unrestricted (S, T )-connectivity problem.
Observe that, for all (s, t) ∈ D, any s → t dipath contains no auxiliary edges. This is because
a source s ∈ S has no incoming edges, and a sink t ∈ T has no outgoing edges. This means
that, for all (s, t) ∈ D, an s → t dipath is still available after removing auxiliary edges. Thus,
the corresponding solution Ĝ′ is feasible to the directed Steiner forest problem implying that the
reduction is approximation-preserving.

2.4 The standard (S, T )-connectivity problem.

In this section, we discuss the standard (S, T )-connectivity problem where augmenting edges all
have tails in S and heads in T . In general, this problem is at least as hard as the minimum cost
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Figure 2.3: The reduction from the instance of the directed Steiner forest problem to the instance of
the unrestricted (S, T )-connectivity problem. The left figure is the instance of the former problem.
The set of demands in this instance is {(s1, t1), (s2, t1), (s2, t2), (s3, t2)}. The right figure is the
instance of the unrestricted (S, T )-connectivity problem. The black lines denote positive cost
edges, and the grey lines denote zero-cost edges.
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strongly connected subgraph problem. While we have a simple 2-approximation for the mini-
mum cost strongly connected subgraph problem, the interesting question is whether the standard
(S, T )-connectivity problem admits a 2-approximation. The answer is yes, and we will answer this
question by presenting the 2-approximation algorithm for this problem. Our algorithm is the gen-
eralization of the 2-approximation algorithm for the minimum cost strongly connected subgraph
problem.

To get some insight, we will briefly describe the 2-approximation algorithm for the minimum
cost strongly connected subgraph problem. The algorithm first chooses an arbitrary root vertex r
and then finds a minimum cost in-branching J in and a minimum cost out-branching Jout rooted
at the same vertex r. The solution to the minimum cost strongly connected subgraph problem is
the union of J in and Jout. Observe that the solution is feasible. To see that, consider any two
vertices u, v ∈ V . By the construction, we have u → r dipath in J in and r → v dipath in Jout.
Concatenating these dipaths, we have u→ v dipath for all u, v ∈ V . Thus, the digraph J in∪Jout is
strongly connected. Moreover, since any optimal solution to the minimum cost strongly connected
subgraph problem must contain both in-branching and out-branching rooted at r, we have that
c(J in ∪ Jout) ≤ 2opt.

We will now describe our algorithm. Consider the standard (S, T )-connectivity problem in two
cases.

1. There is no T → S dipath in the initial digraph.

2. There exists an T → S dipath in the initial digraph.

We will show that the first case is polynomial-time solvable while the second case admits a
2-approximation. The algorithm in the second case is similar to that of the minimum cost strongly
connected subgraph problem.

2.4.1 A polynomial-time algorithm for the case that there is no T → S di-
path

In this section, we assume that the given initial digraph G0 = (V,E0) has no T → S dipath. The
following two-phase algorithm shows that this case can be solved in polynomial time.

Phase 1: Reduction In the first phase, we apply some reductions to the initial digraph G0 =
(V,E0). Intuitively, we want to preprocess the instance by eliminating some terminals from S and
T that can share the same connections. This follows by the following two observations.

First, consider any strongly connected component C of G0. Suppose there is an s → t dipath
for some vertex s ∈ C and t. Then, for any vertex s′ ∈ C, we also have s′ → t dipath. This is
because we can extend the s → t dipath by s′ → s dipath of C. Moreover, this does not increase
the cost of the dipath because all edges of C have zero-cost. In short, any two vertices of S lying
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in the same strongly connected component of G0 can share the same connections to T . So, we
may think of C as a single vertex. This also applies to a strongly connected component on vertices
of T . Note that any strongly connected component cannot contain both S and T vertices because
there is no T → S dipath.

Second, consider any vertices s, s′ ∈ S. Suppose there is an s → s′ dipath in G0. Then this
dipath has zero-cost by the definition. So, we can extend any s′ → T dipath to be s → T dipath
without increasing the cost. The same observation also applies to vertices t, t′ ∈ T that have t′ → t
dipath. This means that we can deactivate some S and T vertices, that is, we remove vertices from
S or T and make them optional vertices. Note that deactivated vertices are not removed from the
digraph. Indeed, we deactivate vertices of S and T that can share connections with the others.

Our reduction is straightforward from the observations.

• We first contract all strongly connected components.

• We then deactivate some S and T vertices. Note that we also remove augmenting edges
whose heads or tails became optional vertices. The conditions for deactivating S and T
vertices are as follows.

– Deactivate a vertex s ∈ S if there is an s → (S − {s}) dipath; in other words, we
deactivate all S vertices that have dipaths connecting to other S vertices.

– Deactivate a vertex t ∈ T , if there is a (T − {t}) → t dipath; in other words, we
deactivate all T vertices that are reachable from other T vertices.

After the reduction, the reduced instance has no dicycles. Moreover, there is no dipath between
S vertices, and there is no dipath between T vertices.

Phase 2: Connecting Given S and T vertices remaining from the first phase, for each s ∈ S and
t ∈ T , we simply choose an augmenting edge (s, t) ∈ E if there is no s → t dipath in the initial
digraph. We claim that this augmenting edge always exists.

Figure 2.4 illustrates the working of our algorithm.

Correctness

We will show that our algorithm yields an optimal solution. The followings two lemmas show that
the chosen edges are sufficient and necessary. Without loss of generality, we may assume that there
is no strongly connected component in the initial digraph G0 = (V,E0). To see that, consider any
two vertices u, v ∈ V lying on the same strongly connected component C. Observe that there is
a u → w dipath in G0 if and only if there is a v → w dipath. This is because we can extend one
dipath to the other by a zero-cost dipath in C. So, we may think of C as a single vertex. We refer
to a digraph after the reduction by Ĝ = (V,E0 ∪ Ê). We denote the set of S and T vertices that
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Figure 2.4: The figure illustrates the working of our algorithm for the standard (S, T )-connectivity
problem on an example that has no T → S dipath. The left figure shows the original digraph. The
right figure shows the digraph after the reduction. The grey lines denote the edges of the initial
digraph G0 = (V,E0). The black lines denote the augmenting edges. The square in the right figure
denote the vertex obtained by contracting the strongly connected component in the left figure.
The light grey vertices denote S and T vertices that are deactivated. The dash-line denote the
augmenting edges that are removed. In this example, to make the digraph (S, T )-connected, we
have to choose augmenting edges (s1, t2), (s2, t1), and (s2, t2).

are not deactivated in the first phase by Ŝ and T̂ , respectively. Note that some augmenting edges
of E might not be available in Ê.

The following lemma shows the feasibility of the solution.

Lemma 2.4.1. Consider a subgraph G′ of Ĝ. If G′ is (Ŝ, T̂ )-connected, then G′ is (S, T )-
connected.

Proof. We will show that there is a dipath from every vertex s ∈ S to every vertex t ∈ T in G′.
First, for each vertex s ∈ S − Ŝ, there must be a dipath from s to some vertex ŝ ∈ Ŝ. This is
because of the deactivating conditions. Similarly, for each vertex t ∈ T − T̂ , there must be a dipath
from some vertex t̂ ∈ T̂ to t. Since we assume that G′ is (Ŝ, T̂ )-connected, that is, there is an
ŝ → t̂ dipath connecting every pair of vertices ŝ ∈ Ŝ and t̂ ∈ T̂ , we have an S → T dipath of the
form

s→ . . .→ ŝ→ . . .→ t̂→ . . .→ t.

This implies that the digraph G′ is (S, T )-connected as claimed.

The following lemma shows that if the given instance is feasible, then our algorithm always
gives a feasible solution. As a consequence, this implies the optimality of the solution.
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Lemma 2.4.2. Suppose the given instance is feasible. For any vertex ŝ ∈ Ŝ and t̂ ∈ T̂ , if there is
no ŝ → t̂ dipath connecting ŝ and t̂ in the initial digraph G0 = (V,E0), then there must exist an
augmenting edge (ŝ, t̂) ∈ E. Moreover, (ŝ, t̂) is the unique edge that connects ŝ to t̂.

Proof. Suppose there is no ŝ → t̂ dipath in the initial digraph. Consider the original digraph
G = (V,E0 ∪ E). Since the given instance is feasible, G must have an ŝ → t̂ dipath. Let P be
any ŝ → t̂ dipath in G. In the standard (S, T )-connectivity problem, all augmenting edges have
tails in S and heads in T . Since the initial digraph G0 has no ŝ → t̂ dipath, P must contain an
augmenting edge (s, t) joining a pair of vertices s ∈ S and t ∈ T . Observe that P contains no
subpath going from T to S. Otherwise, let’s take a shortest T → S subpath P ′ of P . Then we
have that P ′ enters S once and never leaves. Thus, P ′ has no augmenting edges which means that
P ′ is a T → S dipath in the initial digraph G0 = (V,E0), a contradiction. Since all augmenting
edges go from S to T , this implies that (s, t) is the unique augmenting edge in P . Consequently,
an ŝ → t subpath and a t → t̂ subpath of P must be in the initial digraph G0. But, then by the
deactivating conditions, we have s = ŝ and t = t̂; otherwise, they would have been deactivated.
Hence, Ĝ has the augmenting edge (ŝ, t̂), and it must be the unique augmenting edge that connects
ŝ to t̂ proving the lemma.

Corollary 2.4.3. Suppose the initial digraph contains no T → S dipath. Then the standard (S, T )-
connectivity problem is polynomial-time solvable. In particular, the algorithm given above yields
an optimal solution.

Proof. The statement follows from Lemma 2.4.2 because each pair of vertices (s, t), s ∈ Ŝ and
t ∈ T̂ , has to be connected directly by an augmenting edge (s, t). The running time is polynomial
on m and n because we only need to compute a transitive closure and exhaustively connect every
pair of vertices ŝ ∈ Ŝ and t̂ ∈ T̂ .

2.4.2 A 2-approximation algorithm for the case there exists T → S dipath

In this section, we consider the standard (S, T )-connectivity problem when the initial digraph has
T → S dipath. We will present a 2-approximation algorithm for this case using an idea similar to
that of the minimum cost strongly connected subgraph problem.

Our algorithm needs a subroutine for solving a rooted version of the (S, T )-connectivity prob-
lem called rooted connection problem. The problem is, in fact, a special case of the (S, T )-
connectivity problem where S consists of a single vertex r called root. We call vertices of T
terminals. When there is no restriction on the set of augmenting edges, the problem is the same
as the directed Steiner tree problem. However, if augmenting edges are restricted to have heads
in T , then the problem is polynomial-time solvable. We note that there are two versions of the
problem: in and out versions. Given a root vertex r, we say that a digraph is out-connected to T
if there is r → t dipath connecting r to every vertex t ∈ T . Similarly, we say that a digraph is
in-connected from T if there is t→ r dipath connecting every vertex t ∈ T to r. The out-version of
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Figure 2.5: The figure illustrates the working of our 2-approximation algorithm for the standard
(S, T )-connectivity problem on an example that has a T → S dipath. The left figure shows the
instance of the out-rooted connection problem with the root vertex s and the set of terminals T .
The right figure shows the instance of the in-rooted connection problem with the root vertex t and
the set of terminals S. The grey lines denote the edges of the initial digraph. The black dash-
lines denote the augmenting edges. The grey dash-lines denote the T → S dipath. The black
continuous-lines denote the augmenting edges chosen by the algorithm.

the problem asks to make a digraph out-connected to T while the in-version asks to make a digraph
in-connected from T . Unless it is specified, we will refer to the out-version of the problem.

The standard version of the rooted connection problem where all augmenting edges have heads
in T can be solved in polynomial time. The results are presented in [34, 35, 37, 33, 7].

Theorem 2.4.4 ( [34, 35, 7]). The rooted connection problem where all augmenting edges have
heads in T can be solved in O(m(n+m)) time.

We will now describe our algorithm for the (S, T )-connectivity problem, where the initial
digraph G0 = (V,E0) has a T → S dipath. We first find a T → S dipath. Along this dipath, we
choose two vertices s∗ ∈ S and t∗ ∈ T and solve two instances of the rooted connection problem.
To be precise, in the first subproblem, we take s∗ as root, T as the set of terminals and solve the
out-rooted connection problem. In the second one, we take t∗ as root, S as the set of terminals and
solve the in-rooted connection problem. Our solution is the union of augmenting edges from the
solutions of the two subproblems.

Figure 2.5 illustrates the working of our algorithm.

Correctness

The feasibility of the solution obtained by our algorithm is shown by the following lemma.

Lemma 2.4.5. At the termination of the algorithm, the resulting digraph is (S, T )-connected.
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Proof. Let s∗ ∈ S and t∗ ∈ T be vertices in the T → S dipath chosen by the algorithm. By
solving the two subproblems, we have that the resulting digraph is out-connected from s∗ to S and
in-connected from t∗ to T . This implies that we can go from any vertex s ∈ S to t∗. Likewise,
we can go from s∗ to every vertex t ∈ T . Since the initial digraph has a t∗ → s∗ dipath, we have
s→ t dipath of the form

s→ . . .→ t∗ → . . .→ s∗ → . . .→ t.

Therefore, the resulting digraph is (S, T )-connected as claimed.

We will now show that our algorithm runs in polynomial time and gives an approximation ratio
of 2.

Lemma 2.4.6. The algorithm given in Section 2.4.2 runs in polynomial time and gives an approx-
imation ratio of 2.

Proof. The first claim follows from the fact that we can find a T → S dipath and solve two
subproblems in polynomial time which is stated in Theorem 2.4.4.

The analysis for the algorithm is straightforward. We first note that a set of edges that is feasible
to (S, T )-connectivity problem is also feasible to the two rooted subproblems. So, the cost of the
optimal solution of each subproblem has cost at most that of (S, T )-connectivity problem. Thus,
the union of these two solutions has cost at most 2opt.

The above two lemmas imply the following theorem.

Corollary 2.4.7. There exists 2-approximation algorithm for (S, T )-connectivity.

2.4.3 General Case

In the general case, we first run a depth first search algorithm to find T → S dipath. If there
is no such dipath, then we run the algorithm given in Section 2.4.1. Otherwise, we run the
2-approximation algorithm given in Section 2.4.2. Combining these two cases we have a 2-
approximation algorithm for the general case.

Theorem 2.4.8. There is a 2-approximation algorithm for the (S, T )-connectivity problem where
all augmenting edges are restricted to have tails in S and heads in T .

2.4.4 Running Time

In this paragraph, we analyze the running time of our algorithm. First, we have to run the depth first
search algorithm to check whether there is a T → S dipath. This initial process requires O(n+m)
time. In the first case that the initial digraph has no T → S dipath, the running time is dominated
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by the time for computing the reduction. This requires the computation of transitive closure which
takesO(n3) time. In the second case, the running time is dominated by the running time for solving
two instances of the rooted connection problem. By Theorem 2.4.4, this requires O(m(n + m))
times. Hence, the total running time of our algorithm isO((n+m)+n3+m(n+m)) = O(n3+m2).

2.5 The relaxed (S, T )-connectivity problem

In this section, we will discuss the relaxed (S, T )-connectivity problem. We will characterize the
properties of the optimal solution and give an approximation algorithm for this problem. Our
algorithm achieves an approximation ratio of α(n) + 1, where α(n) is the approximation ratio for
approximating the directed Steiner tree problem.

2.5.1 Preliminary

Throughout this section, we will use the following definitions.

• An in-tree (or in-branching) J in rooted at r is a digraph such that there is a v → r-dipath to
r from every vertex v ∈ V (J in)− {r}.

• An out-tree (or out-branching) Jout rooted at r is a digraph such that there is an r → v-dipath
from r to every vertex v ∈ V (Jout)− {r}.

• A junction tree J rooted at r is a union of in-tree J in and out-tree Jout rooted at the same
vertex r. Note that the in-tree and the out-tree may have common edges.

• A digraph G is acyclic on T if there is no dicircuit (that is, connected di-Eulerain subgraph)
in G containing two distinct vertices of T . In other words, for any two vertices t, t′ ∈ T , G
either has a t → t′ dipath or a t′ → t dipath but not both. Note that G may have neither a
t→ t′ dipath nor a t′ → t dipath.

Remark that the definitions of junction tree, in-tree and out-tree are taken from [14]. We need a
subroutine that solves the minimum cost branching problem and a subroutine that solves the rooted
connection problem. We also need a subroutine that approximately solves the directed Steiner tree
problem. The result on the minimum cost branching problem is usually attributed to Edmonds [22].
In fact, the problem can be reduced to the matroid intersection problem.

Theorem 2.5.1 ([7, 22, 72, 39, 34, 35, 37]). There exists a polynomial-time algorithm that finds a
minimum cost in-branching (respectively, out-branching).

Theorem 2.5.2 ([34, 37]). There exists a polynomial-time algorithm that solves the out-rooted
(respectively, in-rooted) connection problem optimally, where all positive cost edges have heads
(respectively, tails) in the terminal set.

17



Theorem 2.5.3 ([11, 9]). There exists an O(log3 n)-approximation algorithm for the directed
Steiner tree problem that runs in quasi-polynomial time.

Note that the original paper [11] claimed that there exists an O(log2 n)-approximation algo-
rithm for the directed Steiner tree problem that runs in quasi-polynomial time. However, the au-
thors applied Theorem 2 in [78] which has a gap. The gap was fixed in [47]. After fixing the gap,
the approximation ratio of the algorithm in [11] becomes O(log3 n).

The following theorem states the main result of this section.

Theorem 2.5.4. There exists a (α(n)+1)-approximation algorithm for the relaxed (S, T )-connectivity
problem, where α(n) denotes the (best known) approximation guarantee for the directed Steiner
tree problem. In particular, there is an O(log3 n)-approximation algorithm for the relaxed (S, T )-
connectivity problem that runs in quasi-polynomial time.

2.5.2 Overview

We consider the relaxed (S, T )-connectivity problem in two cases. The first case is that there exists
T → S dipath in the initial digraph G0 = (V,E0). The second case is that there is no T → S
dipath in G0.

Remark that there is a T → S dipath in the initial digraph G = (V,E0) if and only if there is
a T → S dipath in G = (V,E0 ∪ E). The forward direction is straightforward. To see the other
direction, consider an inclusionwise minimal T → S dipath P of G. The start vertex is t ∈ T and
the end vertex is s ∈ S. Clearly, P has no augmenting edges because all augmenting edges have
heads in T . Thus, P is a dipath in G0.

We can reduce instances of the first case where the initial digraph G0 has a T → S dipath to
instances of the second case where the initial digraph has no T → S dipath. The reduction is the
same as given in Theorem 2.3.1. For each vertex s ∈ S, we add a new vertex s′ and a new edge
(s′, s) of zero-cost. Clearly, the original digraph has an s → t dipath, for s ∈ S and t ∈ T , if
and only if the new digraph has an s′ → t dipath. Let S ′ be the set of newly added vertices. We
consider the (S ′, T )-connectivity problem instead of the original (S, T )-connectivity problem. It is
clear that the reduction does not increase the cost nor violate the feasibility of an optimal solution.
Moreover, the reduction maintains the restriction that all augmenting edges have heads in T .

Even though we have the above reduction, we present a simple approximation algorithm for
the case that the initial digraph G0 has a T → S dipath.

2.5.3 An approximation algorithm for the case that there exists a T → S
dipath

Suppose there exists a T → S dipath P in the initial digraph G0 = (V,E0). This case is similar to
the one in Section 2.4.1. Let s∗ and t∗ be vertices of P such that s∗ ∈ S and t∗ ∈ T . We solve two
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instances of the rooted connection problem. The first instance Πs∗ is the instance of the out-rooted
connection problem with root s∗ and terminal set T . Since all augmenting edges have heads in T ,
this instance is polynomial-time solvable. (See Theorem 2.5.2.) The second instance Πt∗ is the
instance of the in-rooted connection problem with root t∗ and terminal set S. This instance might
have some augmenting edges with tails not in the terminal set S, and thus, it does not fit in the
settings in Theorem 2.5.2. Generally, the instance Πt∗ is the instance of the in-directed Steiner tree
problem which is NP-hard.

Our algorithm simply finds solutions Es∗ and Et∗ of the instance Πs∗ of the rooted connection
problem and the instance Πt∗ of the directed Steiner tree problem. The algorithm output E ′ =
Es∗ ∪Et∗ as the solution to the relaxed (S, T )-connectivity problem. Let G′ = (V,E0∪E ′) denote
the digraph obtained by our algorithm.

Lemma 2.5.5 (See Lemma 2.4.5). The resulting digraph G′ = (V,E0 ∪ E ′) is (S, T )-connected.

The following lemma shows that, our algorithm gives an approximation ratio of α(n) + 1,
where α(n) is defined in the lemma.

Lemma 2.5.6. Assume that the initial digraph G0 = (V,E0) contains a T → S dipath. Suppose
there exists an α(n)-approximation algorithm for the directed Steiner tree problem. Then there
exists an (α(n) + 1)-approximation algorithm for the relaxed (S, T )-connectivity problem.

Proof. Consider an optimal solution G∗ = (V,E0 ∪ E∗). Note that G∗ contains an s → t dipath
for every s ∈ S and t ∈ T . We conclude that G∗ contains a feasible solution to the instance
Πs∗ of the rooted connection problem. Similarly, G∗ contains a feasible solution to the instance
Πt∗ of the directed Steiner tree problem. We will now compare the cost of E∗ to the cost of
the solution obtained by our algorithm. Recall that opt denote the cost of the optimal solution
G∗. Since the instance Πs∗ of the rooted connection problem is polynomial-time solvable, we
have c(Es∗) ≤ opt. Since we use an α(n)-approximation algorithm for the directed Steiner tree
problem, we have c(Et∗) ≤ α(n)opt. Thus, c(E ′) ≤ c(Es∗) + c(Et∗) ≤ (α(n) + 1)opt, proving
the lemma.

2.5.4 An approximation algorithm for the case that there is no T → S di-
path.

We will characterize the important properties of the optimal solutionG∗ = (V,E0∪E∗). Exploiting
the properties, we design an (α(n) + 1)-approximation algorithm for this problem, where α(n) is
the approximation ratio for approximating the directed Steiner tree problem.

2.5.5 Properties of the optimal solution

Consider an optimal solution G∗ = (V,E0∪E∗). We will construct junction trees J1, J2, . . . , J` ⊆
G∗ with the following properties:
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• For i = 1, 2, . . . , `, Ji contains S, and Ji has s→ t dipath for all s ∈ S and all t ∈ Ji ∩ T .

• For i 6= j, Ji and Jj have no common vertices of T and thus no common augmenting edges.

•
⋃`
i=1 Ji contains T . In particular,

⋃`
i=1 Ji is (S, T )-connected.

Intuitively, we want to partition the set of augmenting edges in the optimal solution E∗ so that
each subset together with E0 forms a junction tree Ji connecting S and Ji ∩ T .

We start our construction by contracting all maximal strongly connected components of G∗.
Observe that no vertices of S and T are in the same strongly connected component because there
is no T → S dipath. We will abuse the notation and continue using the same symbols for the
contracted digraph. At this point, observe that the digraph G∗ is acyclic on T . Hence, there must
be a vertex t ∈ T that has no dipath from any vertex in T −{t}. We call such a vertex a top-vertex.

The construction runs in ` iterations. In each iteration i, we construct a junction tree Ji whose
in-tree contains S and the out-tree contains some vertices of T . We take a top-vertex ti as the root
of the junction tree. Through ti, the junction tree Ji connects every vertex of S to every vertex of
Ji ∩ T . In other words, ti is the “bridge” connecting S and Ji ∩ T in Ji. This is because ti is a
top-vertex; hence, every S → Ji ∩ T dipath must visit ti before reaching other vertices of Ji ∩ T .
We then remove from the current digraph vertices of T that are assigned to Ji. We keep repeating
the process until all vertices of T are assigned to some junction trees.

To be precise, we start from the digraph G∗0 = G∗ and the terminal set T0 = T . At the iteration
i, for i = 1, 2, . . . , `, we consider the digraph G∗i−1 and the terminal set Ti−1. We choose a top-
vertex ti as the root of the junction tree Ji which consists of an in-tree J ini and an out-tree Jouti ,
that is, Ji = J ini ∪ Jouti . The in-tree J ini is obtained by taking an in-directed Steiner tree in G∗i−1 on
the terminal set S. The out-tree Jouti is obtained by taking the union of ti → t dipaths in G∗i−1 for
all vertices t ∈ Ti−1 reachable from ti. Once we have the junction tree Ji, we update the digraph
G∗i−1 and the terminal set Ti−1 by removing from them all vertices of T assigned to Ji. Thus, we
have G∗i = G∗i−1−Ji∩T and Ti = Ti−1−Ji∩T . We then continue to the next iteration and repeat
the process until all vertices of T are assigned to junction trees. In fact, the stopping condition is
T` = ∅, or equivalently,

⋃`
i=1 Ji contains T .

The following is the key lemma.

Lemma 2.5.7. At the iteration i, i = 1, 2, . . . , `, the digraph G∗i−1 is (S, Ti−1)-connected.

Proof. We will proceed by induction on i for i = 1, 2, . . . , `.

Base case i = 1: The base case is trivial because the starting digraph G∗0 = G∗ is obtained from
the optimal solution by contracting strongly connected components.

20



Inductive step i > 1: Assume that the induction hypothesis holds for some i ≥ 1. We will prove
that the digraph G∗i is (S, Ti)-connected. Suppose not. Then there exists a pair of vertices s ∈ S
and t ∈ Ti that have no s → t dipath in G∗i . Since G∗i−1 is (S, Ti−1)-connected, this means that
every s → t dipath P in G∗i−1 must contain some vertex t′ ∈ Ji ∩ T . Since the root ti of Ji is a
top-vertex, we conclude that t′ is in Ji if and only if t′ is reachable from ti in G∗i−1. Hence, we can
concatenate dipath ti → t′ in Ji and dipath t′ → t in P to form ti → t dipath. By the construction
of Ji, vertex tmust be included in Ji and thus must have been removed, a contradiction. Therefore,
G∗i is (S, Ti)-connected.

We will now proves that the three properties holds.

Lemma 2.5.8. The following properties holds for J1, J2, . . . , J`.

• (i) For i = 1, 2, . . . , `, Ji contains S, and Ji has s→ t dipath for all s ∈ S and all t ∈ Ji∩T .

• (ii) For i 6= j, Ji and Jj have no common vertices of T and thus no common augmenting
edges.

• (iii)
⋃`
i=1 Ji contains T . In particular,

⋃`
i=1 Ji is (S, T )-connected.

Proof. (i) The first property follows from Lemma 2.5.7. In fact, for i = 1, 2, . . . , `, since G∗i−1

is (S, Ti−1)-connected, it must contain an in-directed Steiner tree J ini rooted at ti on the terminal
set S. Clearly, every vertex t ∈ Jouti ∩ T has ti → t dipath in Jouti ⊆ Ji. Moreover, we claim
that ti is the unique vertex of T in J ini , that is, J ini ∩ T = {ti}. Note that J ini is an in-directed
Steiner tree in G∗i−1 rooted at ti. So, if J ini contains some other vertex t′ ∈ T , then it has a t′ → ti
dipath and so does G∗i−1. This is a contradiction since ti is a top-vertex of G∗i−1, that is, G∗i−1 has
no (Ti−1 − {ti})→ ti dipath. (Note that Ti−1 is the set of vertices of T remaining in G∗i−1.)

Thus, for all s ∈ S and t ∈ Ji ∩ T , we have an s→ t dipath of the form

s→ . . .→ ti → . . .→ t.

(ii) The second property holds because, for i = 1, 2, . . . , `, we remove all vertices of Ji ∩ T
from the digraph G∗i−1 before proceeding to the next iteration. Moreover, since all augmenting
edges have heads in T , no two junction trees have common augmenting edges.

(iii) The last property holds because we stop the construction when T` = ∅. Hence, by Property
(i), we have that

⋃`
i=1 Ji is (S, T )-connected.

At the termination, we uncontract the strongly connected components of G∗. Observe that any
two maximal strongly connected components have no common vertices; otherwise, the two would
have been merged. So, the junction trees J1, J2, . . . , J` still have no common vertices of T . Thus,

21



they have no common augmenting edges. We abuse the notation c(Ji) to denote the summation
of the cost of all edges in Ji and the cost of all edges of strongly connected components that are
appeared as contracted vertices in Ji. Then we have

∑`
i=1 c(Ji) = opt.

After uncontracting, if the root vertex of a junction tree becomes a strongly connected compo-
nent, then we may take any vertex in the component as a root. This will not violate the reachability
because all vertices in the same strongly connected component are reachable from each other.
However, the in-tree and the out-tree may have common vertices of T in the uncontracted digraph.
In more detail, for i = 1, 2, . . . , `, consider the junction tree Ji = J ini ∪ Jouti . If the root vertex
of Ji in the contracted digraph is formed by contracting a strongly connected component Ci, then
some of the vertices of Ci may be contained in both J ini and Jouti .

An approximation algorithm

Our algorithm does the following.

1. For each vertex t ∈ T , approximately compute the minimum cost in-directed Steiner tree Ft
in G = (V,E0 ∪ E) rooted at t taking the set of terminals to be S.

2. Remove all edges incident to S, and contract S into a single vertex s∗.

3. For each vertex t ∈ T , add an auxiliary edge (s∗, t) with cost c(s∗, t) = c(Ft).

4. Remove all optional vertices v ∈ V −(S∪T ) that are not reachable from T inG0 = (V,E0).
Consider any remaining optional vertex v. Observe that any shortest T → v dipath has zero-
cost because it has no edges with heads in T .

5. Compute a minimum cost out-branching M rooted at s∗ in the current digraph. Note that
the out-branching M contains all vertices of the digraph and has a dipath from s∗ to every
vertex. In fact, M is an out-directed spanning tree (or arborescence).

6. Uncontract s∗, and for each auxiliary edge (s∗, t) ∈ M , replace the edge by the in-directed
Steiner tree Ft. Let G′ = (V,E0 ∪ E ′) denote the resulting digraph.

We claim that c(M) ≤ (α(n)+1)opt, where α(n) is the approximation ratio for approximating
the directed Steiner tree problem. Figure 2.6 illustrates the working of our algorithm.

Theorem 2.5.9. There exists an (α(n)+1)-approximation algorithm for the relaxed (S, T )-connectivity
problem, where α(n) is the approximation ratio for approximating the directed Steiner tree prob-
lem.

Proof. We will show that our algorithm achieves the claimed approximation ratio.
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Figure 2.6: The figure illustrates the working of our approximation algorithm for the relaxed
(S, T )-connectivity problem on an example that has no T → S dipath. The left figure shows the
digraph before the reduction. The right figure shows the digraph after the reduction. The set of
vertices S is contracted into a single vertex s∗. The black vertices are vertices of S and T . The
grey vertices are optional vertices. The grey lines denote edges of the initial digraph. The black
lines denote augmenting edges. The dashed lines denote auxiliary edges obtained by replacing an
in-directed Steiner tree Ft rooted at a root vertex t ∈ T by an edge (s∗, t) with cost c(Ft) for each
vertex t ∈ T .

Correctness: The correctness of our solution follows from the fact that M is an out-branching.
To see that, consider any vertex t ∈ T . Observe that every s∗ → t dipath in M must be of the form

s∗ → t̂→ . . .→ t.

where (s∗, t̂) is an auxiliary edge while other edges belong to the original digraph. Since we
replace (s∗, t̂) by the in-directed Steiner tree Ft̂ in the final step, the resulting digraph G′ must have
an s→ t̂ dipath for every s ∈ S. Hence, we have s→ t dipath of the form

s→ . . .→ t̂→ . . .→ t.

Thus, the resulting digraph G′ is (S, T )-connected.

Cost analysis: First, we will construct an upperbound from the digraph G∗ = (V,E0 ∪ E∗) of
the optimal solution. We construct junction trees J1, J2, . . . , J` from G∗ by the construction given
Section 2.5.5. Recall that, for i = 1, 2, . . . , `, the junction tree Ji is a union of the in-tree J ini and
the out-tree Jouti , where the in-tree J ini is an in-directed Steiner tree rooted at ti on the terminal set
S.

Similar to the construction in the algorithm, we contract S into a single vertex s∗. For i =
1, 2, . . . , `, we replace the in-tree J ini by an edge (s∗, ti) with cost α(n) · c(J ini ). By the way we
choose the root vertex ti, there exists a ti → t dipath in Jouti for every vertex t ∈ Jouti ∩ T .
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We include all optional vertices v that are reachable from T to some junction tree. In fact, we
include v together with a shortest T → v dipath. Since any shortest T → v dipath has no edges
with heads in T , this dipath has zero-cost. So, the cost of the junction trees do not increase. We
then remove from G∗ all optional vertices that are not reachable from T . Clearly, at this point, G∗

has a dipath from s∗ to every vertex. So, G∗ must contain an out-branching rooted at s∗ of cost at
most that of G∗.

The cost of G∗ after the construction might be changed. This is because, in the construction
in Section 2.5.5, we contract strongly connected components before constructing junction trees.
Consider the contracted digraph in Section 2.5.5. For each junction tree Ji, the in-tree J ini and the
out-tree Jout have exactly one vertex of T in common which is the root vertex. If the root vertex of
the junction tree Ji is a contracted vertex, then after uncontracting strongly connected components,
the in-tree J ini and the out-tree Jouti may have common augmenting edges. Thus, the cost of G∗

after the construction in the above paragraph is at most

∑̀
i=1

(c(Jouti ) + c(J ini )) ≤
∑̀
i=1

(c(Ji) + c(J ini )).

We will now compare the cost of G∗ to that of the solution M obtained by our algorithm.
Notice that G∗ and M have the same set of vertices. Moreover, by the construction, the cost of
(s∗, ti) in M is at most α(n) times that of the minimum cost directed Steiner tree rooted at ti on
the terminal set S. Hence, c(s∗, ti) ≤ α(n) · c(J ini ) for all i = 1, 2, . . . , `. Thus, by the minimality
of M , we have

c(M) ≤
∑̀
i=1

(c(Ji)+α(n)·c(J ini )) ≤
∑̀
i=1

(c(Ji)+α(n)·c(Ji)) = (α(n)+1)
∑̀
i=1

c(Ji) ≤ (α(n)+1)opt.

Note that the last inequality follows from the fact that any two junction trees have no common
augmenting edges. This implies that our algorithm yields an approximation ratio of α(n) + 1 as
required.

2.5.6 General case

In both cases, our algorithm achieves an approximation ratio of α(n) + 1, where α(n) is the
approximation ratio of the algorithm for the directed Steiner tree problem. In the general case, we
can run the depth first search algorithm to check which case holds for the instance and apply the
appropriate algorithm. In Section 2.3, we showed that the relaxed (S, T )-connectivity problem is
at least as hard as the directed Steiner tree problem. This means that our approximation guarantee
matches the hardness threshold up to an additive term.
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2.6 The relaxed (S, T )-connectivity problem when a digraph is
acyclic on T

In this section, we will discuss the special case of the relaxed (S, T )-connectivity problem where
the given digraph G = (V,E0 ∪ E) is acyclic on T . (See Section 2.5.1.)

Readers who are familiar with the reduction from Set Cover to the directed Steiner tree prob-
lem may see that the same reduction applies to the relaxed (S, T )-connectivity problem. This
suggests that the problem cannot be approximated within a factor of (1− ε) lnn [26]. The follow-
ing results show the hardness of this special case of the relaxed (S, T )-connectivity problem.

Theorem 2.6.1 (Feige’98 [26]). Let ε > 0. Unless NP ⊆ DTIME(nO(log logn)), there is no ((1 −
ε) lnn)-approximation algorithm for Set Cover .

Theorem 2.6.2. The special case of relaxed (S, T )-connectivity problem where the given digraph
G = (V,E0 ∪ E) is acyclic on T is at least as hard as Set Cover .

Proof. The reduction from Set Cover to the relaxed (S, T )-connectivity problem is as follows.
The instance of Set Cover consists of a universe Ŝ = {s1, s2, . . . , sn} and given subsets S1, S2, . . . , Sm
with weights c(S1), c(S2), . . . , c(Sm), respectively. We define the vertex set of the relaxed (S, T )-
connectivity to be V = Ŝ ∪ {S1, S2 . . . , Sm} ∪ {t}. Particularly, we create vertices s1, s2, . . . , sn
corresponding to elements of Ŝ, create vertices S1, S2, . . . , Sm corresponding to each subset and
create an auxiliary vertex t. We define the set S of the relaxed (S, T )-connectivity problem to be
the universe Ŝ of Set Cover and define T = {t}. The other vertices of V , namely, S1, S2, . . . , Sm
are optional vertices. We add an edge (si, Sj) to E0 if si ∈ Sj . We add augmenting edges from
each Sj to t with cost equal to the weight of Sj , namely, c(Sj). It follows by the construction
that this instance is valid for the relaxed (S, T )-connectivity problem, and the underlying digraph
G = (V,E0 ∪ E) is acyclic on T (since T consists of a single vertex).

The construction yields a one-to-one correspondence between subsets of Set Cover and aug-
menting edges of the (S, T )-connectivity problem. Also, observe that an S → t dipath must be
of the form s→ Se → t, where s ∈ Se. This implies that t is reachable from s ∈ Se if and only
if the augmenting edge (Se, t) is chosen. So, the solution to the relaxed (S, T )-connectivity prob-
lem is feasible if and only if the corresponding solution to Set Cover is feasible. Therefore, the
reduction is approximation-preserving, and the lemma follows.

Theorem 2.6.2 suggests that this problem cannot be approximated within a factor of Ω(log n).
The reduction from Set Cover also gives some insight that a greedy algorithm for Set Cover
might work well on this special case of the relaxed (S, T )-connectivity problem. Extending this
idea, we obtain an approximation algorithm that achieves the approximation guarantee of O(log n)
meeting the lower bound. Let α′(n) be the best known approximation ratio for approximating
Set Cover . Then there exists an α′(n)-approximation algorithm for the special case of relaxed
(S, T )-connectivity problem where the given digraph G = (V,E ∪ E0) is acyclic on T .
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Theorem 2.6.3. There exists an O(log n)-approximation algorithm for the special case of relaxed
(S, T )-connectivity problem where the given digraph G = (V,E ∪ E0) is acyclic on T .

We will present two approximation algorithms for this problem. The first algorithm is the
modified version of the the algorithm in Section 2.5.5. The second algorithm exploits the acyclic
property of the given digraph G = (V,E0 ∪ E). Both algorithms achieve the same approximation
ratio of α′(n), where α′(n) is the approximation ratio for Set Cover .

2.6.1 Approximation algorithm I

Our first algorithm is almost the same as the algorithm in Section 2.5. However, when the given
digraph G = (V,E0 ∪E) is acyclic on T , the characteristic of the optimal solution G∗ = (V,E0 ∪
E∗) is slightly different because there is no strongly connected component containing two vertices
of T . Hence, in Section 2.5.5, we can construct junction trees J1, J2, . . . , J` from G∗ without
contracting strongly connected components. So, a root vertex ti ∈ T of the junction tree Ji, for
1 ≤ i ≤ `, is a single vertex. Recall that a top-vertex t ∈ T is a vertex that has no dipath from
T − {t}. In the construction, we choose a top-vertex as the root vertex of the junction tree. Since
all augmenting edges have heads in T , this means that all augmenting edges of the in-tree J ini must
have heads at its root ti ∈ T . This is an important property because the in-directed Steiner tree
problem where all positive cost edges have head at the root vertex is easier than the general case.
In fact, the problem can be reduced to Set Cover . We will show the reduction from the directed
Steiner tree problem where all positive cost edges have heads at the root vertex to Set Cover .

Theorem 2.6.4. There is an approximation-preserving reduction between Set Cover and the the
in-directed (respectively, out-directed) Steiner tree problem where all positive cost edges have
heads (respectively, tail) at the root vertex.

Proof. By a reduction similar to the reduction in Theorem 2.6.1, we have that the in-directed
Steiner tree problem where all positive cost edges have heads at a root vertex is at least as hard
as Set Cover . We will show the converse that Set Cover is at least as hard as the in-directed
Steiner tree problem where all positive cost edges have heads at the root vertex.

The instance of the in-directed Steiner tree problem consists of a digraph G = (V,E0 ∪ E),
where E0 ∩ E = ∅, with a non-negative cost c(e) on each edge e ∈ E0 ∪ E, a root vertex r ∈ V ,
and a set of terminals T ⊆ V − {r}. The set of edges E0 is the set of zero-cost edges, and the
set of edges E is the set of positive cost edges whose heads are at r. To construct an instance of
Set Cover , we take T as the universe. For each edge e ∈ E, we construct a subset Se with cost
c(e). We add an element t ∈ T to Se if there is t → r dipath in G′ = (V,E0 ∪ {e}), that is,
Se = {t ∈ T : G′ = (V,E0 ∪ {e}) contains a t→ r dipath}.

Observe that there is a one-to-one correspondence between a solution to the instance of the
in-directed Steiner tree problem and a solution to the instance of Set Cover . Let E∗ be the op-
timal solution to the in-directed Steiner tree problem. Then, by the construction of the instance
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of Set Cover , the union of the corresponding subsets of E ′ is T , that is,
⋃
e∈E′ Se = T . Con-

versely, let Se1 , Se2 , . . . , Se` be the chosen subsets of the optimal solution to Set Cover . Let
E∗ = {e1, e2, . . . , e`}. By the construction, G′ = (V,E0 ∪ E∗) has a t → r dipath for all t ∈ T .
We can make G′ acyclic by removing unnecessary edges. Precisely, we remove an edge e from G′

if G′ − {e} still has a t → r dipath for all t ∈ T . By the minimality of E∗, no positive cost edges
are removed from G′. Thus, the cost of G′ is the same as the cost of E∗.

An algorithm

The algorithm is the same as the algorithm in Section 2.5.5. Recall that the algorithm starts by
constructing an auxiliary digraph as follows. Firstly, for each vertex t ∈ T , we compute an in-
directed Steiner tree Jt with the root vertex t and the terminal set S. We then contract S to a single
vertex s∗ and replace each in-directed Steiner tree Jt by an auxiliary edge (s∗, t) with the same
cost as Jt. Finally, we remove all optional vertices that are not reachable from T . After we have
an auxiliary digraph, we compute the minimum cost out-branching M with the root vertex s∗ and
the terminal set T on the auxiliary digraph. At the termination, we uncontract s∗ and replace each
edge (s∗, t) of M by the in-directed Steiner tree Jt.

We modify the algorithm by putting a restriction that the in-directed Steiner tree Jt for each
vertex t ∈ T must be formed by augmenting edges whose heads are at t. If such an in-directed
Steiner tree rooted at t does not exist, then we will not add the auxiliary edge (s∗, t); alternatively,
we may set cost of (s∗, t) to ∞. The modification does not violate the feasibility of the instance
for the minimum cost out-branching problem. To see this, consider any feasible solution G∗ =
(V,E0 ∪ E∗). Since any top-vertex t ∈ T with respect to G∗ has no dipath from vertices in
T − {t}, augmenting edges of G∗ with heads at t together with E0 form an in-directed Steiner
tree J int with the root vertex t and the terminal set S. This means that if the given instance of the
relaxed (S, T )-connectivity problem is feasible, then there must exist a solution to the minimum
cost out-branching problem on the auxiliary digraph. By the proof of Theorem 2.5.9, the algorithm
gives us an (S, T )-connected digraph.

The cost analysis follows from the same analysis in Theorem 2.5.9. We replace α(n) in the
analysis by α′(n) which is the approximation ratio for Set Cover . However, we can get a tighter
bound because, for each junction tree Ji, the in-tree J ini and the out-tree Jouti have no common
edges. This is because J ini and Jouti have only the root vertex ti in common, and ti is a single vertex
not a strongly connected component. Thus, the cost of the solution obtained by the algorithm is at
most

c(M) ≤
∑̀
i=1

(c(Jouti )+α′(n)·c(J ini )) ≤
∑̀
i=1

α′(n)(c(Ji)
out+c(Ji)

in) = α′(n)
∑̀
i=1

c(Ji) ≤ α′(n)opt.
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2.6.2 An approximation algorithm II

In this section, we give an alternative approximation algorithm for the problem. This algorithm
achieves the same approximation guarantee as the algorithm in the previous section. We will now
describe our algorithm.

First, we number vertices of T in topological order as t1, t2, . . . , t|T |. Precisely, we order T
vertices so that there is no ti → tj dipath in G, for all j < i. It is possible to order T vertices this
way because the given digraph is acyclic on T . We then iterate on each vertex in this order, say
t1, t2 . . . , t|T |. For each vertex ti ∈ T , we compute two subsets of augmenting edges E(1)

i and E(2)
i

and choose the one with minimum cost, denoted by Ei. The set E(1)
i and E(2)

i are defined in the
algorithm below. (We may assume that no vertex ti ∈ T has an s → ti dipath from all vertices
s ∈ S.)

1. A subset of augmenting edges E(1)
i : This set is a set of augmenting edges obtained by

computing a shortest dipath to ti from the previous vertices (in the topological order). Pre-
cisely, we compute a shortest dipath P from {t1, t2, . . . , ti−1} to ti on the given digraph
G = (V,E0 ∪E). The dipath P may contain zero-cost edges of the initial digraph; however,
we only need augmenting edges in P , that is, E(1)

i is the set of augmenting edges in P . This
set of augmenting edges gives E(1)

i . We call this the instance Π
(1)
i of the shortest dipath

problem.

2. A subset of augmenting edges E(2)
i : This set is computed by the greedy algorithm for

Set Cover . To create the Set Cover instance, we take S as the universe. For each edge
e with head at ti, we create a subset Se with cost c(e). We add an element s ∈ S to Se
if we can gain an s → ti dipath by adding e to the initial digraph G0 = (V,E0), that is,
Se = {s ∈ S : G0 + e contains an s → ti dipath}. Observe that Se also contains a vertex
s ∈ S that already has an s → ti dipath in the initial digraph G0 = (V,E0). This set of
augmenting edges gives E(2)

i . We call this the instance Π
(2)
i of Set Cover .

Analysis

Before proceeding to the analysis, we need the following lemma which characterizes the dipath
between two distinct T vertices.

Lemma 2.6.5. Consider any vertex ti ∈ T , 1 ≤ i ≤ |T |. If there exists a dipath from {t1, t2, . . . , ti−1}
to ti, then a shortest such dipath P contains at most one augmenting edge. Moreover, if P has an
augmenting edge e, then e has ti as head.

Proof. Let P be a shortest dipath from tj ∈ {t1, t2, . . . , ti−1} to ti. Notice that P contains no
augmenting edges with heads in {t1, t2, . . . , ti−1}. To see that, suppose there is an augmenting
edge e having head at tj′ for j′ < i. Then we can remove a subpath of P with start vertex tj
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and end vertex tj′ . Since all augmenting edges have positive cost, this will give us a dipath from
{t1, t2, . . . , ti−1} to ti of a cheaper cost. By similar arguments, dipath P enters ti only once. We
conclude that there is at most one augmenting edge in P . Moreover, if P has an augmenting edge
e, then the head of e must be ti, and the lemma follows.

Corollary 2.6.6. Consider any vertex ti ∈ T, 1 ≤ i ≤ |T |. If there exists a dipath from {t1, t2, . . . , ti−1}
to ti, then E(1)

i consists of at most one augmenting edge.

We will now show the feasibility and approximation guarantee of the solution.

Theorem 2.6.7. The above algorithm is an α′(n)-approximation algorithm for the special case of
relaxed (S, T )-connectivity problem where the given digraph is acyclic on T , where α′(n) is the
best known approximation ratio for Set Cover .

Proof. Let E∗ denote the set of augmenting edges in an optimal solution, let G∗ = (V,E0 ∪ E∗),
and let opt denote the cost of E∗. For i = 1, 2, . . . , |T |, let E∗i denote the subset of edges of E∗

that have heads at ti ∈ T . Since augmenting edges are restricted to have heads in T , the subsets
E∗1 , E

∗
2 , . . . , E

∗
|T | form a partition of E∗. Let Ti = {t1, t2, . . . , ti}. Let Gi = (V,E0 ∪E1 ∪E2 . . .∪

Ei), where Ej is the set of edges chosen by the algorithm for j = 1, 2, . . . , i. In fact, Gi is the
digraph obtained by the algorithm at the iteration i. Recall that the algorithm chooses Ei = E

(1)
i

or Ei = E
(2)
i depending on which set has minimum cost, that is, Ei = argmin

{
c(E

(1)
i ), c(E

(2)
i )
}

.

We will proceed by induction on i for i = 1, 2, . . . , |T | to show the followings:

• (i) At least one of the two subproblems Π
(1)
i and Π

(2)
i (See Section 2.6.2.) is feasible.

• (ii) Gi is (S, Ti)-connected.

• (iii) c(Ej) ≤ α′(n)c(E∗j ).

We recall that Π
(1)
i is the instance of the shortest Ti−1 → ti dipath problem, and Π

(2)
i is the

instance of Set Cover . Note that the number of elements in the instance Π
(2)
i of Set Cover is

|S| = O(n), and the greedy algorithm approximates Set Cover within a factor of α′(n).

Before proceeding, we note that if the instance Π
(2)
i of Set Cover is feasible, then adding E(2)

i

to the digraph makes it (S, ti)-connected. This is because of the construction of the instance of
Π

(2)
i .

Base case i=1: The base case follows by the way we order T vertices. Since t1 is the first vertex
in the order, there is no S → t1 dipath containing vertices of T − {t1}. This means that any set of
augmenting edges that makes the digraph (S, {t1})-connected must have heads at t1. Thus, if the
instance of the (S, T )-connectivity problem is feasible, then so is the instance Π

(2)
1 of Set Cover ,
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proving (i) and (ii). But, there is no solution for E(1)
1 because t1 is the first vertex in the ordering.

So, E1 = E
(2)
1 , and G1 is (S, {t1})-connected. Since there is no tj → ti dipath in G = (V,E0∪E)

for all j > i, we conclude that augmenting edges in E∗1 form a feasible solution to Set Cover . It
follows that c(E1) ≤ α′(n)c(E∗1), proving (iii).

Inductive step i > 1: We assume that the induction hypothesis holds for some 1 ≤ i < |T |.
Note that (ii) follows from (i). To see that, first, if the instance Π

(2)
i+1 of Set Cover is feasible, then

adding E(2)
i+1 to the digraph makes it (S, Ti+1)-connected. Second, if there is a tj → ti+1 dipath

for some 1 ≤ j ≤ i, then by the induction hypothesis, there is a dipath to ti+1 from every vertex
s ∈ S of the form s→ . . .→ tj → . . .→ ti+1. Hence, it suffices to prove (i) and (iii). Consider
two cases.

• Case 1: There is a Ti → ti+1 dipath in G∗. It follows from the assumption that Π
(1)
i+1 is

feasible, proving (i). Let P ∗ denote a shortest Ti → ti+1 dipath in G∗, and let P denote a
shortest Ti → ti+1 dipath obtained by solving the instance Π

(1)
i+1. By Lemma 2.6.5, there

is at most one augmenting edge in P ∗, and if P ∗ has an augmenting edge e, e must have
head at ti+1 which means that e ∈ E∗i+1. By the minimality of E(1)

i+1 and Ei+1, we have
c(Ei+1) ≤ c(E

(1)
i+1) ≤ c(E∗i+1) ≤ α′(n)c(E∗i+1), proving (iii).

• Case 2: There is no Ti → ti+1 dipath in G∗. By the topological ordering, there is no
tj → ti+1 dipath for j > i+ 1. So, every S → ti+1 dipath in G∗ contains no T vertices other
than ti+1. Hence, for all s ∈ S, all augmenting edges of an s → ti+1 dipath have heads at
ti+1. This implies that the instance Π

(2)
i+1 of Set Cover is feasible, and (i) holds. This also

implies that the edges of E∗i+1 form a feasible solution to Π
(2)
i+1. By the minimality of Ei+1,

we have c(Ei+1) ≤ c(E
(2)
i+1) ≤ α′(n)c(E∗i+1), proving (iii).

As a consequence of the above claim, we have that G|T | is (S, T )-connected and

|T |∑
i=1

c(Ei) ≤
|T |∑
i=1

O(α′(n)c(E∗i ) ≤ O(α′(n)opt.

Therefore, our algorithm is α′(n)-approximation algorithm, where α′(n) is the approximation
ratio for approximating Set Cover .
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Chapter 3

An approximation algorithm for the
k-(S, T )-connectivity problem

3.1 Introduction

In this chapter, we discuss the k-(S, T )-connectivity problem. This problem is a generalization
of the (S, T )-connectivity problem discussed in the previous chapter. In the (S, T )-connectivity
problem, we are asked to find a subgraph that has a dipath from every vertex of S to every vertex of
T . In the k-(S, T )-connectivity problem, we are asked to find a subgraph that has k edge-disjoint
dipaths from each vertex s ∈ S to each vertex t ∈ T .

We study the problem in the standard setting, that is, all augmenting edges have tails in S and
heads in T . This problem also generalizes both the minimum cost directed k-edge connected span-
ning subgraph problem (k-ECSS ) and the minimum cost directed k-vertex connected spanning
subgraph problem (k-VCSS ). Extending the algorithm of Fakcharoenphol and Laekhanukit for
k-VCSS in [24], we design a polylogarithmic-approximation algorithm for this problem.

3.1.1 Organization

The organization of this chapter is as follows. Section 3.2 is a preliminary section in which we
introduce some definitions and notations. In Section 3.3, we present the hardness result of the
k-(S, T )-connectivity problem. In Section 3.4, we give some introductory discussion on the k-
(S, T )-connectivity problem. We also introduce the (S, T )-connectivity augmentation problem. In
Section 3.9, we move our focus to the (S, T )-connectivity augmentation problem.

31



3.2 Preliminaries

In the minimum cost k-(S, T )-connectivity problem, we are given a digraph G = (V,E0∪E), two
sets of vertices S and T , and a positive integer k. We call G0 = (V,E0) the initial digraph and call
edges in E augmenting edges. We also have non-negative cost assigned to augmenting edges. We
may assume that the edges in E0 have zero-cost while the edges in E have positive cost. The set
of vertices S ∪ T might not contain all vertices. We call vertices that are in V − (S ∪ T ) optional
vertices. We say that a digraph is k-(S, T )-connected if there are k edge-disjoint s → t dipaths
connecting every pair of vertices s ∈ S and t ∈ T . The (S, T )-connectivity of the digraph G is
the minimum number ρ such that G is ρ-(S, T )-connected. The goal in this problems is to find a
minimum cost subset of edgesE ′ ⊆ E so that the digraphG′ = (V,E0∪E ′) is k-(S, T )-connected.

We assume that all augmenting edges have tails in S and have heads in T . Recall that in the
previous chapter we studied several different versions of the (S, T )-connectivity problem, and in
the standard version, the augmenting edges had tails in S and heads in T . In this chapter, we study
only this version.

Also, we may assume that S and T are disjoint by extending the vertex-splitting technique
presented in the previous chapter. (See Proposition 2.2.1.) Recall that we split every vertex v ∈
S ∩ T into v+ and v−, direct edges entering v to v−, direct edges leaving v to v+, and add an
auxiliary edge (v−, v+) with zero-cost. The reduction for the k-(S, T )-connectivity problem is the
same as that of the (S, T )-connectivity problem except that we add k parallel edges from v− to v+

instead of one auxiliary edge. Note that if parallel edges are not allowed, we can subdivide each
edge (v−, v+) by a dipath v− → ui → v+, for i = 1, 2, . . . , k. See Figure 3.1.

Proposition 3.2.1. There is a reduction from instances of the k-(S, T )-connectivity problem where
S ∩ T 6= ∅ to instances such that S ∩ T = ∅ that preserves the feasibility and the cost of the
solution.

Throughout this chapter, we use n and m to denote the number of vertices and the number of
edges, respectively. We denote the set of edges in an optimal solution by E∗ and denote its cost by
opt. Let F be any set of edges. For any set of vertices U ⊆ V , we use δout

F (U) to denote the set of
edges of F leaving U and use dout

F (U) to denote its number, that is,

δout
F (U) = {e ∈ F : the tail of e is in U , and the head of e is not in U} and dout

F (U) = |δout
F (U)|.

If it is clear in the context, then we will omit the subscript F and write them as δout(U) and dout(U).
For any digraph G = (V,E), we use the notation G + F = (V,E ∪ F ). Also, let x be a vector of
variables of an LP. Then we will use the notation x(F ) =

∑
e∈F xe.

3.3 The hardness of the k-(S, T )-connectivity problem

In this section, we give the hardness result of the k-(S, T )-connectivity problem. It is clear that
this problem generalizes the minimum cost directed k-edge connected spanning subgraph problem
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Figure 3.1: The figure shows the reduction from the instance of the k-(S, T )-connectivity problem
where S ∩ T 6= ∅ to the instance such that S ∩ T = ∅. The left figure is the original instance
where S = T = V , and the right figure is the transformed instance where S ∩ T = ∅. The original
instance is, in fact, the instance of the minimum cost 2-edge connected subgraph problem. In this
figure, the black lines denote positive cost edges, and the grey lines denote zero-cost edges. The
grey circles denote the vertices added to subdivide the auxiliary edges.

(k-ECSS ). In fact, we may think of each instance of k-ECSS as an instance of the k-(S, T )-
connectivity problem where S = T = V . See Figure 3.1.

The k-(S, T )-connectivity problem also generalizes the minimum cost directed k-vertex con-
nected spanning subgraph problem (k-VCSS ). The reduction is the same as that of the splitting
technique except that we add only one auxiliary edge (v−, v+) for each vertex v ∈ V . Notice that
there is a one-to-one correspondence between a vertex v of the original digraph and an auxiliary
edge (v−, v+) of the transformed one. This gives us a one-to-one mapping between dipaths of the
two instances. Consider any k edge-disjoint s+ → t− dipaths P1, P2, . . . , Pk between any pair
of vertices s+ ∈ S and t− ∈ T of a feasible solution to the k-(S, T )-connectivity instance. For
i = 1, 2, . . . , k, let P̂i denote the corresponding dipath of Pi in the original instance of k-VCSS .
Clearly, P1, P2, . . . , Pk have no auxiliary edges in common which implies that P̂1, P̂2, . . . , P̂k also
have no vertices in common except s and t. In other words, s and t are connected by k internally
disjoint s→ t dipaths. Conversely, consider any k internally disjoint s→ t dipaths P̂1, P̂2, . . . , P̂k
of the feasible solution to k-VCSS . Then the corresponding dipaths P1, P2, . . . , Pk must be edge
disjoint. This is because, for any two dipaths P̂i and P̂j , 1 ≤ i 6= j ≤ k, P̂i and P̂j have no
edges and no internal vertices in common which implies that the corresponding dipaths Pi and Pj
also have no edges in common including the auxiliary ones. Thus, the solution to the instance
of k-VCSS is feasible if and only if the corresponding solution to the instance of the k-(S, T )-
connectivity problem is feasible.

The k-VCSS problem in undirected graphs is known to be APX-hard [20, 41]. The same
hardness applies to the problem in directed graphs. Lando and Nutov showed in [58] that if there
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is a ρ-approximation algorithm for k-VCSS in undirected graphs, then there is a ρ-approximation
algorithm for k-VCSS in directed graphs. This implies that the k-VCSS problem in directed
graph is also APX-hard.

The hardness results of k-VCSS and the k-(S, T )-connectivity problem are as follows.

Theorem 3.3.1 ([20, 41] and [58]). The minimum cost directed k-vertex connected spanning sub-
graph problem is APX-hard.

Theorem 3.3.2. The k-(S, T )-connectivity problem is at least as hard as the minimum cost directed
k-vertex connected spanning subgraph problem.

3.4 Tools for the approximation algorithm for the k-(S, T )-connectivity
problem

In the previous section, we showed that the k-(S, T )-connectivity problem generalizes both k-
ECSS and k-VCSS . Although the three are in different settings, they share some common prop-
erties. For example, different versions of Menger’s Theorem hold for each of these problems.

Theorem 3.4.1 (Menger’s Theorem). Consider a digraph G and pair of vertices s, t of G. Then
the following holds.

• There are k edge-disjoint s → t dipaths if and only if there is no set of less than k edges
whose removal disconnects s and t.

• There are k internally (vertex) disjoint s→ t dipaths if and only if there is no set of less than
k vertices of V − {s, t} whose removal disconnects s and t.

Clearly, the edge-version of Menger’s Theorem holds for k-ECSS while the vertex-version
holds for k-VCSS . In the k-(S, T )-connectivity problem, the edge-version of Menger’s Theorem
holds for every pair of vertices s ∈ S and t ∈ T , that is, the solution G′ = (V,E0 ∪ E ′) is feasible
to this problem if and only if there is no set of less than k edges whose removal disconnects a pair
of vertices s ∈ S and t ∈ T .

Applying Menger’s Theorem, we have the following constraints of the k-(S, T )-connectivity
problem, where E ′ is the set of edges chosen by the algorithm. The constraints also give us a linear
programming (LP) relaxation for the k-(S, T )-connectivity problem as described in Table 3.4.

dout
E0∪E′(U) ≥ k for all U ⊆ V, U ∩ S 6= ∅ and U ∩ T 6= T

A common framework for solving connectivity problems, e.g., k-ECSS and k-VCSS , is the
connectivity augmentation framework. Under this framework, we start with a digraph of zero
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LP(k)


z∗k = min

∑
e∈E

c(e) · xe

s.t. x(δout
E−E0

(U)) + dout
E0

(U) ≥ k ∀U ⊆ V, U ∩ S 6= ∅, U ∩ T 6= T
0 ≤ xe ≤ 1 ∀e ∈ E − E0

Table 3.1: The LP relaxation of the k-(S, T )-connectivity problem

(edge or vertex) connectivity and then add some edges to increase the connectivity of the digraph
to 1, 2, . . . , k. The technique was used in [16, 24, 42, 56, 62, 63, 67].

The connectivity augmentation framework applies to the k-(S, T )-connectivity problem. We
first start by the initial digraph G0 = (V,E0). (Assume that G0 has zero (S, T )-connectivity.)
Then we find a subset of edges E1 ⊆ E so that G1 = G + E1 is 1-(S, T )-connected. Generally,
at the i-th iteration, we start from the initial digraph Gi−1, and we find a subset of edges Ei ⊆ E
such that Gi = Gi−1 + Ei is i-(S, T )-connected. We repeat the process until the digraph Gk is
k-(S, T )-connected.

In fact, we focus on solving instances of the (S, T )-connectivity augmentation problem. Con-
sider the optimal solution x∗ to the LP for the k-(S, T )-connectivity problem. Observe that if the
initial digraph is `-(S, T )-connected, then

(
1
k−`

)
x is feasible to LPaug(`). (See Lemma 3.4.2.)

Hence, we can compare the cost of the optimal solution of the (S, T )-connectivity augmentation
problem to the optimal value of LP(k) by multiplying by 1

k−` . This technique is called the LP-
scaling technique.

Using LP-scaling technique, we can show that the connectivity augmentation framework gives
us an O(α(n) log k)-approximation algorithm for the k-(S, T )-connectivity problem, where α(n)
is the approximation ratio for approximating the (S, T )-connectivity augmentation problem. In
other words, we only have to pay an additional factor ofO(log k) to increase the (S, T )-connectivity
of the initial digraph from 0 to k.

To see the claim, consider the following LPs defined on the same given digraph G = (V,E0 ∪
E).

• The LP relaxation LP(k) of the k-(S, T )-connectivity problem in Table 3.4, where E0 is the
set of edges of the initial digraph G0 = (V,E0).

• The LP relaxation LPaug(`) of the (S, T )-connectivity augmentation problem in Table 3.2,
where E` is the set of edges of the initial digraph G` = (V,E`) which is `-(S, T )-connected.

Before proceeding to prove the main claim, we need the following lemma which shows that
the cost of the optimal fractional solution to LPaug(`) is at most 1/(k − `) of that of LP(k). The
proof proceeds by the LP-scaling technique. Note that similar lemmas were established in [16, 24,
42, 56, 62, 63, 67].
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LPaug(`)


z∗aug = min

∑
e∈E−E`

c(e) · xe

s.t x(δout
E−E`(U)) ≥ 1 ∀U ⊆ V, U ∩ S 6= ∅, U ∩ T 6= T, dout

E0
(U) = `

0 ≤ xe ≤ 1 ∀e ∈ E − E`

Table 3.2: The LP relaxation of the (S, T )-connectivity augmentation problem

Lemma 3.4.2. Given the digraph G = (V,E0 ∪ E) and the initial digraph G = (V,E`) which
is `-(S, T )-connected, where ` < k, the optimal value of LPaug(`) is at most 1/(k − `) times the
optimal value of LP(k), that is, z∗aug ≤ z∗k/(k − `), where z∗aug and z∗k denote the optimal value of
LPaug(`) and LPk, respectively.

Proof. Let x∗ be an optimal solution to LP(k), and let E∗ denote the corresponding support, that
is, E∗ = {e ∈ E : x∗e > 0}.

We construct a solution x′ to LPaug(`) by assigning x′e = 1/(k − `) to all edges e ∈ E∗ − E`
and x′e = 0 otherwise. We claim that x′ is feasible to LPaug(`). To see this, consider any set
of vertices U ⊆ V appearing in the constraints of LP(`). Since x∗ satisfies LP(k), we have
x∗(δout

E∗ (U)) + dout
E0

(U) ≥ k. Hence,

x∗(δout
E∗−E`(U)) + dout

E`
(U) ≥ x∗(δout

E∗ (U)) + dout
E0

(U) ≥ k

Moreover, we have dout
E`

(U) = ` by the constraints of LPaug(`). This implies that x∗(δout
E∗−E`(U)) ≥

k − `, and thus, x′(δout
E∗−E`(U)) ≥ 1. Hence, x′ is feasible to LPaug. Clearly, the cost of x′ is at

most 1/(k − `) of that of x∗, proving the lemma.

We are now ready to prove the main claim.

Theorem 3.4.3. Suppose there is an approximation algorithm for the (S, T )-connectivity augmen-
tation problem that achieves an approximation guarantee of α(n) with respect to the standard LP
relaxation, that is, the cost of the solution found by the algorithm is at most α(n) · opt. Then there
is an O(α(n) log k)-approximation algorithm for the k-(S, T )-connectivity problem.

Proof. The proof follows from Lemma 3.4.2. We solve the given instance of the k-(S, T )-connectivity
problem by iteratively increasing the (S, T )-connectivity of the digraph by one via the α(n)-
approximation algorithm. Note that this algorithm finds a solution of cost at most α(n) · z∗aug ≤
α(n) · z∗k/(k − `). Hence, the resulting set of augmenting edges has cost at most

z∗k
k
α(n) +

z∗k
k − 1

α(n) + . . .+
z∗k
1
α(n) ≤

(
1

k
+

1

k − 1
+ . . .+ 1

)
α(n)z∗k = O(α(n) log k)z∗k
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Remark: In the rest of this chapter, we will discuss the (S, T )-connectivity augmentation prob-
lem. In fact, we assume that we are at the `-th iteration of the connectivity augmentation frame-
work, and hence, the current digraph is `-(S, T )-connected. Thus, we make the following assump-
tion.

Assumption 3.4.4. The initial digraph G` = (V,E`) is `-(S, T )-connected.

In Chapter 3.9, we will present two approximation algorithms with the approximation guaran-
tee of O(log n). Thus, we get the following result for the k-(S, T )-connectivity problem.

Theorem 3.4.5 (Main Theorem). There exists an O(log n log k)-approximation algorithm for the
k-(S, T )-connectivity problem.

Another problem closely related to the k-(S, T )-connectivity problem is the rooted k-connection
problem. In the rooted k-connection problem, we are given a digraph G = (V,E0 ∪ E), a root
vertex r, a set of terminals T ⊆ V − {r}, and a positive integer k; in addition, all augmenting
edges in E have heads in T . Similar to the k-(S, T )-connectivity problem, the edges of the initial
digraph G0 = (V,E0) have zero-cost while the augmenting edges of E have positive cost. We say
that a digraph is k-connected to T from r or k-(r, T )-connected if there are k edge-disjoint dipaths
from r to each vertex of T . The goal in the rooted k-connection problem is to find a set of aug-
menting edges E ′ ⊆ E with minimum cost so that G′ = (V,E0 ∪ E ′) is k-connected to T from r.
In fact, the rooted k-connection problem is the special case of the k-(S, T )-connectivity problem,
where S = {r}, and all augmenting edges are restricted to have heads in T . The rooted problem
has been showed to be polynomial-time solvable by Frank [37]. In fact, Frank [37] showed that
the standard linear programming (LP) relaxation of this problem has an integral optimal solution.
Similar to the k-(S, T )-connectivity problem, an important special case of the rooted k-connection
problem is the rooted connectivity augmentation problem. This is the special case where the initial
digraph G0 = (V,E0) is `-(r, T )-connected and k = ` + 1. Under the condition that all aug-
menting edges have heads in T , the rooted connectivity augmentation problem can be solved in
O(n2m+ n · t(m,n)) time, where t(m,n) is the time for computing a maximum s, t-flow.

Observe that every k-(S, T )-connected digraph is rooted k-connected to T from every vertex
s ∈ S. Thus, we may solve the (S, T )-k-connectivity problem by taking T as the terminal set,
and applying the algorithm for the rooted k-connection problem rooted at each vertex s ∈ S. This
gives us the trivial O(n)-approximation algorithm for the k-(S, T )-connectivity problem. Our
algorithms, which will be presented in the later sections, follow the same idea; however, with
some care, we gain a better bound from the rooted subroutine. We will now state the results on the
rooted k-connection problem and the rooted connectivity augmentation problem.

Theorem 3.4.6 (Frank 2009 [37]). The rooted k-connection problem where all augmenting edges
have heads in T is polynomial-time solvable. Moreover, the cost of the optimal solution to this
problem is equal to the optimal value of the standard LP relaxation.

Theorem 3.4.7 (Frank 1999 [35]). The rooted connectivity augmentation problem where all aug-
menting edges have heads in T is solvable in O(n2m+n · t(m,n)) time, where t(m,n) is the time
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for computing a maximum s, t-flow. Moreover, the cost of the optimal solution to this problem is
equal to the optimal value of the standard LP relaxation.

Note that the standard LP relaxations of the rooted k-connection problem and the rooted con-
nectivity augmentation problem are the same as that of the k-(S, T )-connectivity problem and the
(S, T )-connectivity augmentation problem, respectively. The LPs are presented in Table 3.4 and
Table 3.2.

3.5 Preliminaries on `-(S, T )-connected digraphs

Consider the initial digraph G` = (V,E`) which is `-(S, T )-connected. A deficient set is a set of
vertices U ⊆ V such that U ∩ S 6= ∅, U ∩ T 6= T , and dout(U) < `+ 1. Observe that U separates
some pair of vertices s ∈ S and t ∈ T , that is, s ∈ U and t ∈ V − U . Hence, removing the edges
of δout(U) disconnects vertices s and t. Since dout(U) < `+ 1, the existence of the deficient set U
implies that the digraph has (S, T )-connectivity less than `+ 1. Observe that every deficient set U
has dout(U) = ` because the initial digraph is `-(S, T )-connected by Assumption 3.4.4.

The next lemma gives a basic property of deficient sets which follows from the submodularity
of dout(.).

Lemma 3.5.1 (Uncrossing Lemma). Let U andW be two deficient sets such that (U ∩W )∩S 6= ∅
and (U ∪W ) ∩ T 6= T . Then both U ∩W and U ∪W are deficient sets.

Proof. First, it is well-known that the function dout(.) is submodular, that is,

dout(U) + dout(W ) ≥ dout(U ∩W ) + dout(U ∪W ).

Since U and W are deficient sets, we have dout(U) = dout(W ) = `. Moreover, by the hypothesis
of the lemma, U ∩ W ∩ S 6= ∅ and T − (U ∪ W ) 6= ∅. This implies that dout(U ∩ W ) ≥ `
and dout(U ∪W ) ≥ ` because the initial digraph G` is `-(S, T )-connected. It then follows by the
submodularity of dout(.) that dout(U ∩W ) = dout(U ∪W ) = `. Therefore, both U ∩W and U ∪W
are deficient sets.

We call an inclusionwise minimal deficient set C, a core. By the way we define core, it is clear
that any deficient set must contain at least one core; possibly, the set may be a core itself. The
halo-family of the core C, denoted by Halo(C), is the family of deficient sets that contains C but
contains no other cores, that is,

Halo(C) = {U : U is a deficient set , C ⊆ U,U contains no other cores}.
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Figure 3.2: The figure shows two instances of the k-(S, T )-connectivity problem, where the initial
digraph is 1-(S, T )-connected. The cores in the left instance are {s1}, {s2}, and {s3}. The deficient
set {s1, s2} is not a core because it properly contains {s1} and {s2}. The cores in the right instance
are {s1, s2, u1, t1} and {s2, s3, u2, t2, t3}. These two cores have a common vertex s2.

Figure 3.3: The figure shows the instance of the k-(S, T )-connectivity problem, where the initial
digraph is 1-(S, T )-connected. The grey circles denote the cores. The white circles denote the
deficient sets which are in one of the halo-families. The circles with thick lines denote halo-sets.
The right figure shows that two halo-sets can intersect. The cores in the left figure are C1 = {s1}
and C2 = {s3}. The deficient sets in the halo-family of C1 are {s1}, {s1, s2}, {s1, s2, t1} and
{s1, s2, t1, t2} . The deficient sets in the halo-family of C2 are {s3}, {s3, t3}, {s3, t2, t3}, {s3, t1}
and {s3, t1, t2}. Note that a deficient set {s1, s2, s3} is not in any of the halo-families because it
contains two cores.
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Figure 3.4: The left figure illustrates the body and the shadow of the deficient set in the circle.
The right figure illustrates the statement of Lemma 3.5.2 (Disjointness Property).

The halo-set of the core C, denoted by H(C), is the union of all deficient sets in the halo-
family of C, that is, H(C) =

⋃
{U : U ∈ Halo(C)}. The notion of core and halo-family are first

introduced in [66] and [55], respectively.

We say that an edge e = (s, t) covers a deficient set U if e has its tail in U and its head in
V − U , that is, s ∈ U and t ∈ V − U . Similarly, we say that a set of edges F covers Halo(C) if
every deficient set in Halo(C) is covered by some edge e ∈ F .

For a deficient set U , we define the body of U to be Body(U) = U ∩ S, and we define the
shadow of U to be Shadow(U) = T − U .

Lemma 3.5.2 (Disjointness Property). Let C,D be two distinct cores. Let U be a deficient set in
Halo(C), and let W be a deficient set in ∈ Halo(D). Then either

• Body(U) and Body(W ) are disjoint, or

• Shadow(U) and Shadow(W ) are disjoint.

Proof. If Body(U) and Body(W ) are disjoint, then we are done. Suppose that Body(U) and
Body(W ) intersect. By the way of contradiction, suppose that Shadow(U) and Shadow(W ) also
intersect. Then we have

Body(U) ∩ Body(W ) = (U ∩ S) ∩ (W ∩ S) = (U ∩W ) ∩ S 6= ∅
Shadow(U) ∩ Shadow(W ) = (T − U) ∩ (T −W ) = T − (U ∪W ) 6= ∅.

But, then by Lemma 3.5.1, U ∩W is a deficient set, and thus, it must contain a core. So, we have
a contradiction because C is the unique core of U , D is the unique core of W , and C 6= D.
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Figure 3.5: This figure shows the example of the instance of the k-(S, T )-connectivity problem,
where k = 2, and the initial digraph is 1-(S, T )-connected. The grey lines denote the edges of the
initial digraph. The black lines denote the augmenting edges. The dash lines denote the deficient
sets.

At this point, we have all the definitions needed to describe the main algorithms. We illustrate
our algorithm by applying it to a small example.

Consider the following instance of the k-(S, T )-connectivity problem, where k = 2, on the
input digraph G = (V,E0 ∪ E) defined as follows. See Figure 3.5.

V = {s1, s2, t1, t2}, S = {s1, s2}, T = {t1, t2}
E0 = {(s1, s2), (s2, s1), (s2, t2), (t2, t1), (t1, t2)}, E = {(s1, t1), (s1, t2), (s2, t1)}, and
c(s1, t1) = 2, c(s1, t1) = 3, c(s2, t1) = 2

Notice that the initial digraph G0 = (V,E0) is 1-(S, T )-connected; thus, this is an instance of
the (S, T )-connectivity augmentation problem. One may verify that all the deficient sets in the
digraph G0 are

C = {s1}, U = {s1, s2}, and W = {s1, s2, t2}.

The unique core in this digraph is C because it contains no other deficient sets, and Halo(C) =
{C,U,W} because C ⊆ U ⊆ W and all of them contain a unique core C; thus, H(C) = C ∪ U ∪
W = W .

A simple method to add one more dipath from each vertex of S to each vertex of T is to
add an augmenting edge out of each deficient set found by the algorithm. For example, once we
found C, we then add an augmenting edge (s1, t2) to cover C. Then the new digraph has W
as a deficient set; we then cover W by add an augmenting edge (s2, t1). The resulting digraph
G0 + {(s1, t2), (s2, t1)} is 2-(S, T )-connected; however, its cost is not optimal because we can add
the edge (s1, t1) to cover all deficient sets. In this example, if we cover the deficient set one-by-one
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greedily, then we end up paying the cost of 4 while the cost of the optimal solution is 3. In general,
we may set c(s1, t2) = c(s2, t1) = x and c(s1, t1) = x − 1, and thus, the solution obtained by
the greedy algorithm has cost almost twice the optimal cost. The power of Frank’s algorithm from
Theorem 3.4.7 is that the algorithm can optimally cover all deficient sets in the same halo-family.
In fact, it will cover all deficient sets that contains a particular vertex. So, when there are two or
more cores, the algorithm will pay a suboptimal cost, similarly to the naive algorithm presented
above.

The main idea of our algorithms is to make use of the Frank’s algorithm to cover a lot of
deficient sets at the same time. In fact, we want to cover all the deficient sets that contain the
same core C, for every core C in the digraph. This ensures that we will cover all the deficient
sets, and thus, the (S, T )-connectivity of the digraph will increase by at least one. However, when
there are two or more cores in the digraph, there might be some deficient sets that will be covered
several times by Frank’s algorithm. For example, suppose there is a deficient set U that contains
two cores C and D that share no common vertex. Then we have to apply Frank’s algorithm
twice because C and D will not be considered in the same instance of the rooted connectivity
augmentation problem. However, since U contains both C and D, it will appear in both instances
which means that we might have to pay for covering U twice. To avoid the redundancy, we try
to fix the deficient sets that will be considered by the algorithm to be those that contain exactly
one core. In other words, we want to apply Frank’s algorithm only for covering one halo-family.
This guarantees that we will not pay for the same deficient set twice. But, then we have to run
the algorithm several times because the deficient sets that contains two or more cores will not be
considered by the algorithm. Similar ideas of decomposing a family of deficient sets using cores
and halo-families was introduced in [24].

In Section 3.9, we will present two approximation algorithms for the (S, T )-connectivity aug-
mentation problem which achieve the same approximation guarantee of O(log n). However, the
running time of the two are different. The algorithms require the same subroutines which will be
described in the next three sections.

• The subroutine for computing cores.

• The subroutine for computing the halo-set of a given core.

• The subroutine for covering the halo-family of a given core.

In contrast to the algorithm in [24], our algorithms do not require the computation of halo-sets.
However, for the sake of completeness, we also provide the algorithm for computing the halo-set.

3.6 Computing cores

In this section, we describe the efficient algorithm for computing all of the cores. Required in our
algorithm is an efficient maximum s, t-flow algorithm. For each pair of vertices s ∈ S and t ∈ T ,
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we construct a flow networkN with the source s and the sink t. We assign unit capacity to all edges
in the flow network, that is, all edges have capacity 1. We then compute the maximum s, t-flow f
on this network. We define the residual digraph with respect to a flow f to be Rf = (V, Ê), where
Ê = {(u, v) ∈ E` : f(u, v) < 1 or f(v, u) > 0}. If the value of the maximum s, t-flow is less than
` + 1, then we compute the set of vertices reachable from s in Rf , denoted by Cs,t; otherwise, we
ignore this pair of vertices. By Menger’s Theorem (or Max-Flow Min-Cut Theorem), we have that
Cs,t includes s but excludes t, and dout(Cs,t) = `. In other words, Cs,t is a deficient set. We keep
the information of all deficient sets found. Note that the number of deficient set Cs,t for all pairs of
vertices s ∈ S and t ∈ T is at most |S||T |.

Let Cpre = {Cs,t : s ∈ S, t ∈ T, dout(Cs,t) < `+ 1} denote the family of deficient sets Cs,t for
all s ∈ S and t ∈ T computed by the above algorithm. In the final step, we remove from Cpre a
deficient set Cs,t that contains other deficient set Cs′,t′ ∈ Cpre. If Cs,t = Cs′,t′ , then we keep only
one copy. We denote the final family of the deficient sets by C. We claim that C is a set of all the
cores in the digraph.

Lemma 3.6.1. The algorithm given above computes all of the cores in the digraph, that is, C is the
family of all of the cores in the digraph.

Proof. For each pair of vertices s ∈ S and t ∈ T such that Cs,t ∈ Cpre, by the construction, since
the value of the maximum s, t-flow is less than ` + 1, we have that dout(Cs,t) < ` + 1. Moreover,
since s ∈ Cs,t and t ∈ V − Cs,t, this implies that Cs,t is a deficient set for all Cs,t ∈ Cpre.

We will now show that all of the cores are in Cpre. We claim thatCs,t is (inclusionwise) minimal
among deficient sets that include s and exclude t. If not, then there must be a minimal such set, say
C ′, so that Cs,t−C ′ 6= ∅. But, then removing δout(C ′) disconnects s and some vertices in Cs,t−C ′
which implies that a vertex v ∈ Cs,t − C ′ is not reachable from Cs,t in the residual digraph, a
contradiction. It follows that every core C is in Cpre because C separates some pair of vertices
s ∈ S and t ∈ T , and dout(C) < `+ 1.

In the final step, we remove from Cpre every deficient set Cs,t contained in the other. Since any
core C contains no other deficient sets, C is not removed from Cpre. Since any deficient set Cs,t
must contain at least one core, if Cs,t is not a core, it must contain a core Cs′,t′ ∈ Cpre, Cs′,t′ 6= Cs,t.
Hence, we conclude that, at the termination, C is the family of all the cores in the digraph.

The above lemma also gives the upper bound on the number of cores.

Corollary 3.6.2. The number of cores in the digraph is at most |S| · |T |.

We remark that the upper bound on the number of cores in Corollary 3.6.2 is tight. The tight
example is as follows. We start by an empty digraph G = (V, ∅), where V = S ∪ T . To construct
the initial digraph, we add an edge from each vertex s ∈ S to each vertex t ∈ T . Clearly, the
initial digraph is now 1-(S, T )-connected. To make it into the setting of the (S, T )-connectivity
augmentation problem, we set the connectivity requirement to be k = 2. Then the cores in this
digraph are of the form {si} ∪ T − {tj} for i = 1, 2, . . . , |S| and j = 1, 2, . . . , |T |. Thus, the
number of cores in this digraph is |S| · |T |, meeting the upper bound.
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Running time: The running time of the algorithm depends on the running time of the maximum
s, t-flow computation. Let t(m,n) denote the time for computing the maximum s, t-flow. We
assume that t(m,n) = Ω(m+n). Note that the time for computing a set of vertices reachable from
a specified vertex is O(m + n) which is dominated by the time for computing the maximum s, t-
flow. Thus, the time for computing all deficient sets in Cpre isO(|S||T |·t(m,n)) = O(n2 ·t(m,n)).

The time for removing non-cores from the family Cpre depends on the implementation. With a
naive implementation, the running time is O(n5). This is because we have to check whether each
deficient set in Cpre is contained in the other which takes O(n) times, and we have O(|S|2|T |2) =
O(n4) number of pairs because there are O(|S||T |) deficient sets in Cpre. Thus, the time for
computing all of the cores is O(n5 + n2 · t(m,n)).

A faster implementation

With more care, we can improve the running time for removing non-cores from the family Cpre.
We start by proving the following proposition.

Proposition 3.6.3. Consider a deficient set Cs,t ∈ Cpre. Cs,t is a core if and only if there is no
deficient set Cs′,t ∈ Cpre such that s′ ∈ Cs,t and s /∈ Cs′,t.

Proof. First, recall that for any s ∈ S and t ∈ T such that the deficient set Cs,t exists, the value
of a maximum flow from s to t is `. The forward direction is straightforward. Suppose Cs,t is
a core. Assume a contradiction that there is a deficient set Cs′,t ∈ Cpre such that s′ ∈ Cs,t and
s /∈ Cs′,t. Notice that both the bodies and the shadows of Cs,t and Cs′,t are intersecting. Hence,
by Lemma 3.5.1 (Uncrossing Lemma), Cs,t ∩Cs′,t is a deficient set which is properly contained in
Cs,t, a contradiction.

To see the converse, suppose Cs,t is not a core. Then Cs,t must properly contain a core Cs′,t′ ∈
Cpre. It is clear that s′ ∈ Cs,t. We will show that s /∈ Cs′,t. The key claim is that, for any pair of
vertices ŝ ∈ S and t̂ ∈ T , if ŝ is in the body of Cs′,t′ and t̂ is in the shadow of Cs′,t′ , then Cŝ,t̂ and
Cs′,t′ define the same core, that is, Cŝ,t̂ = Cs′,t′ .

We will now prove the claim. Let ŝ be any vertex in the body of Cs′,t′ , that is, ŝ ∈ Cs′,t′∩S. Let
t̂ be any vertex in the shadow of Cs′,t′ , that is, t̂ ∈ T − Cs′,t′ . Then after removing δout(Cs′,t′), the
digraph has no ŝ → t̂ dipath. Recall that we construct Cŝ,t̂ by taking all vertices reachable from ŝ

in the residual digraph with respect to the maximum flow from ŝ to t̂. This means that Cŝ,t̂ ⊆ Cs′,t′ .
But, Cŝ,t̂ cannot be properly contained in Cs′,t′ because Cs′,t′ is a core. Hence, Cŝ,t̂ = Cs′,t′ .

Recall to the assumption that Cs′,t′ is a core properly contained in Cs,t. This means that t is in
a shadow of Cs′,t′; hence, Cs′,t = Cs′,t′ . Similarly, since Cs′,t′ ( Cs,t, s cannot be in the body of
Cs,t; otherwise, Cs,t = Cs′,t′ . Thus, s′ ∈ Cs,t and s /∈ Cs′,t as required.

We apply the above proposition to design an algorithm. For each deficient set Cs,t ∈ Cpre, we
iterate on all vertex s′ ∈ Cs,t ∩ S to check whether there is a deficient set Cs′,t such that s′ ∈ Cs,t
and s /∈ Cs′,t; if such deficient set exists, then we remove Cs,t from Cpre.
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In the implementation, we use look-up table as a data structures. Precisely, we have an |S| ×
|T | × |V | table, namely, L for sets in Cpre, where L(s, t, v) = 1 if v ∈ Cs,t, and otherwise,
L(s, t, v) = 0. We have an |S| × |T | table, namely, M for the family Cpre, where M(s, t) = 1 if
Cs,t ∈ Cpre, and otherwise, M(s, t) = 0.

We will now analyze the running time of the algorithm. Initially, we have to create data struc-
tures for the family Cpre and deficient sets Cs,t ∈ Cpre. Clearly, it requires O(n3) time to build
the data structures. Testing whether an element is in the set requires O(1). Consider the above
algorithm. We have to iterate on O(n2) deficient sets in Cs,t ∈ Cpre; in each iteration, we have to
iterate onO(n) vertices of S to test whether there exists a deficient set Cs′,t that satisfies conditions
in Proposition 3.6.3. Hence, the time required for removing non-cores from Cpre is O(n3). Thus,
the time for computing all of the cores is O(n3 + n2 · t(m,n)).

Note that this implementation is faster than the previous one if the running time of the maxi-
mum s, t flow computation is strictly less than O(n3). The subroutine that computes all the cores
is needed in other subroutines and main algorithms. However, even with the naive implementation,
the time for computing all the cores is dominated by the time required by other subroutines. Thus,
in the later sections, we will refer to the naive implementation of the algorithm.

3.7 Computing halo-sets

Although we cannot explicitly find the halo-family of the given core C, we can compute the union
of all the deficient sets in the halo-family which is the halo-set. In this section, we describe the
algorithm for computing the halo-set of a given core. This algorithm is not used by our main
algorithms, but we have included it since it may be of independent interest.

We first assume that we have identified all of the cores. Let C be the given core. To compute
the halo-set of C, we run the testing algorithm as follows. We start by picking an arbitrary vertex
r ∈ Body(C). For each vertex v ∈ V − C, we add an auxiliary edge (r, v) to the digraph
G = (V,E0), resulting in the auxiliary digraph G + (r, v). We then compute the cores containing
r in the auxiliary digraph G + (r, v). Note that a core in the auxiliary digraph G + (r, v) is also a
deficient set in the original digraph G. Hence, if there is a core C ′ of G + (r, v) containing C and
containing no other cores of G, then C ′ must be a deficient set in Halo(C), and thus, v must be
in the halo-set H(C). If there is such a deficient set C ′ certificating that v is in the halo-set H(C),
then we include v in the halo-set; otherwise, we reject v.

The following lemma shows the correctness of our algorithm.

Lemma 3.7.1. Consider a digraph G. Let C be a core in the digraph G. Let r ∈ Body(C) and
v ∈ V − C. Then v is in the halo-set of C if and only if there is a core C ′ of the auxiliary digraph
G+ (r, v) that contains C and v but contains no other cores of G.

Proof. (⇒) Suppose v is in the halo-set of C. Then there is a deficient set C ′ ofG such that v ∈ C ′
and C ′ ∈ Halo(C). In other words, C ′ contains C and v but contains no other cores of G. Clearly,
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C ′ remains a deficient set in G + (r, v) because C ′ contains both r and v which implies that (r, v)
does not cover C ′. Moreover, every deficient set in G + (r, v) that contains r must also contain v;
otherwise, it would have been covered by (r, v). Assuming the minimality of C ′, we have that C ′

is a core of the auxiliary digraph G+ (r, v).

(⇐) Suppose there is a core C ′ in the auxiliary digraph G + (r, v) that contains C and v but
contains no other cores of G. It is clear that C ′ is also a deficient set in the original digraph G.
Since C ′ contains no cores of G other than C, C ′ must be a deficient set in Halo(C). Thus, v is in
the halo-set of C.

Running time: The running time for computing the halo-set of the given core C is straightfor-
ward. For each vertex v ∈ V − C, we have to test whether v is in the halo-set of C. Indeed, we
have to find an inclusionwise minimal deficient set that contains both C and v. As discussed in
Section 3.6, this can be done by computing the maximum s, t-flow from a vertex s ∈ C ∪ {v} to
each vertex t ∈ T − C ∪ {v}. Hence, the running time of the algorithm is O(n2 · t(m,n)), where
t(m,n) is the time for computing the maximum s, t-flow.

3.8 Covering halo-family via padded-Frank’s algorithm

In this section, we describe the key subroutine in our algorithm. We use the algorithm due to
Frank in Theorem 3.4.7 as a subroutine; alternatively, we can also use the more general one in
Theorem 3.4.6. The proof below follows from the correctness of Frank’s algorithms.

Consider a given coreC, and its halo-family Halo(C). To cover Halo(C), we first add so-called
“padding-edges” that covers all deficient sets not in Halo(C). In particular, for each coreD distinct
from C, we choose an arbitrary vertex uD ∈ D∩S and add a padding edge from uD to each vertex
v ∈ Shadow(D), that is, the set of padding edges for D is {(uD, v) : v ∈ Shadow(D)}. After
adding all the padding edges, we choose an arbitrary root vertex rC ∈ C ∩ S and run Frank’s
algorithm on the padded digraph to solve the rooted connectivity augmentation problem with the
root rC and the terminal set T . See Figure 3.6.

The following lemma shows the correctness of the algorithm.

Lemma 3.8.1 (Padding Lemma). Let C be the chosen core. Then the set of augmenting edges
FC found by the above algorithm covers the halo-family of C, that is, every deficient set in the
halo-family of C is covered by FC .

Proof. Let Π(C) denote the family of deficient sets of the instance of the rooted connectivity
augmentation problem in the padded digraph, that is,

Π(C) = {U ⊆ V : rC ∈ U, T − U 6= ∅, dout(U) = `}

We claim that Halo(C) = Π(C). We first show that Halo(C) ⊆ Π(C). Consider a deficient set
U ∈ Halo(C). Clearly, rC ∈ C ⊆ U , and T − U 6= ∅. If U is not a deficient set in the instance
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Figure 3.6: The figure shows two instances of the k-(S, T )-connectivity problem, where the initial
digraph is 1-(S, T )-connected. The digraphs in the figure are padded by the padded-Frank algo-
rithm. The grey lines denote the edges of the initial digraph. The black lines denote the padding
edges. The right figure illustrates the extreme case that the core is contained in the halo-set of the
other core. The cores in the right instance are C = {s1} and D = {s2, t2}. The deficient sets in
the halo-family of C are {s1}, {s1, t2}, and {s1, s2, t1}. The halo-set of C is {s1, s2, t1, t2} which
contains all vertices of the digraph. The halo-set of C also contains D.

of the rooted connectivity augmentation problem, then there exists a padding edge e = (v, w) that
covers U , that is, v ∈ Body(U) and w ∈ Shadow(U). By the construction of the padding edges,
there must exist a core D 6= C such that v ∈ Body(D) and w ∈ Shadow(D). This implies that

v ∈ C ∩D ∩ S 6= ∅ and w ∈ (T − C) ∩ (T −D) 6= ∅.

In other words, both the bodies and the shadows of D and U are not disjoint, contradicting to
Lemma 3.5.2.

We will now complete the proof by showing that Π(C) ⊆ Halo(C). Consider a deficient
set U ∈ Π(C). Then no padding edges covers U . Hence, by the construction, U contains
no core distinct from C. To see this, suppose U contains a core D distinct from C. Then
Shadow(U) = T − U ⊆ T −D = Shadow(D). This implies that there exists a padding edge
(uD, v) where

uD ∈ Body(D) ⊆ Body(U) and v ∈ Shadow(U) ⊆ Shadow(D).

Hence, U ∈ Halo(C), proving that Halo(C) = Π(c).

Running time: We will now analyze the time for covering the halo-family of a given core. We
may assume that all of the cores have been computed. Implicitly required in this algorithm is

47



the efficient algorithm for computing maximum s, t-flow. Since the number of the padding edges
is at most |S||T |, the running time for adding these edges is O(n2). The next step is to apply
Frank’s algorithm in Theorem 3.4.7 which runs inO(n2m+n · t(m,n)) time. We may assume that
m = Ω(n) because all isolated vertices can be removed. Thus, the running time of the algorithm
is O(n2 + n2m+ n · t(m,n)) = O(n2m+ n · t(m,n)).

3.9 Approximation algorithms for
the (S, T )-connectivity augmentation problem

In this section, we present the approximation algorithms for the (S, T )-connectivity augmentation
problem. Intuitively, we increase (S, T )-connectivity of the digraph by iteratively adding some
edges to decrease the number of cores until there are no cores left. We have two different ap-
proximation algorithms that yield the same approximation guarantee and establish the following
theorem.

Theorem 3.9.1. There exists an O(log n)-approximation algorithm for the (S, T )-connectivity
augmentation problem.

3.9.1 Approximation Algorithm I: decrease the number of cores by one

The first approximation algorithm decreases the number of cores by one in each iteration. Consider
any iteration of the algorithm. For each core C, we apply the subroutine (padded-Frank algorithm)
in Section 3.8 to compute the set of edges F (C) that covers Halo(C). We then choose the core C∗

such that the cost of F (C∗) is minimum, that is,

C∗ = argmin{c(F (C)) : C is a core.}

We add the set of edges F (C∗) to the current digraph and continue to the next iteration. We repeat
the process until there are no cores left in the current digraph. Observe that if there are no cores,
then the (S, T )-connectivity of the digraph is at least `+ 1.

We will now show the correctness of the algorithm. Let G denote the current digraph. The
key claim that shows the correctness of our algorithm is that the number of cores of G + F (C∗) is
strictly less than the number of cores of G. In the previous literature [24, 55, 62], the arguments
relied on the fact that the cores are disjoint; however, in this case, the cores need not to be disjoint.
Particularly, after adding the set of augmenting edges, we may have j ≥ 2 new cores that intersect
each other, but the union contains less than j old cores. See Figure 3.9.1.

The next lemma shows the correctness of the algorithm.

Lemma 3.9.2. Let G be the current digraph. Let C be any core, and let F (C) be the set of edges
found by the padded-Frank algorithm. Then the number of cores in G + F (C) is strictly less than
the number of cores in G. In other words, the padded-Frank algorithm causes the number of cores
to decrease by one.
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Figure 3.7: The figure shows two instances of the k-(S, T )-connectivity problem, where the initial
digraph is 1-(S, T )-connected. The grey lines denote the edges of the initial digraph. The cores in
the left instance are {s1} and {s2}. In the right instance, {s1} and {s2} are covered by the black
edges. The cores after adding the black edges are {s1, t1, t2, t3}, {s1, t1, t2, t4}, {s1, t2, t3, t4},
{s2, t1, t2, t3}, {s2, t1, t2, t4}, and {s2, t2, t3, t4}.

Proof. We will refer to the cores in the current digraph G as the old cores and refer to the cores in
the new digraph G + F (C) as the new cores.

The followings are the key facts in our proof.

1. F (C) covers Halo(C), that is, every deficient set of G in Halo(C) is covered by some edge
e ∈ F (C).

2. Every old core other than C is preserved, that is, except for C, all of the old cores are new
cores.

The first fact holds because the padded-Frank algorithm find a set of edges that covers Halo(C).
So, we only need to prove the second one. Assume a contradiction that the second fact does not
hold, that is, there exists an old core D 6= C that is not a new core. This means that F (C) has an
edge e that covers D. Note that the padded-Frank algorithm find a set of augmenting edges F (C)
of minimum cost that covers Halo(C). Hence, the augmenting edge e ∈ F (C), which has positive
cost, must cover some deficient set U ∈ Halo(C) (of the old digraph). Observe that an augmenting
edge e can cover two deficient sets only if they have common vertices in both the bodies and the
shadows. This is because all augmenting edges have tails in S and heads in T . It follows that
U and D have intersection in both the bodies and the shadows, a contradiction to Lemma 3.5.2
(disjointness property).

Now that we have the two facts, we will prove the main statement. Observe that by the second
fact, if the number of cores of G + F (C) is not less that the number of cores of G, then there must
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be the new coreD′ introduced in G+F (C), that is, D′ is not an old core. Note thatD′ is a deficient
set in the old digraph G, and thus, D′ must contain one or more old cores. But, D′ cannot properly
contain any old core D 6= C because, by the fact (2), every old core D 6= C is also a new core;
otherwise, D′ would not be inclusionwise minimal. Indeed, D′ contains no core D 6= C. This
means that D′ must contain C and contain no other old core; in other words, D′ ∈ Halo(C). This
contradicts to the fact (1) because D′ must have been covered by F (C).

Thus, we conclude that there is no new core introduced in the new digraph G + F (C) which
implies that the number of cores in G+F (C) is strictly less than the number of cores in G, proving
the lemma.

Running time: We first analyze the time needed for each iteration. At the beginning of each
iteration, we have to compute all the cores which takes O(n5 + n2 · t(m,n)) time, where t(m,n)
denote the time for computing the maximum s, t-flow. For each core C, we have to compute the set
of edges F (C) that covers Halo(C) which takes O(n2m+ n · t(m,n)) time. Since the number of
cores is upper bounded by O(n2), the total time becomes O(n4m+ n3 · t(m,n)) which dominates
the time for computing all the cores.

The number of iterations is at most the number of cores, which is O(n2), because we have to
decrease the number of cores down to zero. Thus, the running time of the algorithm is O(n6m +
n5m · t(m,n)).

3.9.2 Cost analysis by decomposing the fractional optimal solution

In this section, we will analyze the cost incurred by the algorithm in the previous section. We
start by giving the decomposition of any feasible solution to the LP of the (S, T )-connectivity
augmentation problem (See Table 3.2). Indeed, our decomposition theorem holds for every feasible
solution to the (S, T )-connectivity augmentation problem.

Let x denote some fixed optimal (fractional) solution to the LP for the (S, T )-connectivity
augmentation problem. From this point, we will override the notation of E∗ to denote the set of
edges restricted to the support of x, that is, E∗ = {e ∈ E : xe > 0}. Also, we will override opt to
denote opt =

∑
e∈E∗ c(e)xe.

We say that a set of edges F ⊆ E∗ fractionally covers a deficient set U if x(δout
F−E`(U)) ≥ 1.

Similarly, consider any core C. We say that F fractionally covers the halo-family of the core C if
F fractionally covers every deficient set in Halo(C).

Lemma 3.9.3 (Decomposition Lemma). Let C1, C2, . . . , Ct denote all of the cores. For each core
Ci, 1 ≤ i ≤ t, let E∗(Ci) denote an (inclusionwise) minimal subset of E∗ that fractionally cov-
ers Halo(Ci). Then E∗(Ci) and E∗(Cj) are disjoint for all 1 ≤ i 6= j ≤ t. Furthermore,∑t

i=1

∑
e∈E∗(Ci) c(e)xe ≤ opt.
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Proof. We prove the first statement by a contradiction argument. Suppose to a contrary that there
exists i, j with 1 ≤ i 6= j ≤ t, such that E∗(Ci) ∩ E∗(Cj) contains an edge e. Then by the
minimality of E∗(Ci) and E∗(Cj), e must cover some deficient set U ∈ Halo(Ci) and some
deficient set W ∈ Halo(Cj). This means that e has tail in Body(Ci) ∩ Body(Cj) and head in
Shadow(Ci)∩Shadow(Cj). In other words, both the bodies and the shadows ofCi andCj intersect,
a contradiction to Lemma 3.5.2 (disjointness property).

The second statement immediately follows from the the first one. Indeed, since E∗(Ci) and
E∗(Cj) are disjoint for 1 ≤ i 6= j ≤ t, we have

t∑
i=1

∑
e∈E∗(Ci)

c(e)xe ≤
∑
e∈E∗

c(e)xe = opt

The next lemma compares the cost of the integral solution obtained by the padded-Frank algo-
rithm to that of the optimal solution to the LP of the (S, T )-connectivity augmentation problem.
Note that the similar argument is used in [24].

Lemma 3.9.4. For any core C, let F (C) denote the set of augmenting edges found by the padded-
Frank algorithm, and letE∗(C) be defined as in the previous lemma. Then c(F (C)) ≤

∑
e∈E∗(C) c(e)xe.

Proof. This follows from Theorem 3.4.7 (or Theorem 3.4.6). In fact, Frank proves that the LP re-
laxation for the rooted connectivity augmentation problem has an integral optimal solution. Hence,
the cost of the optimal fractional solution to the LP and the cost of the optimal (integral) solution
to the rooted connectivity augmentation problem are the same.

Recall that F (C) is the set of augmenting edges with minimum cost that covers Halo(C). Thus,
any feasible solution to the LP for the rooted connectivity augmentation problem (in the padded-
Frank algorithm) has cost at least c(F (C)). Since, for i = 1, 2, . . . , t, E∗(Ci) fractionally covers
Halo(Ci), it implies that the c(F (C)) ≤

∑
e∈E∗(C) c(e)xe.

Lemma 3.9.5. Let t be the number of cores, and let C∗ be a core such that the edges set F (C∗)
has minimum cost, that is, F (C∗) = minti=1{c(F (C)}. Then

1.
∑t

i=1 c(F (Ci)) ≤ opt.

2. c(F (C∗)) ≤ opt/t.

Proof. For all the core C1, C2, . . . , Ct, by Lemma 3.9.4, we have

c(F (Ci)) ≤
∑

e∈E∗(Ci)

c(e)xe.
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Hence, by Lemma 3.9.3, we have

t∑
i=1

c(F (Ci)) ≤
t∑
i=1

∑
e∈E∗(Ci)

c(e)xe ≤ opt.

This proves the first statement. To proves the second one, we apply the averaging argument,
that is,

c(F (C∗)) =
t

min
i=1
{c(F (Ci))} ≤

1

t

t∑
i=1

c(F (Ci)) =
opt

t
.

Corollary 3.9.6. Total cost incurred by the algorithm is O(log n)opt.

Proof. Let t0 denotes the number of cores at the start of the algorithm. Since the number of cores
in each iteration decreases by one, and the set of edges added has cost at most opt/t′, where t′ is
the number of cores at the start of the iteration. This implies that the total cost of the edges added
by the algorithm is at most(

1

t
+

1

t− 1
+ . . .+ 1

)
opt = O(log t) · opt = O(log n) · opt.

We note that the last equation follows from the fact that the number of cores is at most |S||T | =
O(n2) proved in Corollary 3.6.2.

3.9.3 Approximation Algorithm II: decrease the number of cores by a factor
of two.

In this section, we present the second approximation algorithm. In each iteration, for each core
C, we compute the minimum cost set of edges F (C) that covers Halo(C) by the padded-Frank
algorithm. The difference form the previous algorithm is that we add all of the edges found by the
padded-Frank algorithm, that is,

⋃
{F (C) : C is a core}, to the digraph. We repeat this process

until there is no core left.

We claim that the algorithm terminates within O(log n) iterations. Roughly speaking, in each
iteration, the algorithm adds a set of edges that causes the number of cores to decrease by a factor
of two. Similar methods are discussed in [62] and implicitly in [24]. Unfortunately, since the cores
in our problem need not be disjoint, the proof is more complex. We introduce a new notion that
defines the progress of the algorithm. We claim that the maximum number of body-disjoint cores
decreases by a factor of two in each iteration. Thus, the number of iteration is at most O(log n).

The following lemmas prove our claim.
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Lemma 3.9.7. No deficient set contains two cores whose bodies are intersecting.

Proof. By Lemma 3.5.2 (disjointness property), any two distinct cores C and D whose bodies are
intersecting must have disjoint shadows. Hence, C ⊇ T −D and D ⊇ T − C. This implies that
C ∪D contains T , and thus, C ∪D cannot be a deficient set.

Lemma 3.9.8. In each iteration, the maximum number of body-disjoint cores decreases by a factor
of two.

Proof. Let ν and ν ′ denote the maximum number of body-disjoint cores at the beginning and the
end of the iteration, respectively.

We refer to cores at the beginning of the iteration as old cores and those at the end of the
iteration as new cores. In each iteration, the algorithm covers all deficient sets that are contained
in some halo-family. So, there is no deficient set left that contains exactly one old core. In other
words, any new core contains at least two old cores. By Lemma 3.9.7, since new cores are deficient
sets in the old digraph, they cannot contain two old cores whose bodies are intersecting. So, ν ′

body-disjoint new cores must contain at least 2ν ′ body-disjoint old cores. Hence, 2ν ′ ≤ ν which
proves the Lemma.

Lemma 3.9.9. The algorithm terminates within O(log n) iterations. It runs in polynomial time.
Moreover, the total cost incurred by the algorithm is at most O(log n)opt.

Proof. First, the maximum number of body-disjoint cores is at mostO(|S|) = O(n). By Lemma 3.9.8,
in each iteration, the number of body-disjoint cores decreases by a factor of two. Hence, the num-
ber of iterations is O(log n). Clearly, since the padded-Frank algorithm runs in polynomial time,
the running time of the algorithm is also polynomial, proving the second statement.

To prove the last statement, we claim that the cost of edges computed in each iteration is
at most opt. To see this, let C1, C2, . . . , Ct be all the cores. Recall that, for i = 1, 2, . . . , t,
F (Ci) is the minimum cost set of edges that covers Halo(Ci), and by Lemma 3.9.5, we have that∑t

i=1 c(F (Ci)) ≤ opt. Thus, the total cost incurred in O(log n) iterations is O(log n)opt.

Running Time Recall that the running time of each iteration of the first approximation algorithm
is O(n4m + n3 · t(m,n)), where t(m,n) is the time for computing a maximum s, t-flow. Notice
that the running time of each iteration is the same in both algorithms. However, the number of
iterations of the second algorithm is O(log n). Thus, the running time of the second algorithm is
O((n4m+ n3 · t(m,n)) log n).
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Chapter 4

Discussion and Open Problems

In this thesis, we studied the (S, T )-connectivity problem, and its extension, the k-(S, T )-connectivity
problem. Three variants of the (S, T )-connectivity have been discussed. The first variant is the
standard (S, T )-connectivity problem. We presented a 2-approximation algorithm. This approx-
imation guarantee is the same as the current best approximation guarantee for its special case,
the minimum cost strongly connected subgraph problem. Getting an approximation guarantee
better than 2 implies an improved approximation guarantee for the minimum cost strongly con-
nected subgraph problem. In [77], Vetta presents a 3/2-approximation algorithm for the mini-
mum size strongly connected subgraph problem. An interesting question is whether one can get
an improvement on the 2-approximation algorithm for the standard (S, T )-connectivity problem
where augmenting edges have unit-costs. On the negative side, Gabow, Goemans, Tardos and
Williamson [41] showed that the minimum cost strongly connected subgraph problem is APX-
hard.

The second variant is the relaxed (S, T )-connectivity problem. We presented an approximation
algorithm whose approximation guarantee is asymptotically tight. Our approximation guarantee is
the same as the approximation guarantee for the directed Steiner tree problem, which is a special
case. The best known approximation algorithm for the directed Steiner tree problem acheives an
approximatio guarantee of O(log3 n) (See note in Section 2.5.1.), but the running time is quasi
polynomial in the number of vertices. An open question in the area is to get an polylogarithmic-
approximation algorithm for the directed Steiner tree problem that has a running time polynomial
in the number of terminals.

The most general variant, the unrestricted (S, T )-connectivity problem, is as hard as the di-
rected Steiner forest problem. In other words, getting an improvement in either the lower bound
or the upper bound of the unrestricted (S, T )-connectivity problem would yield an improvement
for the directed Steiner forest problem as well. The hardness of the directed Steiner forest problem
comes from the maximum label cover problem. For the maximum label cover problem, Charikar,
Hajiaghayi and Karloff [13] gives an O(n1/3)-approximation algorithm. Hence, it may be possi-
ble to get an O(n1/3)-approximation algorithms for both the directed Steiner forest problem and
the unrestricted (S, T )-connectivity problem. If so, this will give an improvement on the current
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best approximation guarantee for the directed Steiner forest problem which is O(n4/5+ε) for ε > 0
in [27].

The k-(S, T )-connectivity problem captures some properties of the minimum cost k-vertex
connected spanning subgraph problem (k-VCSS ). The approximation guarantee of k-VCSS is
quite open in both the upper bound and the lower bound. The k-VCSS problem is known to be
APX-hard. The k-(S, T )-connectivity problem may be harder to approximate than the k-VCSS
problem. On the positive side, when k ≥ 2 and k = O(1), we have an O(log n)-approximation
algorithm for the k-(S, T )-connectivity problem, but there exist O(1)-approximation algorithms
for k-VCSS . Improving on our O(log n)-approximation guarantee for k = O(1) is an open
question. A hardness of approximation result that “separates” between k-VCSS and the k-(S, T )-
connectivity problem would be interesting.
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