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A subset T ⊆ V of terminals is k-connected to a root s in a directed/undirected
graph J if J has k internally-disjoint vs-paths for every v ∈ T ; T is k-connected in J
if for every s ∈ T the set T \ {s} is k-connected to s in J . We consider the Subset
k-Connectivity Augmentation problem: given a graph G = (V , E) with edge/node-costs,
a node subset T ⊆ V , and a subgraph J = (V , E J ) of G such that T is (k − 1)-connected
in J , find a minimum-cost augmenting edge-set F ⊆ E \ E J such that T is k-connected
in J ∪ F . The problem admits trivial ratio O (|T |2). We consider the case |T | > k and prove
that for directed/undirected graphs and edge/node-costs, a ρ-approximation algorithm for
Rooted Subset k-Connectivity Augmentation implies the following approximation ratios for
Subset k-Connectivity Augmentation:

(i) b(ρ + k) + (
|T |

|T |−k )
2

O (log |T |
|T |−k ), where b = 1 for undirected graphs and b = 2 for

directed graphs.
(ii) ρ · O (

|T |
|T |−k log k).

The best known values of ρ on undirected graphs are min{|T |, O (k)} for edge-costs
and min{|T |, O (k log |T |)} for node-costs; for directed graphs ρ = |T | for both versions.
Our results imply that unless k = |T | − o(|T |), Subset k-Connectivity Augmentation admits
the same ratios as the best known ones for the rooted version. This improves the ratios
in Nutov (2009) [19] and Laekhanukit (2011) [15].

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the Survivable Network problem we are given a graph G = (V , E) with edge/node-costs and connectivity requirements
{r(u, v): u, v ∈ T ⊆ V } on a node subset T of terminals. The goal is to find a minimum-cost subgraph of G that contains
r(u, v) internally-disjoint uv-paths for all u, v ∈ T . In the node-costs version of Survivable Network, we seek a min-cost
subset V ′ ⊆ V \ T such that the graph induced by T ∪ V ′ in G satisfies the connectivity requirements.

In the Rooted Subset k-Connectivity problem there is s ∈ T such that r(s, t) = k for all t ∈ T \{s} and r(u, v) = 0 otherwise.
In the Subset k-Connectivity problem r(u, v) = k for all u, v ∈ T and r(u, v) = 0 otherwise. In the augmentation versions, G
contains a subgraph J of cost zero with r(u, v) − 1 internally disjoint paths for all u, v ∈ T . A subset T ⊆ V of terminals
is k-connected to a root s in a directed/undirected graph J if J has k internally-disjoint vs-paths for every v ∈ T ; T is
k-connected in J if for every s ∈ T the set T \ {s} is k-connected to s in J . Formally, the versions of Survivable Network we
consider are as follows.

E-mail address: nutov@openu.ac.il.
1570-8667/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jda.2012.08.001

https://core.ac.uk/display/82091170?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jda.2012.08.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:nutov@openu.ac.il
http://dx.doi.org/10.1016/j.jda.2012.08.001


52 Z. Nutov / Journal of Discrete Algorithms 17 (2012) 51–59
Rooted Subset k-Connectivity Augmentation
Instance: A graph G = (V , E) with edge/node-costs, a set T ⊆ V of terminals, a root s ∈ T , and a subgraph J = (V , E J )

of G such that T \ {s} is (k − 1)-connected to s in J .
Objective: Find a minimum-cost edge-set F ⊆ E \ E J such that T \ {s} is k-connected to s in J ∪ F .

Subset k-Connectivity Augmentation
Instance: A graph G = (V , E) with edge/node-costs, a set T ⊆ V of terminals, and a subgraph J = (V , E J ) of G such
that T is (k − 1)-connected in J .
Objective: Find a minimum-cost edge-set F ⊆ E \ E J such that T is k-connected in J ∪ F .

Obtaining a polylogarithmic approximation ratio for these problems is unlikely, see [10,16,2]. It is known and easy to
see that for both edge-costs and node-costs, if Subset k-Connectivity Augmentation admits approximation ratio ρ(k) such
that ρ(k) is a monotone increasing function, then Subset k-Connectivity admits ratio k · ρ(k). Moreover, for edge costs,
if in addition the approximation ratio ρ(k) is w.r.t. a standard setpair/biset LP-relaxation to the problem, then Subset k-
Connectivity admits ratio H(k) · ρ(k), where H(k) denotes the kth harmonic number; see [19,15] for details. For edge-costs,
a standard setpair LP-relaxation for Survivable Network (due to Frank and Jordán [6]) is as follows:

min

{∑
e∈E

cexe:
∑

e∈E(X,X∗)

xe � r
(

X, X∗), X, X∗ ⊆ V , X ∩ X∗ = ∅, 0 � xe � 1

}

where r(X, X∗) = max{r(u, v): u ∈ X, v ∈ X∗} − |V \ (X ∪ X∗)| and E(X, X∗) is the set of edges in E from X to X∗ .
Subset k-Connectivity admits trivial ratios O (|T |2) for both edge-costs and node-costs, by computing for every u, v ∈ T

an optimal edge-set of k internally-disjoint uv-paths (this is essentially a Min-Cost k-Flow problem, that can be solved in
polynomial time), and taking the union of the computed edge-sets. For metric edge-costs the problem admits an O (1)

ratio [3]. The edge-costs version of Subset k-Connectivity Augmentation such that every edge with positive cost has its both
endnodes in T admits ratio O (min{ |T |

|T |−k log |T |
|T |−k , log |T |}) [20].

The case T = V of Rooted Subset k-Connectivity problem is the k-Outconnected Subgraph problem; this problem admits
a polynomial time algorithm for directed graphs [7], which implies ratio 2 for undirected graphs. The case T = V of Subset
k-Connectivity problem is the k-Connected Subgraph problem. This problem is NP-hard, and the best known ratio for it is
O (log k log n

n−k ) for both directed and undirected graphs [20]; for the augmentation version of increasing the connectivity
by one the ratio in [20] is O (log n

n−k ).
For |T | � k + 1 Subset k-Connectivity can be decomposed into k instances of Rooted Subset k-Connectivity, cf. [12] for

the case T = V (this is the k-Connected Subgraph problem), where it is also shown that the number of k-Outconnectivity
Augmentation instances can be reduced to O (

|T |
|T |−k log k), which is O (log k) unless k = |T | − o(|T |).

Recently, Laekhanukit [15] made an important observation that the method of [12] can be extended for the case of
arbitrary T ⊆ V . Specifically, he proved that if |T | � 2k, then O (log k) instances of Rooted Subset k-Connectivity Augmentation
will suffice. Thus for |T | � 2k, the O (k)-approximation algorithm of [19] for Rooted Subset k-Connectivity Augmentation leads
to the ratio O (k log k) for Rooted Subset k-Connectivity. By exploiting additional properties of the algorithm of [19], he
reduced the ratio to O (k) in the case |T | � k2.

Using a different approach, we will show by a much simpler proof, that for both directed and undirected graphs and
edge-costs and node-costs, Subset k-Connectivity Augmentation can be reduced to solving one instance (or two instances,

in the case of directed graphs) of Rooted Subset k-Connectivity Augmentation and O (k) + (
|T |

|T |−k )
2

O (log |T |
|T |−k ) instances of

the Min-Cost k-Flow problem. This leads to a much simpler algorithm, improves the result of Laekhanukit [15] for |T | < k2,
and applies also for node-costs and directed graphs. In addition, we give a more natural and much simpler extension of the
algorithm of [12] for T = V , that also enables the same bound O (

|T |
|T |−k log k) as in [12] for arbitrary T with |T | � k + 1,

and in addition applies also for directed graphs, for node-costs, and for an arbitrary type of edge-costs, e.g., metric costs,
or uniform costs, or 0,1-costs. When we say “0,1-edge-costs” we mean that the input graph G is complete, and the goal is
to add to the subgraph J of G formed by the zero-cost edges a minimum size edge-set F (any edge is allowed) such that
J ∪ F satisfies the connectivity requirements. Formally, our result is the following.

Theorem 1.1. For both directed and undirected graphs, and edge-costs and node-costs the following holds. If Rooted Subset
k-Connectivity Augmentation admits approximation ratio ρ = ρ(k, |T |), then for |T | � k + 1 Subset k-Connectivity Augmentation
admits the following approximation ratios:

(i) b(ρ + k) + (
|T |

|T |−k )
2

O (log |T |
|T |−k ), where b = 1 for undirected graphs and b = 2 for directed graphs.

(ii) ρ · O (
|T | log min{k, |T | − k}), and this is so also for 0,1-edge-costs.
|T |−k
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Furthermore, for edge-costs, if the approximation ratio ρ is w.r.t. the setpair LP-relaxation for the problem, then so are the ratios in (i)
and (ii).

For |T | > k, the best known values of ρ on undirected graphs are O (k) for edge-costs and min{O (k log |T |), |T |} for
node-costs [19]; for directed graphs ρ = |T | for both versions. For 0,1-edge-costs ρ = O (log k) for undirected graphs [21]
and ρ = O (log |T |) for directed graphs [18]. For edge-costs, these ratios are w.r.t. a standard LP-relaxation. Thus Theorem 1.1
implies the following.

Corollary 1.2. For |T | � k + 1, Subset k-Connectivity Augmentation admits the following approximation ratios.

• For undirected graphs, the ratios are O (k) + (
|T |

|T |−k )
2

O (log |T |
|T |−k ) for edge-costs, O (k log |T |) + (

|T |
|T |−k )

2
O (log |T |

|T |−k ) for node-

costs, and |T |
|T |−k · O (log2 k) for 0,1-edge-costs.

• For directed graphs, the ratio is 2(|T | + k) + (
|T |

|T |−k )
2

O (log |T |
|T |−k ) for both edge-costs and node-costs, and |T |

|T |−k · O (log |T | log k)

for 0,1-edge-costs.

For Subset k-Connectivity, the ratios are larger by a factor of O (log k) for edge-costs, and by a factor of k for node-costs.

Note that except the case of 0,1-edge-costs, Corollary 1.2 is deduced from part (i) of Theorem 1.1. However, part (ii) of
Theorem 1.1 might become relevant if Rooted Subset k-Connectivity Augmentation admits ratio better than O (k). In addition,
part (ii) applies for any type of edge-costs, e.g. metric or 0,1-edge-costs.

We conclude this section by mentioning some additional related work. For metric costs k-Connected Subgraph admits
ratios 2+ k−1

n for undirected graphs and 2+ k
n for directed graphs [11]. For 0,1-edge-costs the problem admits a polynomial

time algorithm for directed graphs [6], which implies ratio 2 for undirected graphs. It is an open question whether on
undirected graphs k-Connected Subgraph with 0,1-edge-costs admits a polynomial time algorithm, but the augmentation
version of the problem is solvable in polynomial time [22]. The currently best known non-trivial ratios for the Survivable
Network problem on undirected graphs are: O (k3 log |T |) for arbitrary edge-costs by Chuzhoy and Khanna [4], O (log k) for
metric costs due to Cheriyan and Vetta [3], O (k) · min{log2 k, log |T |} for 0,1-edge-costs [21,14], and O (k4 log2 |T |) for node-
costs [19].

2. Proof of Theorem 1.1

We start by proving the following essentially known statement.

Proposition 2.1. For both directed and undirected graphs, and edge-costs and node-costs the following holds. Suppose that Rooted
Subset k-Connectivity Augmentation admits an approximation ratio ρ . If for an instance of Subset k-Connectivity Augmentation we
are given a set of q edges (when any edge is allowed) and p stars (may be directed to or from the root, in the case of directed graphs)
on T whose addition to J makes T k-connected, then we can compute a (ρp +q)-approximate solution F to this instance in polynomial
time. Furthermore, for edge-costs, if the ρ-approximation is w.r.t. a standard setpair LP-relaxation, then c(F ) � (ρp + q)τ ∗ , where τ ∗
is an optimal setpair LP-relaxation value for Subset k-Connectivity Augmentation.

Proof. For every edge uv among the q edges, compute a min-cost edge-set Fuv ⊆ E \ E J such that J ∪ Fuv contains k
internally-disjoint uv-paths. This can be done in polynomial time for both edge and node costs, using a Min-Cost k-Flow
algorithm. For edge-costs, it is known that c(Fuv) � τ ∗ . Then replace uv by Fuv , and note that T remains k-connected.
Similarly, for every star S with center s and leaf-set T ′ , compute a ρ-approximate augmenting edge-set F S ⊆ E \ E J such
that J ∪ F S contains k internally-disjoint sv-paths (or vs-paths, in the case of directed graphs and S being directed towards
the root) for every v ∈ T ′ . Then replace S by F S , and note that T remains k-connected. For edge-costs, it is known that if the
ρ-approximation for the rooted version is w.r.t. the standard setpair LP-relaxation, then c(F S ) � (ρp + q)τ ∗ . The statement
follows. �

Motivated by Proposition 2.1, we consider the following question:

Given a (k − 1)-connected subset T in a graph J , how many edges and/or stars on T one needs to add to J such that T will become
k-connected?

We emphasize that we are interested in obtaining absolute bounds on the number of edges in the question, expressed in
certain parameters of the graph; namely we consider the extremal graph theory question and not only the algorithmic problem.
Indeed, the algorithmic problem of adding the minimum number of edges on T such that T will become k-connected can be
shown to admit a polynomial-time algorithm for directed graphs using the result of Frank and Jordán [6]; this also implies
a 2-approximation algorithm for undirected graphs. However, in terms of the parameters |T |, k, the result in [6] implies



54 Z. Nutov / Journal of Discrete Algorithms 17 (2012) 51–59
only the trivial bound O (|T |2) on the number of edges one needs to add to J such that T will become k-connected. On the
other hand, no exact or approximation algorithm is known for computing a minimum size collection of stars as above.

Our bounds will be expressed in terms |T |, k, and the number of inclusion-minimal “deficient” sets of the graph J ;
we will also give a polynomial time algorithm to compute a set of edges/stars within these bounds. We need some defini-
tions to state our results.

Definition 2.1. An ordered pair X̂ = (X, X+) of subsets of a groundset V is called a biset if X ⊆ X+; X is the inner part and
X+ is the outer part of X̂ , Γ ( X̂) = X+ \ X is the boundary of X̂ (so X+ = X ∪ Γ ( X̂)), and X∗ = V \ X+ is the complementary
set of X̂ .

Given an instance of directed/undirected Subset k-Connectivity Augmentation we may assume that T is an independent
set in J , namely, that no edge in J has both endnodes in T . Otherwise, we obtain an equivalent instance by subdividing
every edge uv ∈ J with u, v ∈ T by a new node, cf. [19]. Let us say that a directed/undirected edge covers a biset X̂ if it goes
from X to X∗ , and that X̂ divides T if X ∩ T , X∗ ∩ T 	= ∅.

Definition 2.2. Given a (k − 1)-connected independent set T in a (directed or undirected) graph J = (V , E J ) let us say that
a biset X̂ on V is tight in J , if X̂ divides T , no edge of J covers X̂ , and |Γ ( X̂)| = k − 1.

By Menger’s Theorem, an independent set T ⊆ V is �-connected in J if, and only if, |Γ ( X̂)| � � for any biset X̂ on V
that divides T such that no edge of J covers X̂ . Hence F is a feasible solution to Subset k-Connectivity Augmentation if,
and only if, F covers the biset-family F of tight bisets; see [6,13,21]. Thus denoting � = k − 1, our question can be reformu-
lated as follows.

Given an �-connected independent set T in a directed/undirected graph J , how many edges and/or stars on T are needed to cover the
family F of tight bisets?

Definition 2.3. The intersection and the union of two bisets X̂ , Ŷ is defined by X̂ ∩ Ŷ = (X ∩ Y , X+ ∩ Y +) and X̂ ∪ Ŷ =
(X ∪ Y , X+ ∪ Y +). Two bisets X̂ , Ŷ intersect if X ∩ Y 	= ∅; if in addition X∗ ∩ Y ∗ 	= ∅ then X̂ , Ŷ cross. We say that a
biset-family F on T is:

• crossing if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈F for any X̂, Ŷ ∈F that cross.
• �-regular if |Γ ( X̂)| � � for every X̂ ∈F , and if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈F for any intersecting X̂, Ŷ ∈F with |X ∪ Y | � |T |− �− 1.

Note that |X ∪ Y | � |T | − � − 1 if, and only if, |T \ (X ∪ Y )| � � + 1. The following statement is essentially known (see [8,
Lemma 1.2] for the case T = V , and [21] for the first part with arbitrary T ); we provide a proof-sketch for completeness of
exposition.

Lemma 2.2. Let T be an �-connected independent set in a directed/undirected graph J , and let X̂ , Ŷ be tight bisets with X ∩ Y ∩ T 	= ∅.
If X∗ ∩ Y ∗ ∩ T 	= ∅ then X̂ ∩ Ŷ , X̂ ∪ Ŷ are both tight. If |T \ (X ∪ Y )| � � then X̂ ∩ Ŷ is tight, and if a strict inequality holds (namely,
if |X ∪ Y | � |T | − � − 1) then also X̂ ∪ Ŷ is tight.

Proof. It is easy to verify that the following holds for any two bisets X̂ , Ŷ on V and T ⊆ V .

(i) If an edge covers one of X̂ ∩ Ŷ , X̂ ∪ Ŷ then it covers one of X̂ , Ŷ (see [20]). Hence if X̂ , Ŷ are tight then no edge of J
covers X̂ ∩ Ŷ or X̂ ∪ Ŷ .

(ii) Suppose that X ∩ Y ∩ T 	= ∅. If X̂ divides T then X̂ ∩ Ŷ divides T , and if X∗ ∩ Y ∗ ∩ T 	= ∅ then each of X̂ ∩ Ŷ , X̂ ∪ Ŷ
divides T .

(iii) |Γ ( X̂)| + |Γ (Ŷ )| = |Γ ( X̂ ∩ Ŷ )| + |Γ ( X̂ ∪ Ŷ )|, namely, the function |Γ (·)| is modular. In particular, if both X̂ , Ŷ are tight
then we have 2� = |Γ ( X̂)| + |Γ (Ŷ )| = |Γ ( X̂ ∩ Ŷ )| + |Γ ( X̂ ∪ Ŷ )|.

Suppose that X∗ ∩ Y ∗ ∩ T 	= ∅. Then each of X̂ ∩ Ŷ , X̂ ∪ Ŷ divides T . Hence |Γ ( X̂ ∩ Ŷ )| � � and |Γ ( X̂ ∪ Ŷ )| � �, by Menger’s
Theorem. Thus the modularity of |Γ (·)| implies |Γ ( X̂ ∩ Ŷ )| = |Γ ( X̂ ∪ Ŷ )| = �. This proves that X̂ ∩ Ŷ , X̂ ∪ Ŷ are both tight.

Now suppose that X∗ ∩ Y ∗ ∩ T = ∅. Then T \ (X ∪ Y ) ⊆ Γ (X ∪ Y ), so |Γ (X ∪ Y )| � |T \ (X ∪ Y )|. Also, |Γ ( X̂ ∩ Ŷ )| � �

by (i) and (ii) above, and since T is �-connected in J . Consequently, by the modularity of |Γ (·)| we have � � |Γ ( X̂ ∩ Ŷ )| �
2� − |T \ (X ∪ Y )|. Thus if |T \ (X ∪ Y )| � � then we must have |T \ (X ∪ Y )| = � and |Γ ( X̂ ∩ Ŷ )| = �, which implies that
X̂ ∩ Ŷ is tight. �
Corollary 2.3. Let T be an �-connected independent set in a directed/undirected graph J = (V , E J ). Then the biset-family on T

F = {(
X ∩ T , X+ ∩ T

)
:

(
X, X+)

is a tight biset in J
}
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and the reverse family F̄ = {(T \ X+, T \ X): X̂ ∈F} of F are both crossing and �-regular. Furthermore, if J is undirected then F is
symmetric, namely, F = F̄ .

Given two bisets X̂ , Ŷ we write X̂ ⊆ Ŷ and say that Ŷ contains X̂ if X ⊆ Y or if X = Y and X+ ⊆ Y +; X̂ ⊂ Ŷ and Ŷ
properly contains X̂ if X ⊂ Y or if X = Y and X+ ⊂ Y + .

Definition 2.4. Let F be a biset family on T . A biset Ĉ ∈F is a core of F if Ĉ contains no biset in F \ {Ĉ}; namely, a core is
an inclusion-minimal biset in F . Let C(F) be the family of cores of F . Let ν(F) denote the maximum number of bisets (or
cores, which is equivalent) in F which inner parts are pairwise disjoint. For an integer � let F� = { X̂ ∈F : |X |� (|T |−�)/2}.

Given a biset-family F and an edge-set I on T , the residual biset-family FI of F consists of the members of F uncovered
by I . We will assume that for any I , the cores of FI and of F̄I can be computed in polynomial time. For F being as in
Corollary 2.3 this can be implemented in polynomial time using the Ford–Fulkerson Max-Flow Min-Cut algorithm, cf. [21].
Note also that Ĉ is a core of F� if, and only if, Ĉ is a core of F with |C | � (|T | − �)/2. Hence our assumption implies that
also the cores of F�

I can be computed in polynomial time. It is known and easy to see (cf. [20]), that if F is crossing and/or
�-regular, so is FI , for any edge-set I .

Lemma 2.4. Let F be an �-regular biset-family on T and let X̂, Ŷ ∈ F� intersect. Then X̂ ∩ Ŷ ∈ F� and X̂ ∪ Ŷ ∈ F . In particular,
the inner parts of the min-cores of F� are pairwise disjoint, ν(F�) = |C(F�)|, and ν(F�

I ) can be computed in polynomial time for any
edge set I on T .

Proof. Since |X |, |Y |� |T |−�
2 , we have |X ∪ Y | = |X | + |Y | − |X ∩ Y | � |T | − � − 1. Thus X̂ ∩ Ŷ , X̂ ∩ Ŷ ∈F , by the �-regularity

of F . Moreover, X̂ ∩ Ŷ ∈F� , since |X ∩ Y | � |X |� |T |−�
2 . �

Let H(k) denote the kth Harmonic number. We prove the following two theorems that imply Theorem 1.1.

Theorem 2.5. Let F be a biset-family on T such that both F , F̄ are crossing and �-regular, where |T | > �. Then there exists
a polynomial time algorithm that computes an edge-cover I of F of size |I| � ν(F�) + ν(F̄�) + α(|T |, �), where α(|T |, �) =
6(

|T |
|T |−�

)
2 · (H(

3|T |
|T |−�

) + 1
2 ) = (

|T |
|T |−�

)
2

O (log |T |
|T |−�

). Furthermore, if F is symmetric then |I|� ν(F�) + α(|T |, �).

Theorem 2.6. Let F be a biset-family on T such that both F and F̄ are �-regular. Then there exists a collection of O (
|T |

|T |−�
×

log min{ν(F�), |T | − �}) stars on T which union covers F , and such a collection can be computed in polynomial time. Furthermore,

the total number of edges in the stars is at most ν(F�) + ν(F̄�) + (
|T |

|T |−�
)

2 · O (log |T |
|T |−�

).

Note that the second statement in Theorem 2.6 implies (up to constants) the bound in Theorem 2.5. However, the proof
of Theorem 2.5 is much simpler than the proof of Theorem 2.6, and the proof of Theorem 2.5 is a part of the proof of the
second statement in Theorem 2.6.

Let us show that Theorems 2.5 and 2.6 imply Theorem 1.1. For that, we show that by applying b times the ρ-
approximation algorithm for Rooted Subset k-Connectivity Augmentation, we obtain an instance with ν(F�), ν(F̄�) � k,
where F is as in Corollary 2.3 and � = k−1. This is achieved by the following procedure due to Khuller and Raghavachari [9]
that originally considered the case T = V , see also [1,5,11]; the same procedure is also used by Laekhanukit in [15]. Choose
an arbitrary subset T ′ ⊆ T of k nodes, add a new node s (the root) both to G and to J , and add to J all edges between s and
T ′ of cost zero each. Then, using the ρ-approximation algorithm for the Rooted Subset k-Connectivity Augmentation problem,
compute an augmenting edge set F such that J ∪ F contains k internally disjoint vs-paths and sv-paths for every v ∈ T ′ .
Now, add F to J and remove s from J . It is a routine to show that c(F ) � bopt, and that for edge-costs c(F ) � bτ ∗ . It is also
known that if X̂ is a tight biset of the obtained graph J , then X ∩ T ′, X∗ ∩ T ′ 	= ∅, cf. [1,15]. Combined with Lemma 2.4 we
obtain that ν(F�), ν(F̄�) � |T ′| � k for the obtained instance, as claimed.

3. Proof of Theorem 2.5

Definition 3.1. Given a biset-family F on T , let �(F) denote the maximum degree in the hypergraph F in = {X: X̂ ∈ F} of
the inner parts of the bisets in F . We say that T ′ ⊆ T is a transversal (or a hitting set) of F if T ′ ∩ X 	= ∅ for every X ∈F in;
a function t : T → [0,1] is a fractional transversal of F if

∑
v∈X t(v) � 1 for every X ∈F in .

Lemma 3.1. Let F be a crossing biset-family. Then �(C(F)) � ν(F̄).

Proof. Since F is crossing, the members of C(F) are pairwise non-crossing. Thus if H is a subfamily of C(F) such that the
intersection of the inner parts of the bisets in H is non-empty, then H̄ is a subfamily of F̄ such that the inner parts of the
bisets in H̄ are pairwise disjoint, so |H̄| � ν(F̄). �
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Lemma 3.2. Let T ′ be a transversal of a biset-family F ′ on T and let I ′ be an edge-set on T obtained by picking for every s ∈ T ′ an edge
from s to every inclusion-minimal member of the set-family {X∗: X̂ ∈ F ′, s ∈ X}. Then I ′ covers F ′ . Moreover, if F ′ is crossing then
|I ′| � |T ′| · ν(F̄ ′).

Proof. The statement that I ′ covers F ′ is obvious. If F ′ is crossing, then for every s ∈ T the inclusion-minimal members of
{X∗: X̂ ∈F ′, s ∈ X} are pairwise-disjoint, hence their number is at most ν(F̄ ′). The statement follows. �

The following statement from [12], easily follows from Lemma 2.4.

Claim 3.3 (See [12].). Let F be an �-regular biset-family on T . For Ĉ ∈ C(F�) let ÛC denote the union of the bisets in F� that contain
Ĉ and contain no other member of C(F�). Then the sets UC are pairwise disjoint, and if |UC | � |T | − � − 1 then ÛC ∈F .

Lemma 3.4. The following holds for any �-regular biset-family F on T .

(i) ν(F) � ν(F�) + 2|T |
|T |−�

.

(ii) If ν(F�{e}) = ν(F�) holds for every edge e on T then ν(F�) � |T |
|T |−�

.

(iii) There exists a polynomial time algorithm that finds a transversal T ′ of C(F) of size at most |T ′| � ν(F�) + 2|T |
|T |−�

· H(�(C(F))).

Proof. Part (i) is immediate.
We prove (ii). If |UC | � |T | − � − 1 for some Ĉ ∈ C(F�), then ÛC ∈ F , by Claim 3.3. In this case ν(F�{e}) � ν(F�) − 1

for any edge e from C to U∗
C . Hence |UC | � |T | − � must hold for every Ĉ ∈ C(F�). By Claim 3.3, the sets UC are pairwise

disjoint. Part (ii) follows.
We prove (iii). Let T � be an inclusion-minimal transversal of C(F�). By Lemma 2.4, |T �| = ν(F�). We will show how

to find a transversal T ′′ of the family C′′ = C(F) \ C(F�) of size at most |T ′′| � 2|T |
|T |−�

· H(�(C(F))). Such T ′′ is computed
by a standard greedy algorithm, that starts with T ′′ = ∅, and repeatedly adds an element v ∈ T \ T ′′ that intersects the
maximum number of sets in the family {C : Ĉ ∈ C′′, C ∩ T ′′ = ∅}. It is known that such a greedy algorithm computes
a transversal of size at most H(�(C′′)) times the minimum value of a fractional transversal of C′′ (cf. [17]). The statement
follows by observing that the function t(v) = 2

|T |−�
for every v ∈ T is a fractional transversal of C′′ of value 2|T |

|T |−�
, and that

�(C′′)� �(C(F)). �
The algorithm for computing I as in Theorem 2.5 starts with I = ∅ and then continues as follows.

Phase 1. While there exists an edge e on T such that ν(F�
I∪{e}) � ν(F�

I ) − 1, or such that ν(F̄�
I∪{e}) � ν(F̄�

I ) − 1, add e to I .

Phase 2. Find a transversal T ′ of C(F ′) as in Lemma 3.4(iii), where F ′ = FI . Then find an edge-cover I ′ of F ′ as in
Lemma 3.2 and add I ′ to I .

The edge-set I computed covers F , by Lemma 3.2. The algorithm can be implemented in polynomial time, by Lemma 2.4.
Clearly, the number of edges in I at the end of Phase 1 is at most ν(F�) + ν(F̄�), and is at most ν(F�) if F is symmetric.
Now we bound the size of I ′ . Note that at the end of Phase 1 we have ν(F�

I ), ν(F̄�
I ) � |T |

|T |−�
, by Lemma 3.4(ii). Thus

ν(F̄I ) � 3|T |
|T |−�

by Lemma 3.4(i), and hence �(C(FI )) � ν(F̄I ) � 3|T |
|T |−�

by Lemma 3.1. Consequently, |T ′| � ν(F�
I ) + 2|T |

|T |−�
·

H(�(C(FI ))) � 2|T |
|T |−�

· (H(
3|T |

|T |−�
) + 1

2 ). From this we get |I ′| � |T ′| · ν(F̄I ) � 6(
|T |

|T |−�
)

2 · (H(
3|T |

|T |−�
) + 1

2 ) = α(|T |, �).
The proof of Theorem 2.5 is now complete.

4. Proof of Theorem 2.6

Let ST denote collection of spanning stars on T , so |ST | = |T | in the case of undirected graphs (except that |ST | = 1
if |T | = 2) and |ST | = 2|T | in the case of directed graphs. We start by analyzing the performance of a natural Greedy
Algorithm for covering F� , that starts with I = ∅ and while ν(F�

I ) � 1 adds to I a star S ∈ ST for which ν(F�
I∪S ) is minimal.

The algorithm terminates, since any in-star in ST with center in the inner part of some core of F�
I , reduces the number of

cores by one. Furthermore, the algorithm can be implemented in polynomial time, by Lemma 2.4. The proof of the following
statement is similar to the proof of the main result of [12].

Lemma 4.1. Let F be an �-regular biset-family on T and let S be the collection of stars computed by the Greedy Algorithm. Then

|S| = O

( |T |
|T | − �

log min
{
ν
(
F�

)
, |T | − �

})
.
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Recall that for Ĉ ∈ C(F�) we denote by ÛC the union of the bisets in F� that contain Ĉ and contain no other member
of C(F�), and that by Claim 2.4 the set in {UC : Ĉ ∈ C(F�)} are pairwise disjoint.

Definition 4.1 (See [12].). We say that s ∈ T out-covers Ĉ ∈ C(F�) if s ∈ U∗
C .

Lemma 4.2. Let F be an �-regular biset-family on T and let ν = ν(F�).

(i) There is s ∈ T that out-covers at least ν(1 − �
|T | ) − 1 members of C(F�).

(ii) If s out-covers Ĉ ∈ C(F�) then any edge from C to s covers all the bisets in F� that contain Ĉ and contain no other member of
C(F�).

(iii) Let s out-cover the members of C ⊆ C(F�) and let S be a star with one edge from the inner part of each member of C to s. Then
ν(F�) � ν(F�

S ) − |C|/2.

Consequently, there exists a star S on T such that

ν
(
F�

S

)
� 1

2

(
1 + �

|T |
)

· ν + 1

2
= α · ν + β. (1)

Proof. We prove (i). Consider the hypergraph

H = {
T \ Γ (ÛC ): Ĉ ∈ C

(
F�

)}
.

Let v ∈ T . Note that if v ∈ T \ Γ (ÛC ) then v out-covers Ĉ , unless v ∈ UC . By Claim 3.3, the sets UC are pairwise disjoint,
hence v belongs to at most one of them. Hence the number of members of C(F�) out-covered by v is at least the degree
of v in H minus 1. Thus all we need to prove is that there is a node s ∈ T whose degree in H is at least ν(1 − �

|T | ).

For every Ĉ ∈ C(F�) we have |T \ Γ (ÛC )| � |T | − �, by the �-regularity of F . Hence the bipartite incidence graph of H has
at least ν(|T | − �) edges, and thus has a node s ∈ T of degree at least ν(1 − �

|T | ), which equals the degree of s in H. Part (i)
follows.

Part (ii) follows from the simple observation that any biset in F� , that contains Ĉ and contains no other member
of C(F�), is contained in ÛC .

We prove (iii). It is sufficient to show that every Ĉ ∈ C(F�
S ) contains some Ĉ ′ ∈ C(F�) \ C or contains at least two

members in C . Clearly, Ĉ contains some Ĉ ′ ∈ C(F�). We claim that if Ĉ ′ ∈ C then Ĉ must contain some Ĉ ′′ ∈ C(F�) distinct
from Ĉ ′ . This is so since Ĉ ∈ C(F�

S ) and since S covers all bisets in F� that contain Ĉ and contain no other member
of C(F�), by part (ii). Part (iii) follows. �

Let us use parameters α, β , γ , δ and j set to

α = 1

2

(
1 + �

|T |
)

, β = 1

2
, γ = 1 − �

|T | = 2(1 − α), δ = 1.

Note that α < 1 and that β
1−α = |T |

|T |−�
. Let j be the minimum integer satisfying α j(ν − β

1−α )� 2
1−α , namely,

j =
⌈

ln 1
2 (ν(1 − α) − β)

ln(1/α)

⌉
�

⌈
ln 1

2ν(1 − α)

ln(1/α)

⌉
. (2)

We assume that ν � 2+β
1−α to have j � 0 (otherwise Lemma 4.1 follows).

Lemma 4.3. Let 0 � α < 1, β � 0, ν0 = ν , and for i � 1 let

νi+1 � ανi + β, si = γ νi−1 − δ.

Then νi � αi(ν − β
1−α ) + β

1−α and
∑ j

i=1 si � 1−α j

1−α · γ (ν − β
1−α ) + j( γ β

1−α − δ). Moreover, for j given by (2)

ν j �
2 + β

1 − α
= 5|T |

|T | − �
and

j∑
i=1

si � 2

(
ν − |T |

|T | − �

)
.

Proof. Unraveling the recursive inequality νi+1 � ανi + β in the lemma we get:

νi � αiν + β
(
1 + α + · · · + αi−1) = αiν + β

1 − αi

= αi
(
ν − β

)
+ β

.

1 − α 1 − α 1 − α
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This implies si � γ (ν − β
1−α )αi−1 + γ β

1−α − δ, and thus

j∑
i=1

si � γ

(
ν − β

1 − α

) j∑
i=1

αi−1 + j

(
γ β

1 − α
− δ

)

= γ

(
ν − β

1 − α

)
· 1 − α j

1 − α
+ j

(
γ β

1 − α
− δ

)
.

For j given by (2) we have ν j � α j(ν − β
1−α ) + β

1−α � 2
1−α + β

1−α = 2+β
1−α , and

j∑
i=1

si �
1 − α j

1 − α
· γ

(
ν − β

1 − α

)
+ j

(
γ β

1 − α
− δ

)

� 2

(
ν − β

1 − α

)
= 2

(
ν − |T |

|T | − �

)
. �

We now finish the proof of Lemma 4.1. At each one of the first j iterations we out-cover at least ν(F�
I )(1 − �

|T | ) − 1

members of C(F�
I ), by Lemma 4.2. In each one of the consequent iterations, we can reduce ν(F�

I ) by at least one, if we
choose the center of the star in C for some Ĉ ∈ C(F�

I ). Thus using Lemma 4.3, performing the necessary computations,
and substituting the values of the parameters, we obtain that the number of stars in S is bounded by

j + ν j �
⌈

ln 1
2ν(1 − α)

ln(1/α)

⌉
+ 5|T |

|T | − �
= O

( |T |
|T | − �

log min{ν, |T | − �}
)

.

Now we discuss a variation of this algorithm that produces S with a small number of leaves. Here at each one of the
first j iterations we out-cover exactly ν(1 − �

|T | ) − 1 cores. For that, we need to be able to compute the bisets ÛC , and such

a procedure can be found in [15]. The number of edges in the stars at the end of this phase is at most 2(ν − |T |
|T |−�

) and

ν j � 5|T |
|T |−�

. In the case of non-symmetric F and/or directed edges, we apply the same algorithm on F̄� . At this point,

we apply Phase 2 of the algorithm from the previous section. Since the number of cores of each one of F�
I , F̄�

I is now

O (
|T |

|T |−�
), the size of the transversal T ′ computed is bounded by |T ′| = O (

|T |
|T |−�

· log |T |
|T |−�

). The number of stars is at

most |T ′|, while the number of edges in the stars is at most |T ′| · ν(F̄I ) = (
|T |

|T |−�
)

2 · O (log |T |
|T |−�

).
This concludes the proof of Theorem 2.6.
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