577 research outputs found

    Inactivation Decoding of LT and Raptor Codes: Analysis and Code Design

    Get PDF
    In this paper we analyze LT and Raptor codes under inactivation decoding. A first order analysis is introduced, which provides the expected number of inactivations for an LT code, as a function of the output distribution, the number of input symbols and the decoding overhead. The analysis is then extended to the calculation of the distribution of the number of inactivations. In both cases, random inactivation is assumed. The developed analytical tools are then exploited to design LT and Raptor codes, enabling a tight control on the decoding complexity vs. failure probability trade-off. The accuracy of the approach is confirmed by numerical simulations.Comment: Accepted for publication in IEEE Transactions on Communication

    LT Code Design for Inactivation Decoding

    Get PDF
    We present a simple model of inactivation decoding for LT codes which can be used to estimate the decoding complexity as a function of the LT code degree distribution. The model is shown to be accurate in variety of settings of practical importance. The proposed method allows to perform a numerical optimization on the degree distribution of a LT code aiming at minimizing the number of inactivations required for decoding.Comment: 6 pages, 7 figure

    Bounds on the Error Probability of Raptor Codes under Maximum Likelihood Decoding

    Get PDF
    In this paper upper and lower bounds on the probability of decoding failure under maximum likelihood decoding are derived for different (nonbinary) Raptor code constructions. In particular four different constructions are considered; (i) the standard Raptor code construction, (ii) a multi-edge type construction, (iii) a construction where the Raptor code is nonbinary but the generator matrix of the LT code has only binary entries, (iv) a combination of (ii) and (iii). The latter construction resembles the one employed by RaptorQ codes, which at the time of writing this article represents the state of the art in fountain codes. The bounds are shown to be tight, and provide an important aid for the design of Raptor codes.Comment: Submitted for revie

    Block-Diagonal and LT Codes for Distributed Computing With Straggling Servers

    Get PDF
    We propose two coded schemes for the distributed computing problem of multiplying a matrix by a set of vectors. The first scheme is based on partitioning the matrix into submatrices and applying maximum distance separable (MDS) codes to each submatrix. For this scheme, we prove that up to a given number of partitions the communication load and the computational delay (not including the encoding and decoding delay) are identical to those of the scheme recently proposed by Li et al., based on a single, long MDS code. However, due to the use of shorter MDS codes, our scheme yields a significantly lower overall computational delay when the delay incurred by encoding and decoding is also considered. We further propose a second coded scheme based on Luby Transform (LT) codes under inactivation decoding. Interestingly, LT codes may reduce the delay over the partitioned scheme at the expense of an increased communication load. We also consider distributed computing under a deadline and show numerically that the proposed schemes outperform other schemes in the literature, with the LT code-based scheme yielding the best performance for the scenarios considered.Comment: To appear in IEEE Transactions on Communication
    • …
    corecore