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Abstract

In this paper upper and lower bounds on the probability of decoding failure under maximum

likelihood decoding are derived for different (nonbinary) Raptor code constructions. In particular four

different constructions are considered; (i) the standard Raptor code construction, (ii) a multi-edge type

construction, (iii) a construction where the Raptor code is nonbinary but the generator matrix of the LT

code has only binary entries, (iv) a combination of (ii) and (iii). The latter construction resembles the

one employed by RaptorQ codes, which at the time of writing this article represents the state of the art

in fountain codes. The bounds are shown to be tight, and provide an important aid for the design of

Raptor codes.
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I. INTRODUCTION

Fountain codes [2] are a class of erasure codes which have the property of being rateless. Thus,

they are potentially able to generate an endless amount of encoded (or output) symbols from k

information (or input) symbols. This property makes them suitable for application in situations

where the channel erasure rate is not a priori known. The first class of practical fountain codes,

Luby Transform (LT) codes, was introduced in [3] together with an iterative decoding algorithm

that achieves a good performance when the number of input symbols is large. In [3], [4] it was

shown how, in order to achieve a low probability of decoding error, the encoding and iterative

decoding cost1 per output symbol is O (ln(k)).

Raptor codes were introduced in [4] and outperform LT codes in several aspects. They consist

of a serial concatenation of an outer code C (or precode) with an inner LT code. On erasure

channels, this construction allows relaxing the design of the LT code, requiring only the recovery

of a fraction 1−σ of the input symbols, with σ small. This can be achieved with linear encoding

and decoding complexity (under iterative decoding). The outer code is responsible for recovering

the remaining fraction σ of input symbols. If the outer code C is linear-time encodable and

decodable, then the Raptor code has linear encoding and (iterative) decoding complexity over

erasure channels.

Most of the existing works on LT and Raptor codes consider iterative decoding and assume

large input block lengths (k at least in the order of a few tens of thousands). However, in

practice, smaller values of k are more commonly used. For example, for the binary Raptor

codes standardized in [5] and [6] the supported values of k range from 4 to 8192. For these input

block lengths, iterative decoding performance degrades considerably. In this regime, a different

decoding algorithm may be adopted that is an efficient maximum likelihood (ML) decoder, in

the form of inactivation decoding [7]–[11]. An inactivation decoder solves a system of equations

in several stages. First a set of variables is declared to be inactive. Next a system of equations

involving only the set of inactive variables needs to be solved, for example using Gaussian

elimination. Finally, once the value of the inactive variables is known, all other variables (those

which were not inactive) are recovered using iterative decoding (back substitution).

1In [4] the cost per output symbol is defined as the encoding/decoding complexity normalized by the number of output

symbols. The complexity is defined as the number operations needed to carry out encoding/decoding.



Recently, some works have addressed the complexity of inactivation decoding for Raptor and

LT codes [12]–[15]. The probability of decoding failure of LT and Raptor codes under ML

decoding has also been subject of study in several works. In [16] upper and lower bounds

on the symbol erasure rate were derived for LT codes and Raptor codes with outer codes in

which the elements of the parity-check matrix are independent and identically distributed (i.i.d.)

Bernoulli random variables. This work was elegantly extended in [17], [18], where upper and

lower bounds on the error probability of LT codes under ML decoding were derived. Moreover,

[18] introduced an approximation to the probability of error of Raptor codes under ML decoding,

that was derived under the assumption that the number of erasures correctable by the outer code

is small. Hence, the approximation holds when the rate of the outer code is sufficiently high. In

[19] it was shown by means of simulations how the error probability of Raptor codes constructed

on Fq, the finite field of order q, is very close to that of linear random fountain codes. In [20]

upper and lower bounds on the probability of decoding failure of Raptor codes were derived.

The outer codes considered in [20] are binary linear random codes with a systematic encoder.

Ensembles of Raptor codes with linear random outer codes were also studied in a fixed-rate

setting in [21], [22]. In [23], q-ary Raptor codes are considered, but only for the case in which

the outer code is a low-density generator matrix code. Although a number of works have studied

the probability of decoding failure of Raptor codes, to the best of the authors’ knowledge, up

to now the results hold only for specific outer codes (see [16], [20]–[23]).

In this paper upper and lower bounds on the probability of decoding failure of different Raptor

code constructions are derived. The upper bounds derived in this paper follow the footsteps of

[17], [18], where bounds to the error probability of LT codes were derived. In contrast to

other works in literature [16], [20]–[23], the bounds presented in this paper are general since

they are valid for any outer code, requiring only the (joint) weight enumerator (or composition

enumerator, a quantity to be defined later) of the outer code. Furthermore, simulation results are

presented which show how the derived bounds are tight. In particular four different constructions

are considered, namely:

i) a Raptor code construction over Fq, where the outer code is built over Fq as well as the

generator matrix of the LT code;

ii) a multi-edge type Raptor construction over Fq, where intermediate symbols of two different

types can be distinguished;

iii) a construction where the Raptor code is built over Fq but the generator matrix of the LT



code has only entries belonging to {0, 1} ⊆ Fq;

iv) a combination of (ii) and (iii).

The bounds are applicable for the two Raptor codes present in standards. In particular, the R10

Raptor code in its nonsystematic form [5] is an example of construction (i), since binary Raptor

codes are simply a special case (q = 2). Furthermore, the RaptorQ code in its nonsystematic

form [24] is an example of construction (iv). The RaptorQ code is, at the timing, the state of

the art fountain code construction, and it is an IETF standard [24]. To the best of the authors’

knowledge, this is the first work which analyzes the performance of the RaptorQ construction2.

The upper bounds on the probability of decoding failure are derived for all the above four

constructions and they all result from application of the union bound. As mentioned before, they

generalize the results in literature to the case where the outer codes are chosen arbitrarily (with the

caveat of having sufficient knowledge of the outer code distance properties). In the same general

setting, two types of lower bounds are obtained. A first lower bound is a consequence of the

degree-two Bonferroni inequality (as for the lower bounds introduced in [16]). A second, tighter

lower bound is obtained by means of the Dawson-Sankoff inequality [25], which generalizes

the Bonferroni inequality.3 The bounds are shown to be remarkably tight at large overheads,

and sufficiently tight at overheads approaching zero. Starting from the upper bound on the

probability of decoding failure, an error exponent analysis of Raptor codes is presented, which

allows characterizing the overhead regions for which an exponential decay (in the input block

length) of the expected failure probability can be attained. Examples of the application of the

proposed bounds to the design of Raptor codes are finally provided.

The paper is organized as follows. In Section II some preliminary definitions are given.

Section III presents a number of results on joint compositions. Section IV addresses the different

Raptor code constructions considered in this paper. Section V presents several theorems with

upper and lower bounds on the probability of decoding failure for the different Raptor code

constructions. Proofs of the bounds are given in Section VI. Section VII introduces the error

exponent analysis. Numerical results comparing the bounds with Monte Carlo simulations are

illustrated in Section VIII, while code design examples are discussed in Section IX. Section X

2In [23] a q-ary Raptor code construction is analyzed, but it does not consider all the peculiarities of the RaptorQ code.
3Note that the Dawson-Sankoff inequality was used in [26] to lower bound the expected error probability of regular low-density

parity-check (LDPC) code ensembles over the binary erasure channel (BEC).



presents the conclusions of our work.

II. PRELIMINARIES

A. Vector and Matrix Notation

We use boldface letters to denote vectors and matrices. Vectors are conventionally assumed as

row vectors with indices starting from 0; matrix row and column indices also start from 0. For

any integer matrix A we denote by |A| the sum of all matrix elements. We use the same notation

for integer vectors, i.e., |a| represents the sum of all elements of vector a. We also denote by

1(A) the matrix obtained from A by turning to 1 all its nonzero elements. The transpose of any

matrix A is denoted by AT.

We say that a zero-one square matrix A is a circulant permutation matrix when: (i) it is a

permutation matrix; (ii) each row of A is obtained from the previous row by the right cyclic shift

of one position. We say that a zero-one square matrix A is an incomplete circulant permutation

matrix when: (i) it is nonzero; (ii) it can be obtained from a circulant permutation matrix by

turning to 0 some 1 elements.

For a nonnegative integer vector a = (a0, a1, . . . , an−1) such that |a| = h we denote the

multinomial coefficient
(

h
a0,a1,...,an−1

)
by
(
h
a

)
. With a slight abuse of notation, for an m × n

nonnegative integer matrix A = [as,t] such that |A| = h we write
(
h
A

)
as a compact notation for(

h
a0,0,...,a0,n−1,...,am−1,0,...,am−1,n−1

)
.

B. Bonferroni-Type Inequalities

Let A1, . . . , An be events in a probability space and

Sk =
∑

1≤i1<···<ik≤n

Pr{Ai1 ∩ · · · ∩ Aik}.

The general Bonferroni inequality states that, for any 1 ≤ t ≤ n, we have [27]

(−1)t Pr{A1 ∪ · · · ∪ An} ≥ (−1)t
t∑
i=1

(−1)i−1Si. (1)

Inequality (1) holds with equality for t = n (inclusion-exclusion identity). Notable special cases

are obtained for t = 1 and t = 2. Specifically, for t = 1 it reduces to the union upper bound

Pr{A1 ∪ · · · ∪ An} ≤ S1 =
n∑
i=1

Pr{Ai} (2)



while for t = 2 it yields the degree-two Bonferroni lower bound

Pr{A1 ∪ · · · ∪ An} ≥ S1 − S2 =
n∑
i=1

Pr{Ai} −
∑

1≤i<j≤n

Pr{Ai ∩ Aj}. (3)

A tighter version of (3) was developed in [25], where it was shown that, for any r ∈ {1, . . . , n},

Pr{A1 ∪ · · · ∪ An} ≥
2

r + 1
S1 −

2

r(r + 1)
S2. (4)

Moreover, maximization with respect to r yields

Pr{A1 ∪ · · · ∪ An} ≥
θS2

1

(2− θ)S1 + 2S2

+
(1− θ)S2

1

(1− θ)S1 + 2S2

(5)

where θ = 2S2/S1 − b2S2/S1c. Indeed, it was proved in [28] that (5) is the sharpest possible

lower bound for Pr{A1 ∪ · · · ∪An} based on a linear combination of S1 and S2. As such, it is

tighter than S1 − S2. Hereafter, (5) will be referred to as Dawson-Sankoff lower bound.

C. Weight and Composition Enumerators

For any linear block code C constructed over Fq and any codeword v ∈ C, we let w(v) be

the Hamming weight (often referred to simply as the weight) of v. Letting h be the codeword

length, we denote the weight enumerator of C as A = {A0, A1 . . . Ah}, where Ai denotes the

multiplicity of codewords of weight i. Similarly, given an ensemble C of linear block codes, all

with the same block length h, along with a probability distribution on the codes in the ensemble,

we denote the expected weight enumerator of a random code in C as A = {A0,A1 . . .Ah}, where

Al denotes the expected multiplicity of codewords of weight l.

Next, consider a linear block code C ⊂ F
h
q , whose codeword symbols are partitioned into two

different types, namely, type A and type B. Let hA and hB be the number of codeword symbols

of types A and B, respectively, such that hA + hB = h. A generic codeword after reordering

can be expressed as v = (vA,vB), where vA and vB denote the vectors of encoded symbols of

type A and type B respectively. In this context the bivariate weight enumerator polynomial of

the code is defined as

A(x, z) =

hA∑
l=0

hB∑
t=0

Al,t x
lzt (6)

where Al,t denotes the multiplicity of codewords with w(vA) = l and w(vB) = t. Similarly, given

an ensemble C of block codes with block length h and with two types of codeword symbols as



defined above, along with a probability distribution on the codes in the ensemble, we define its

expected bivariate weight enumerator polynomial as

A(x, z) =

hA∑
l=0

hB∑
t=0

Al,t x
lzt

where Al,t denotes the expected multiplicity of codewords with w(vA) = l and w(vB) = t.

Given a vector r = (r0, r1, . . . , rh−1) ∈ Fhq , we define its composition ς(r) as

ς(r) = (ς0(r), ς1(r), . . . , ςq−1(r))

where

ςi(r) =
∣∣{rj : rj = αi−1

}∣∣ , for j ∈ {0, . . . , h− 1} and i ∈ {1, 2, . . . , q − 1}

being α the residue class of the polynomial x, and

ς0(r) = |{rj : rj = 0}| for j ∈ {1, . . . , h}.

That is, ςi(r), i ∈ {1, 2, . . . , q− 1}, is the number of elements in r that take value αi−1 whereas

ς0(r) is the number of null elements in r. Given a linear block code C, we define its composition

enumerator, Qf, as the number of codewords v∈ C with composition ς(v) = f. Similarly, for a

code ensemble we define its expected composition enumerator Qf as the expected multiplicity

of codewords with composition f.

Consider also a linear block code C of length h, with two types of codeword symbols as defined

above. We define the bivariate composition enumerator QfA,fB of a code C as the number of

codewords v = (vA,vB) in C for which vA has composition fA and vB has composition fB. This

definition can be easily extended to code ensembles. In particular, we define the expected bivariate

composition enumerator QfA,fB of a random code in the ensemble as the expected multiplicity

of codewords v = (vA,vB) for which vA has composition fA and vB has composition fB.

Given the composition f of a vector r ∈ Fhq , f = ς(r), as defined above, we define B(f ) as an

indicator function that takes value 1 only if
∑h

i=1 ri = 0, i.e.,

B(f ) =

1, if
∑q−1

i=1

∑fi
s=1 α

i−1 = 0

0, otherwise.



D. Joint Weight and Joint Composition Enumerators

Given two vectors r1 ∈ Fhq and r2 ∈ Fhq , we define the joint weight of r1 and r2, denoting it

as τ = τ(r1, r2), as the vector (τ0, τ1, τ2, τ3) such that:

• There are τ0 positions in which both r1 and r2 are zero;

• There are τ1 positions in which r1 is zero and r2 is nonzero;

• There are τ2 positions in which r1 is nonzero and r2 is zero;

• There are τ3 positions in which both r1 and r2 are nonzero.

The elements of τ = τ(r1, r2) are nonnegative integers and |τ | = h.

Given two vectors r1 ∈ Fhq and r2 ∈ Fhq , we define the joint composition of r1 and r2, denoting

it as κ = κ(r1, r2), as the q× q matrix [κs,t], (s, t) ∈ {0, . . . , q− 1}× {0, . . . , q− 1}, such that:

• There are κ0,0 positions in which both r1 and r2 are zero;

• There are κ0,t positions, t 6= 0, in which r1 is zero and r2 is equal to αt−1;

• There are κs,0 positions, s 6= 0, in which r1 is equal to αs−1 and r2 is zero;

• There are κs,t positions, s 6= 0, t 6= 0, in which r1 is equal to αs−1 and r2 is equal to αt−1.

The elements of κ(r1, r2) are nonnegative integers and |κ| = h. We write

κ =

 κ0,0 κ1

κ2 κ3

 (7)

where κ1 is the 1×(q−1) matrix [κ0,1, . . . , κ0,q−1], κ2 is the (q−1)×1 matrix [κ1,0, . . . , κq−1,0]
T,

and κ3 is the (q − 1)× (q − 1) matrix [κs,t], (s, t) ∈ {1, . . . , q − 1} × {1, . . . , q − 1}.
There is a simple relationship between the joint weight τ = τ(r1, r2) of two vectors and

their joint composition κ = κ(r1, r2). In particular, we have τ0 = κ0,0, τ1 = |κ1|, τ2 = |κ2|,
and τ3 = |κ3|. We write τ = τ(κ) to indicate the joint weight τ associated with the joint

composition κ. There also is a simple relationship between the joint composition κ = κ(r1, r2)

of two vectors and the composition of each of them. Specifically, denoting the composition of

r1, ς(r1), by γ1(κ) and the composition of r2, ς(r2), by γ2(κ), we have

γ1(κ) =
( q−1∑
t=0

κ0,t, . . . ,

q−1∑
t=0

κq−1,t

)
(8)

γ2(κ) =
( q−1∑
s=0

κs,0, . . . ,

q−1∑
s=0

κs,q−1

)
. (9)

Given two linear block codes C1 ⊂ F
h
q of dimension k1 and C2 ⊂ F

h
q of dimension k2, we define

their joint weight enumerator, denoting it by Jτ , as the number of codeword pairs (v, z) ∈ C1×C2



such that τ(v, z) = τ . We also define their joint composition enumerator, denoting it by Sκ, as

the number of codeword pairs (v, z) ∈ C1 × C2, such that κ(v, z) = κ. If C1 = C2 = C, then

Jτ and Sκ are called the biweight and the bicomposition enumerator of C, respectively. For an

ensemble C of linear block codes, all with the same block length, we denote by Jτ and Sκ the

expected biweight and bicomposition enumerators, respectively, of a random code in C .4

Remark 1. For q = 2, if τ = τ(κ), then τ = (κ0,0, κ0,1, κ1,0, κ1,1). Thus, in the binary case

there exists a bijection between joint weights and joint compositions so that the two concepts

become equivalent and can be used interchangeably. With this bijection in mind we can also

write Sκ = Jτ . This is not the case in the nonbinary case.

E. Weight Spectral Shape of Code Ensemble Sequences

A code ensemble sequence {Ck} is a sequence of code ensembles, where Ck is an ensemble

of dimension-k codes with block length h = k/R defined over Fq, being R a constant, i.e., not

dependent on k. The weight spectral shape of the ensemble sequence {Ck} is given by

G(ω) = lim
h→∞

1

h
log2 A

(hR)
bωhc

where A(hR) is the expected weight enumerator of the code ensemble ChR. In the definition

above, ω can be regarded as the normalized Hamming weight.

We recall next the definition of uniform convergence, which will become essential for the

results derived in Section VII. A sequence fh of real-valued functions on D ⊆ R converges

uniformly to the function f : D 7→ R on D0 ⊆ D if for any ε > 0 there exists h0(ε) such that,

for all h ≥ h0(ε), |fh(x)− f(x)| < ε for all x ∈ D0. We write fh
u−→ f to indicate that fh

converges to f uniformly.

F. Further Useful Definitions and Results

For a positive integer n and a prime or prime power q, we denote by Kn,qi (x) the Krawtchouk

polynomial of degree i with parameters n and q, which is defined as [29]

Kn,qi (x) =
i∑

j=0

(−1)j
(
x

j

)(
n− x
i− j

)
(q − 1)i−j.

4The concept of joint weight and joint weight enumerator was introduced in [30], where examples of biweight numerators

for some classical codes were obtained.



Moreover, we recall Chu-Vandermonde identity, stating that(
m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
.

III. RESULTS ON JOINT WEIGHTS AND JOINT COMPOSITIONS

This section presents a number of results on joint compositions. These results will be useful

to develop a lower bound on the error probability of a class of Raptor codes.

Lemma 1. Let r1 ∈ Fhq \ {0} and r2 ∈ Fhq \ {0}. We have

κ(r1, r2) =

 κ0,0 0

0 κ3


in which 1(κ3) is a (possibly incomplete) circular permutation matrix, if and only if r1 = βr2

for some β ∈ Fq \ {0}.

Proof: Let r1 = βr2 for some β ∈ Fq \ {0} (r1 and r2 are linearly dependent). With

reference to (7), since r1 and r2 have the same support, both κ1 and κ2 must be null. Let

the proportionality factor β be equal to αs for some s ∈ {0, . . . , q − 2}. Every element of r1

equal to αi corresponds to an element α(i+s)mod (q−1) in r2, making κ1+i,1+(i+s)mod (q−1) > 0;

any other element of κ in row of index 1 + i must be zero. This suffices to conclude that 1(κ3)

is a circulant permutation matrix if all elements of Fq \ {0} appear in r1. It is an incomplete

circulant permutation matrix otherwise. Conversely, let κ1 = κ2 = 0 and 1(κ3) be a (possibly

incomplete) circulant permutation matrix. The vectors r1 and r2 must have the same support.

Moreover, there must exist s ∈ {0, . . . , q− 2} such that every nonzero element of κ, apart from

κ0,0, is in the form κ1+i,1+(i+s)mod (q−1) for some i ∈ {1, . . . , q − 1}. But then r1 = αsr2.

Let C ⊂ F
h
q be a linear block code of dimension k. We partition the codebook of C into

Mq,k = (qk−1)/(q−1)+1 parts Pa, a = {0, 1, . . . ,Mq,k−1}, as follows. Part P0 only contains

the null codeword, while any other part contains q − 1 codewords having the same support and

being linearly dependent. Moreover, we index the codewords in C from 0 to qk − 1, as follows.

The index 0 is reserved to the null codeword; the indices from (a − 1)(q − 1) + 1 to a(q − 1)

are reserved to the codewords in Pa, a ∈ {1, . . . ,Mq,k − 1}. For every a ∈ {1, . . . ,Mq,k − 1}
we take one representative in Pa, denoting it by ṽa. In particular, we choose as ṽa the codeword
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Fig. 1. Graphical interpretation of the set Dq,k for q = 4 and k = 2.

in Pa having the smallest index. Letting {0,v1,v2, . . . ,vqk−1} be the codebook of C, with the

above-mentioned indexing convention we have ṽa = v(a−1)(q−1)+1.

We define the set Dq,k as

Dq,k = {(s, t) ∈ {1, qk − 1} × {1, qk − 1} : bs− 1

q − 1
c 6= b t− 1

q − 1
c}.

Moreover, we define the set D̃q,k ⊆ Dq,k as

D̃q,k = {(s, t) ∈ Dq,k : s = (a− 1)(q − 1) + 1; t = (b− 1)(q − 1) + 1;

a, b ∈ {1, . . . ,Mq,k − 1}; a 6= b} .

The set Dq,k is the set of codeword index pairs (s, t) such that: (i) vs and vt are both nonzero; (ii)

vs and vt are not linearly dependent. Its cardinality is (q−1)2(Mq,k−2)(Mq,k−1). The set D̃q,k

is a subset of Dq,k. It includes all codeword index pairs (s, t) such that vs is the representative

of part P(s−1)/(q−1)+1, vt is the representative of part P(t−1)/(q−1)+1, and vs 6= vt. Its cardinality

is (Mq,k − 2)(Mq,k − 1).

Example 1. Let q = 4 and k = 2. A graphical interpretation of the set D4,2 is provided in

Fig. 1. The codebook is partitioned into the M4,2 = 6 parts P0 = {0}, P1 = {v1,v2,v3},
P2 = {v4,v5,v6}, P3 = {v7,v8,v9}, P4 = {v10,v11,v12}, P5 = {v13,v14,v15}, where all

codewords in the same part are linearly dependent. The set D4,2 is represented by the union

of all grey and red cells of the “chessboard”, while the set D̃4,2 is represented only by the red



cells. White cells, the ones not belonging to D4,2, correspond either to pairs of codewords of

which at least one is null or to pairs of linearly dependent codewords.

We define Kq,h as the set of all joint compositions κ such that |κ| = h and such that any

of the following two conditions holds: (1) at least two matrices out of κ1, κ2, κ3 are nonzero;

(2) κ1 and κ2 are null matrices, κ3 is nonzero, 1(κ3) is neither a complete nor an incomplete

circulant permutation matrix.

Lemma 2. For any linear block code C ⊂ F
h
q of dimension k and any pair (vs,vt) ∈ C × C, we

have κ(vs,vt) ∈ Kq,h if and only if (s, t) ∈ Dq,k.

Proof: Let κ(vs,vt) ∈ Kq,h. If at least two matrices out of κ1, κ2, and κ3 are nonzero, then

vs and vt are both nonzero and have different supports (so they cannot be linearly dependent).

Thus we must have (s, t) ∈ Dq,k. If κ1 = κ2 = 0, κ3 6= 0, and 1(κ3) is neither a circulant

permutation matrix nor an incomplete one, then vs and vt have the same support but are not

linearly dependent (Lemma 1). Thus we must have (s, t) ∈ Dq,k again. Conversely, let (s, t) ∈
Dq,k, meaning that vs and vt are both nonzero and they are not linearly dependent. If vs and

vt have different supports then at least two matrices out of κ1, κ2, and κ3 must nonzero, so

κ(vs,vt) ∈ Kq,h. If vs and vt have the same support, since they are not linearly dependent,

by Lemma 1 κ3 can be neither a circulant permutation matrix, nor an incomplete one. Hence

κ(vs,vt) ∈ Kq,h again.

A. Binary codes

In Remark 1 we pointed out that over F2 the concepts of joint composition and joint weight

become equivalent. Thus, in the binary case the quantities and results so far introduced in this

section can be reformulated in terms of joint weight. Note at first that when q = 2 the two sets

D2,k and D̃2,k coincide and that D2,k can be simply defined as

D2,k = {(s, t) ∈ {1, 2k − 1} × {1, 2k − 1} : s 6= t}.

This is the set of all codeword index pairs (s, t) such that vs 6= 0, vt 6= 0, and vs 6= vt.

For q = 2, K2,h may be simply defined as the set of all joint compositions κ = [κs,t],

s, t ∈ {0, 1}, such that |κ| = h and such that at least two parameters out of κ0,1, κ1,0, κ1,1 are

positive. Owing to the above-recalled equivalence between joint weights and joint compositions,

we introduce the set T2,h as the equivalent of K2,h for joint weights. We define T2,h as the set of



all joint weights τ = (τ0, τ1, τ2, τ3) such that |τ | = h and such that at least two parameters out

of τ1, τ2, τ3 are positive. The following result is an immediate corollary of Lemma 2 for q = 2.

Lemma 3. For any binary linear block code C ⊂ F
h
2 of dimension k and any pair (vs,vt) ∈ C×C,

we have τ(vs,vt) ∈ T2,h if and only if (s, t) ∈ D2,k.

IV. RAPTOR CODES

A. Encoding and Decoding

We consider four different Raptor code constructions, all of them over Fq, with q ≥ 2, being q a

prime or prime power. Fig. 2 shows a block diagram of Raptor encoding. In particular we consider

an outer linear block code C whose length and dimension are denoted by h and k, respectively. We

denote the k input (or source) symbols of the Raptor code as u = (u0, u1, . . . , uk−1). Out of the k

input symbols, the outer code generates a vector of h intermediate symbols v = (v0, v1, . . . , vh−1).

The rate of the outer code is hence R = k/h. Denoting by Go the generator matrix of the outer

code, of dimension (k × h), the intermediate symbol vector can be expressed as

v = uGo.

The intermediate symbols serve as input to an LT encoder, which generates the output symbols

c = (c0, c1, . . . , cn−1), where n can grow unbounded. For any n, we have

c = vGLT = uGoGLT (10)

where GLT is an (h × n) matrix. The different constructions addressed in this paper differ in

how matrix GLT is built, as we will explain later in this section.

The output symbols are transmitted over a q-ary erasure channel (q-EC). At its output each

transmitted symbol is either correctly received or erased.5 We denote by m the number of output

symbols collected by the receiver, and we express it as m = k + δ, where δ is the absolute

receiver overhead. Let us denote by y = (y0, y1, . . . , ym−1) the vector of m received output

5We remark that, due to the fact that LT output symbols are generated independently of each other, the results developed in

this paper remain valid regardless the statistic of the erasures introduced by the channel.
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Fig. 2. Block diagram of Raptor encoding.

symbols. Denoting by I = {i0, i1, . . . , im−1} the set of indices corresponding to the m non-

erased symbols, we have yj = cij . An ML decoder proceeds by solving the linear system of

equations

y = uG̃ (11)

where

G̃ = GoG̃LT

and where G̃LT is the submatrix of GLT formed by the m columns with indices in I.

B. Raptor Code Constructions

The first construction considered in this paper is referred to as Raptor code over Fq. In this

construction each column of GLT is generated by first randomly drawing an output degree d,

according to a probability distribution Ω = (Ω1,Ω2, . . . ,Ωdmax), and then by drawing d different

indices uniformly at random between 1 and h. The distribution Ω is usually referred to as output

degree distribution and its generating function is

Ω(x) =
dmax∑
d=1

Ωdx
d.

Finally, the elements of the column in the row positions corresponding to these indices are drawn

independently and uniformly at random from Fq\{0}, while all other elements of the column

are set to zero.

The second considered construction is referred to as multi-edge type Raptor code. This

construction is characterized by having two different types of intermediate symbols, namely,

type A and type B. Thus, the vector of intermediate symbols after reordering can be expressed

as v = (vA,vB), where vA and vB denote the vectors of intermediate symbols of types A and B



respectively. Furthermore, we denote the number of intermediate symbols of type A and B as

hA and hB respectively. We have hA + hB = h. This Raptor code construction is characterized

by a relationship between output symbols and intermediate symbols in the form

c = vGLT = (vA,vB)GLT = (vA,vB)

 GA
LT

GB
LT

 .
Under the assumption that n output symbols are generated, GA

LT and GB
LT have sizes (hA × n)

and (hB×n) respectively. Each column of GLT is generated by first drawing two output degrees

j and s according to a joint probability distribution Ωj,s whose bivariate generating function is6

Ω(x, z) =

hA∑
j=1

hB∑
s=1

Ωj,s x
jzs.

For each column, j different indices are drawn uniformly at random in {1, 2, . . . , hA} and the

elements of the column in GA
LT at the rows corresponding to these indices are drawn independently

and uniformly from Fq\{0}, while all other elements of the column of GA
LT are set to zero. In a

similar way, s different indices are picked uniformly at random in {1, 2, . . . , hB} and the elements

of the column in GB
LT at the rows corresponding to these indices are drawn independently and

uniformly from Fq\{0}, while all other elements of the column of GB
LT are set to zero.

The third construction considered is referred to as Raptor code over Fq with a 0/1 LT code.

This construction is relevant to q > 2, since otherwise it collapses to the first construction. It

is similar to the first construction (Raptor code over Fq), but all non-zero coefficients of GLT

are equal to 1 ∈ Fq. Thus, each column of GLT is generated by first drawing an output degree

d according to the degree distribution Ω = (Ω1,Ω2, . . . ,Ωdmax), and then by picking d different

indices uniformly at random in {1, 2, . . . , h}. Finally, the elements of the column with rows

corresponding to these indices are set to 1, while all other elements of the column are set to

zero. The relationship between input and output symbols is still given by (10), where vectors

c, v and u have elements in Fq, matrix Go has elements in Fq as well, and the elements of

GLT belong to {0, 1} ⊂ Fq. The advantage of this construction is that encoding and decoding

complexities are significantly reduced when using a standard computing platform, particularly

when q is a power of 2.

6This definition implies Ω0,1 = Ω1,0 = 0 (besides Ω0,0 = 0), which is in line with the distribution used for the RaptorQ

code [24]. This assumption is practically motivated but is not strictly necessary.



Finally, the fourth construction considered is referred to as multi-edge type Raptor code over

Fq with a 0/1 LT code. As its name indicates this construction is a combination of the second

and third constructions described before. In particular, this construction is the same as the second

construction, except for the fact that the non-zero elements in GLT, and therefore in GA
LT and

GB
LT, take always value 1.

This last construction closely resembles the RaptorQ code [24], representing the state of art

fountain code at the time of writing. The RaptorQ code is built over F256. Its outer code is

itself obtained as the serial concatenation of two block codes, the first code being a quasi-cyclic

nonbinary LDPC code and the second code being a nonbinary code defined by a dense parity-

check matrix. In particular, the quasi-cyclic LDPC code has all its nonzero elements in the

parity-check matrix equal to 1 ∈ F256, whereas the second code resembles a random code over

F256. The intermediate symbols belong to two different classes, which are called LT symbols

and permanently inactive symbols. The LT code is a 0/1 LT code characterized by the bivariate

degree distribution

Ω(x, z) = Ω(x)

(
z2 + z3

2

)
where x and z are, respectively, the dummy variables associated with LT and permanently

inactive symbols, and Ω(x) is a degree distribution with maximum output degree 30. Finally,

we remark that the RaptorQ construction can be made systematic.7 Thus, the RaptorQ code

in its non-systematic form8 is an example of the fourth construction considered in this paper

(multi-edge type Raptor code over Fq with a 0/1 LT code). For more details about the RaptorQ

construction as well as the design choices involved we refer the reader to [34].

V. BOUNDS ON THE ERROR PROBABILITY OF RAPTOR CODES

This section contains the main contribution of this paper, a series of bounds on the performance

of the different Raptor code constructions presented in Section IV. Proofs of these bounds are

deferred to Section VI. The first theorem establishes a bound on the probability of decoding

failure of a Raptor code over Fq.

7A Raptor code is made systematic by adding a further precoding stage and specifying the seed of the pseudorandom generator

which is used to generate the LT output symbols, see [31], [32] for more details.
8The RaptorQ code is in non-systematic form when random Encoding Symbol Identifiers (ESI) are used [33].



Theorem 1. Consider a Raptor code over Fq with an (h, k) outer code C characterized by a

weight enumerator A, and an inner LT code with output degree distribution Ω. The probability

of decoding failure under ML erasure decoding, given that k + δ output symbols have been

collected by the receiver, can be upper bounded as

PF ≤
1

q − 1

h∑
l=1

Alπ
k+δ
l (12)

where πl is the probability that the generic output symbol y is equal to 0 given that the vector

v of intermediate symbols has Hamming weight l. The expression of πl is

πl =
1

q
+
q − 1

q

dmax∑
j=1

Ωj

Kh,qj (l)

Kh,qj (0)
. (13)

The upper bound in Theorem 1 also applies to LT codes. In that case, h = k and Al is simply

the total number of sequences of Hamming weight l and length k,

Al =

(
k

l

)
(q − 1)l.

The upper bound thus obtained for LT codes coincides with the bound in [17, Theorem 1].

Theorem 1 may be extended to multi-edge type Raptor codes over Fq as follows.

Theorem 2. Consider a multi-edge type Raptor code over Fq with an (h, k) outer code C
characterized by a bivariate weight enumerator polynomial A(x, z) and an inner LT code with

bivariate output degree distribution Ω(x, z). The probability of decoding failure under ML erasure

decoding given that k + δ output symbols have been collected by the receiver can be upper

bounded as

PF ≤
1

q − 1

∑
0≤l≤hA
0≤t≤hB
l+t>0

Al,tπ
k+δ
l,t

where

πl,t =
1

q
+
q − 1

q

hA∑
j=1

hB∑
s=1

Ωj,s

KhA,qj (l)

KhA,qj (0)

KhB ,qs (t)

KhB ,qs (0)
. (14)

The next result establishes a bound on the probability of decoding failure of a Raptor code

over Fq with a 0/1 LT code.

Theorem 3. Consider a Raptor code over Fq with a 0/1 LT code having an output degree

distribution Ω and with an (h, k) outer code C characterized by a composition enumerator Qf.



The probability of decoding failure under ML erasure decoding given that k + δ output symbols

have been collected by the receiver can be upper bounded as

PF ≤
1

q − 1

∑
f 6=ς(0)

Qf

dmax∑
j=1

Ωj

∑
γ∈Γj

B(γ)

(
f0
γ0

)(
f1
γ1

)
· · ·
(
fq−1

γq−1

)(
h
j

)
k+δ (15)

where Γj is the set of all possible compositions for vectors in F
j
q.

The upper bound in Theorem 3 can be extended to the multi-edge type case as follows.

Theorem 4. Consider a multi-edge type Raptor code over Fq with a 0/1 LT code having bivariate

output degree distribution Ω(x, z), and with an (h, k) outer code C characterized by a bivariate

composition enumerator QfA,fB . The probability of decoding failure under ML erasure decoding

given that k + δ output symbols have been collected by the receiver can be upper bounded as

PF ≤
1

q − 1

∑
fA,fB

fA+fB 6=ς(0)

QfA,fB

 hA∑
j=1

hB∑
s=1

Ωj,s

∑
γA∈Γj

∑
γB∈Γs

B(γA + γB)

×
(
fA,0

γA,0

)(
fA,1

γA,1

)
· · ·
(
fA,q−1

γA,q−1

)(
hA
j

) (
fB,0

γB,0

)(
fB,1

γB,1

)
· · ·
(
fB,q−1

γB,q−1

)(
hB
s

) )k+δ

where Γj and Γs are the set of all possible compositions for vectors in Fjq and in Fsq , respectively.

Each of the above theorems specializes the union bound (2) for a specific Raptor construction,

providing an explicit expression for the corresponding S1 parameter. By developing an expression

for S2, it is also possible to bound the decoding failure probability from below via (3) or (5).

Hereafter we provide such a lower bound for a Raptor code over Fq with a 0/1 LT code and, as

a particular case, for a Raptor code over F2. The lower bounds exploit the sets Kq,h and T2,h

defined in Section III.

Theorem 5. Consider a Raptor code over Fq with a 0/1 LT code having output degree distribution

Ω, and an (h, k) outer code C characterized by a composition enumerator Qf . The probability

of decoding failure under ML erasure decoding, given that k + δ output symbols have been

collected by the receiver, fulfills

PF ≥
θS2

1

(2− θ)S1 + 2S2

+
(1− θ)S2

1

(1− θ)S1 + 2S2

≥ S1 − S2 (16)



where θ = 2S2/S1 − b2S2/S1c, S1 equals the right-hand side of (15), and

S2 =
1

2(q − 1)2

∑
κ∈Kq,h

Sκ

dmax∑
j=1

Ωj

∑
υ∈Υj

B(γ1(υ))B(γ2(υ))

∏
s,t

(
κs,t
υs,t

)(
h
j

)
k+δ

. (17)

In (17), Υj is the set of all possible joint compositions for vector pairs in F
j
q × Fjq .

Moreover, for q = 2: (i) the parameter S1 equals the right-hand side of (12) (expressed with

q = 2); (ii) the parameter S2 reduces to

S2 =
1

2

∑
τ∈T2,h

Jτ

dmax∑
j=1

Ωj

∑
(i1,i2,i3)

(
τ0

j−i1−i2−i3

)(
τ1
i1

)(
τ2
i1

)(
τ3
i3

)(
h
j

)
k+δ

(18)

where Jτ is the biweight enumerator of the outer code and where the most inner sum in (18) is

over all integer triplets (i1, i2, i3) such that i1 + i2 + i3 = j; both i1 + i3 and i2 + i3 are even;

0 ≤ i1 ≤ min{τ1, j}, 0 ≤ i2 ≤ min{τ2, j}, 0 ≤ i3 ≤ min{τ3, j}.

Theorems 1-5 apply to Raptor codes with a given outer code. Next we extend these results

to the case of a random outer code drawn from an ensemble of codes. Specifically, we consider

a parity-check based ensemble of outer codes, denoted by C , defined by a random matrix of

size (h − k) × h whose elements belong to Fq (here, k may not coincide with the dimension

of a specific code in the ensemble, as it will be discussed later). A linear block code of length

h belongs to C if and only if at least one of the instances of the random matrix is a valid

parity-check matrix for it. Moreover, the probability measure of each code in the ensemble is

the sum of the probabilities of all instances of the random matrix which are valid parity-check

matrices for that code. Note that all codes C in C are linear, have length h, and have dimension

kC ≥ k. In the following we use the expression Raptor code ensemble to refer to the set of

Raptor codes obtained by concatenating an outer code belonging to the ensemble C with an LT

code. Given a Raptor code ensemble we define its expected probability of decoding failure as

P̄F = EC[PF(C)] (19)

where the expectation is taken over all codes C in the ensemble of outer codes C .

The following corollary extends the result of Theorem 1 to Raptor code ensembles.

Corollary 1. Consider a Raptor code ensemble over Fq with an outer code randomly drawn

from the ensemble C , characterized by an expected weight enumerator A = {A0,A1, . . . ,Ah}
and an LT code with degree distribution Ω. Under ML erasure decoding and given that k + δ



output symbols have been collected by the receiver, the expected probability of the decoding

failure can be upper bounded as

P̄F ≤
1

q − 1

h∑
l=1

Alπ
k+δ
l .

The following three corollaries extend Theorems 2, 3, 4 and to Raptor code ensembles.

Corollary 2. Consider a multi-edge type Raptor code ensemble over Fq, whose outer code is

randomly drawn from a code ensemble characterized by an expected bivariate weight enumerator

polynomial A(x, z) and an inner LT code with bivariate output degree distribution Ω(x, z). The

expected probability of decoding failure under ML erasure decoding given that k + δ output

symbols have been collected by the receiver can be upper bounded as

P̄F ≤
1

q − 1

∑
0≤l≤hA
0≤t≤hB
l+t>0

Al,tπ
k+δ
l,t

where πl,t is defined in (14).

Corollary 3. Consider an ensemble of Raptor codes over Fq with a 0/1 LT code with degree

distribution Ω and where the outer code is randomly drawn from a code ensemble C charac-

terized by an expected composition enumerator Qf. The expected probability of decoding failure

under ML erasure decoding given that k + δ output symbols have been collected by the receiver

can be upper bounded as

P̄F ≤
1

q − 1

∑
f 6=ς(0)

Qf

dmax∑
j=1

Ωj

∑
γ∈Γj

B(γ)

(
f0
γ0

)(
f1
γ1

)
· · ·
(
fq−1

γq−1

)(
h
j

)
k+δ

where Γj is the set of all possible compositions for vectors in F
j
q.

Corollary 4. Consider a multi-edge type Raptor code ensemble over Fq with a 0/1 LT code

with bivariate output degree distribution Ω(x, z) and where the outer code is randomly drawn

from an ensemble C characterized by an expected bivariate composition enumerator QfA,fB .

The expected probability of decoding failure under ML erasure decoding given that k + δ output



symbols have been collected by the receiver can be upper bounded as

P̄F ≤
1

q − 1

∑
fA,fB

fA+fB 6=ς(0)

QfA,fB

 hA∑
j=1

hB∑
s=1

Ωj,s

∑
γA∈Γj

∑
γB∈Γs

B(γA + γB)

×
(
fA,0

γA,0

)(
fA,1

γA,1

)
· · ·
(
fA,q−1

γA,q−1

)(
hA
j

) (
fB,0

γB,0

)(
fB,1

γB,1

)
· · ·
(
fB,q−1

γB,q−1

)(
hB
s

) )k+δ

where Γj and Γs are the set of all possible compositions for vectors in Fjq and in Fsq , respectively.

Theorem 5 can also be extended to Raptor code ensembles where the outer code is drawn

from an ensemble of linear block codes all with the same block length.

Corollary 5. Consider an ensemble of Raptor codes over Fq with a 0/1 LT code with degree

distribution Ω, where the outer code is drawn randomly from a code ensemble C characterized

by an expected composition enumerator Qf and an expected bicomposition enumerator Sκ. The

probability of decoding failure under ML erasure decoding, given that m output symbols have

been collected by the receiver, fulfills

P̄F ≥
θ̄ [S̄1(m)]2

(2− θ̄)S̄1(m) + 2S̄2(m)
+

(1− θ̄)[S̄1(m)]2

(1− θ̄)S̄1(m) + 2S̄2(m)
≥ S̄1(m)− S̄2(m) (20)

where θ̄ = 2S̄2(m)/S̄1(m)− b2S̄2(m)/S̄1(m)c and

S̄1(m) =
1

q − 1

∑
f 6=ς(0)

Qf

dmax∑
j=1

Ωj

∑
γ∈Γj

B(γ)

(
f0
γ0

)(
f1
γ1

)
· · ·
(
fq−1

γq−1

)(
h
j

)
m

(21)

S̄2(m) =
1

2(q − 1)2

∑
κ∈Kq,h

Sκ

dmax∑
j=1

Ωj

∑
υ∈Υj

B(γ1(υ))B(γ2(υ))

∏
s,t

(
κs,t
υs,t

)(
h
j

)
m

. (22)

In (22), Υj is the set of all possible joint compositions for vector pairs in F
j
q × Fjq .

Moreover, in the particular case q = 2 we have S̄1(m) =
∑h

l=1 Alπ
m
l where πl is given by (13)

(with q = 2) and

S̄2(m) =
1

2

∑
τ∈T2,h

Jτ

dmax∑
j=1

Ωj

∑
(i1,i2,i3)

(
τ0

j−i1−i2−i3

)(
τ1
i1

)(
τ2
i1

)(
τ3
i3

)(
h
j

)
m

. (23)

In (23), Jτ is the average bicomposition enumerator of the outer code ensemble. Furthermore,

the most inner sum is over all integer triplets (i1, i2, i3) such that i1 + i2 + i3 = j; both i1 + i3

and i2 + i3 are even; 0 ≤ i1 ≤ min{τ1, j}, 0 ≤ i2 ≤ min{τ2, j}, 0 ≤ i3 ≤ min{τ3, j}.



Remark 2. Note that the bounds provided in Corollaries (1) to (5) hold also for Raptor code

ensembles based on outer codes of fixed dimension k (e.g., systematic-form generator-based

outer code ensembles). The proof for this case is trivial, and follows from the linearity of the

expectation. The proofs for the case where the outer code is drawn from a parity-check ensemble

require some more care, as illustrated in the following section.

VI. DERIVATION OF THE BOUNDS

This section contains the proofs of the results presented in Section V.

1) Proof of Theorem 1: The proof follows the same approach as for [17, Theorem 1]. An ML

decoder solves the linear system of equations in (11). Decoding fails whenever the system does

not admit a unique solution, that is, if and only if rank(G̃) < k, i.e., if ∃u ∈ Fkq \{0} s.t. uG̃ = 0.

For any two vectors u ∈ Fkq and v ∈ Fhq , we define Eu as the event uGoG̃LT = 0, and Ev as

the event vG̃LT = 0. We have

PF = Pr

 ⋃
u∈Fk

q \{0}

Eu

 = Pr

 ⋃
v∈C\{0}

Ev

 (24)

where we made use of the fact that due to outer code linearity, the all zero intermediate word

is only generated by the all zero input vector.

Due to linearity of the outer code, if v ∈ C, then βv ∈ C for any β ∈ Fq\{0}. Furthermore,

for any β ∈ Fq\{0}, vG̃LT = 0 if and only if βvG̃LT = 0. Thus, for any two outer codewords

v1 and v2 such that v1 = βv2 for some β ∈ Fq \ {0}, the event Ev1 holds if and only if Ev2

does, and we have Ev1 ∪Ev2 = Ev1 . If we take a union bound on (24), this allows us dividing

it by a factor q − 1, leading to

PF ≤
1

q − 1

∑
v∈C\{0}

Pr {Ev} . (25)

Defining Cl as Cl = {v∈ C : w(v) = l}, the expression can be developed as

PF ≤
1

q − 1

h∑
l=1

∑
v∈Cl

Pr {Ev} =
1

q − 1

h∑
l=1

Al Pr {Ev|w(v) = l}

where we made use of the fact that, since the neighbors of an output symbol are chosen uniformly

at random, Pr {Ev} does not depend on the specific vector v, but only on its Hamming weight.

Observing that the output symbols are independent of each other, we have

Pr {Ev|w(v) = l} = πk+δl



where πl = Pr{y = 0|w(v) = l}.
Let J and I be discrete random variables representing the number of intermediate symbols

which are linearly combined to generate the generic output symbol y, and the number of non-

zero such intermediate symbols, respectively. Note that I ≤ min{J, w(v)}. An expression for πl

may be obtained as

πl =
dmax∑
j=1

Pr{y = 0|w(v) = l, J = j}Pr{J = j|w(v) = l}

(a)
=

dmax∑
j=1

Ωj Pr{y = 0|w(v) = l, J = j}

(b)
=

dmax∑
j=1

Ωj

min{j,l}∑
i=0

Pr{y = 0|I = i}Pr{I = i|w(v) = l, J = j}

where (a) is due to

Pr{J = j|w(v) = l} = Pr{J = j} = Ωj

and (b) to

Pr{y = 0|w(v) = l, J = j, I = i} = Pr{y = 0|I = i}.

Letting ϑi,l,j = Pr{I = i|w(v) = l, J = j}, since the j intermediate symbols are chosen uni-

formly at random by the LT encoder we have

ϑi,l,j =

(
l
i

)(
h−l
j−i

)(
h
j

) . (26)

Let us denote Pr{y = 0|I = i} by ϕi and let us observe that the non-zero elements of G̃LT are

i.i.d. and uniformly drawn in Fq \ {0}. On invoking Lemma 4 in Appendix A,9 we have

ϕi =
1

q

(
1 +

(−1)i

(q − 1)i−1

)
. (27)

We conclude that πl is given by

πl =
dmax∑
j=1

Ωj

min{j,l}∑
i=0

ϑi,l,j ϕi

9The proof in Appendix A is only valid for fields with characteristic 2, the case of most interest for practical purposes. The

proof of the general case is a simple extension of Lemma 4.



where ϑi,l,j and ϕi are given by (26) and (27), respectively. Expanding this expression and

rewriting it using Krawtchouk polynomials and making use of the Chu-Vandermonde identity,

one obtains (13).10 �

We remark that (25) holds not only for Raptor codes over Fq, but also for the other three

considered constructions. Hence, (25) represents the starting point in all subsequent proofs.

2) Proof of Theorem 2: For this construction we may develop (25) as

PF ≤
1

q − 1

∑
0≤l≤hA
0≤t≤hB
l+t>0

∑
v∈Cl,t

Pr {Ev} (28)

where Cl,t is the set of codewords in C with l non-zero elements in vA and t non-zero elements

in vB, formally Cl,t = {v = (vA,vB) ∈ C : w(vA) = l, w(vB) = t}. Making use of the bivariate

weight enumerator of the outer code, we can rewrite (28) as

PF ≤
1

q − 1

∑
0≤l≤hA
0≤t≤hB
l+t>0

Al,t Pr{Ev|w(vA) = l, w(vB) = t}

where we made use of the fact that since the neighbors of an output symbol are chosen uniformly

at random, Pr {Ev} does not depend on the particular vector v, but only on its split Hamming

weight, w(vA) = l and w(vB) = t.

Since output symbols are generated independently of each other

Pr{Ev|w(vA) = l, w(vB) = t} = πk+δl,t

where πl,t = Pr{y = 0|w(vA) = l, w(vB) = t}.
Let J and I be two discrete random variables representing, respectively, the number of

intermediate symbols of type A which are linearly combined to generate output symbol y, and the

number of non-zero such intermediate symbols. Similarly, let S and D be two discrete random

variables representing, respectively, the number of intermediate symbols of type B which are

linearly combined to generate output symbol y, and the number of non-zero such intermediate

symbols. Note that we have I ≤ min{J, w(vA)} and D ≤ min{S,w(vB)}. The expression of

πl,t can be obtained as

10The expression of πl was derived in [17], where an upper bound on the performance of LT codes was derived. However,

the derivation of πl in [17] is different from the one we provide in this paper.



πl,t =

hA∑
j=1

hB∑
s=1

Pr{y = 0|w(vA) = l, w(vB) = t, J = j, S = s}

× Pr{J = j, S = s|w(vA) = l, w(vB) = t}

(a)
=

hA∑
j=1

hB∑
s=1

Ωj,s Pr{y = 0|w(vA) = l, w(vB) = t, J = j, S = s}

(b)
=

hA∑
j=1

hB∑
s=1

Ωj,s

min(j,l)∑
i=0

min(s,t)∑
d=0

Pr{y = 0|I = i,D = d}

× Pr{I = i,D = d|w(vA) = l, w(vB) = t, J = j, S = s}

(c)
=

hA∑
j=1

hB∑
s=1

Ωj,s

min(j,l)∑
i=0

min(s,t)∑
d=0

Pr{y = 0|I = i,D = d}

× Pr{I = i|w(vA) = l, J = j}Pr{D = d|w(vB) = t, S = s}

where (a) is due to

Pr{J = j, S = s|w(vA) = l, w(vB) = t} = Pr{J = j, S = s} = Ωj,s

(b) is due to

Pr{y = 0|w(vA) = l, w(vB) = t, J = j, S = s, I = i,D = d} = Pr{y = 0|I = i,D = d}

and (c) follows from independence of I and D. Let us denote Pr{y = 0|I = i,D = d} by ϕi,d.

Since the non-zero elements of G̃LT are i.i.d. and uniformly drawn in Fq \ {0}, on invoking

Lemma 4 in the Appendix we have

ϕi,d =
1

q

(
1 +

(−1)i+d

(q − 1)i+d−1

)
.

Similarly, letting ϑ(A)
i,l,j = Pr{I = i|w(vA) = l, J = j}, we have

ϑ
(A)
i,l,j =

(
l
i

)(
hA−l
j−i

)(
hA
j

) .

If we now define ϑ(B)
d,t,s = Pr{D = d|w(vB) = t, S = s} and use the same reasoning for the

intermediate symbols of type B, we have

ϑ
(B)
d,t,s =

(
t
d

)(
hB−t
s−d

)(
hB
s

) .



Hence, the expression of πl,t is given by

πl,t =

hA∑
j=1

hB∑
s=1

Ωj,s

min(j,l)∑
i=0

min(s,t)∑
d=0

ϕi,d ϑ
(A)
i,l,j ϑ

(B)
d,t,s

Expanding and rewriting this expression using Krawtchouk polynomials yields (14). �

3) Proof of Theorem 3: Starting again from (25) and defining Cf as the set of codewords with

composition f in the outer code C, i.e., Cf = {v∈ C : ς(v) = f}, we have

PF ≤
1

q − 1

∑
f 6=ς(0)

∑
v∈Cf

Pr {Ev} =
1

q − 1

∑
f 6=ς(0)

Qf Pr {Ev|ς(v) = f}

where we made use of the fact that since the neighbors of an output symbol are chosen uniformly

at random, any two codewords having the same composition are characterized by the same

probability Pr {Ev}.
Due to independence among the output symbols, we have

Pr {Ev|ς(v) = f} = (Pr {y = 0|ς(v) = f})k+δ .

Let us now introduce again an auxiliary discrete random variable J to represent the output

symbol degree, i.e., the number of intermediate symbols which are summed to generate the

generic output symbol y. We have

Pr {y = 0|ς(v) = f} =
dmax∑
j=1

Ωj Pr {y = 0|ς(v) = f, J = j} .

Next, let us introduce the random vector Γ representing the composition of the j intermediate

output symbols that are added to obtain output symbol y. Recalling that Γj is the set of possible

compositions of length-j vectors, we can recast Pr {y = 0|ς(v) = f, J = j} as

Pr{y = 0|ς(v) = f, J = j} =
∑
γ∈Γj

Pr {y = 0|ς(v) = f, J = j,Γ = γ}Pr {Γ = γ |ς(v) = f, J = j}

=
∑
γ∈Γj

Pr {y = 0|Γ = γ}Pr {Γ = γ |ς(v) = f, J = j}

=
∑
γ∈Γj

B(γ ) Pr {Γ = γ |ς(v) = f, J = j}

where the indicator function B has been defined in Section II. The term Pr {Γ = γ |ς(v) = f, J = j}
can easily be computed making use of a multivariate hypergeometric distribution. In particular:

Pr{Γ = γ |ς(v) = f, J = j} =

(
f0
γ0

)(
f1
γ1

)
· · ·
(
fq−1

γq−1

)(
h
j

) .

�



4) Proof of Theorem 4: The proof tightly follows the proofs of Theorems 2 and 3. Let us

define CfA,fB as the set of codewords in C where vA vB have, respectively, composition fA and

fB, formally CfA,fB = {v = (vA,vB) ∈ C : ς(vA) = fA, ς(vB) = fB}. From (25) we obtain

PF ≤
1

q − 1

∑
fA,fB

fA+fB 6=ς(0)

∑
v∈CfA,fB

Pr {Ev}

=
1

q − 1

∑
fA,fB

fA+fB 6=ς(0)

QfA,fB Pr {Ev|ς(vA) = fA, ς(vB) = fB} .

Again we exploited the fact that since the neighbors of an output symbol are chosen uniformly

at random, Pr {Ev} depends only on the split composition of v, ς(vA) = fA and ς(vB) = fB.

Due to independence among the output symbols, we have

Pr {Ev|ς(vA) = fA, ς(vB) = fB} = (Pr {y = 0|ς(vA) = fA, ς(vB) = fB})k+δ .

Introducing the two auxiliary discrete random variables, J and S representing, respectively, the

number of intermediate symbols of type A and B which are summed to generate the generic

output symbol y, we have

Pr {y = 0|ς(vA) = fA, ς(vB) = fB}

=

hA∑
j=1

hB∑
s=1

Ωj,s Pr {y = 0|ς(vA) = fA, ς(vB) = fB, J = j, S = s} .

Next, let the two random vectors ΓA and ΓB represent, respectively, the composition of the j

intermediate symbols of type A and s intermediate symbols of type B that are added to obtain

output symbol y. Let us also recall that Γj and Γs represent the set of possible compositions of

length-j and s vectors, respectively. We can recast the rightmost term in the last expression as

Pr{y = 0|ς(vA) = fA, ς(vB) = fB, J = j, S = s}

=
∑
γA∈Γj

∑
γB∈Γs

Pr {y = 0|ς(vA) = fA, ς(vB) = fB, J = j, S = s,ΓA = γA,ΓB = γB}

×Pr {ΓA = γA,ΓB = γB|ς(vA) = fA, ς(vB) = fB, J = j, S = s}

=
∑
γA∈Γj

∑
γB∈Γs

Pr {y = 0|ΓA = γA,ΓB = γB}

×Pr {ΓA = γA,ΓB = γB|ς(vA) = fA, ς(vB) = fB, J = j, S = s}



=
∑
γA∈Γj

∑
γB∈Γs

B(γA + γB) Pr {ΓA = γA|ς(vA) = fA, J = j}Pr {ΓB = γB|ς(vB) = fB, S = s} .

The term Pr {ΓA = γA|ς(vA) = fA, J = j} can easily be computed making use of a multivariate

hypergeometric distribution. Concretely, we have

Pr{ΓA = γA|ς(vA) = fA, J = j} =

(
fA,0

γA,0

)(
fA,1

γA,1

)
· · ·
(
fA,q−1

γA,q−1

)(
hA
j

)
and the same holds for

Pr{ΓB = γB|ς(vB) = fB, S = s} =

(
fB,0

γB,0

)(
fB,1

γB,1

)
· · ·
(
fB,q−1

γB,q−1

)(
hB
s

) .

�

5) Proof of Theorem 5: Applying to the outer codebook the indexing and partition described

in Section III we can write

PF = Pr

 ⋃
v∈C\{0}

Ev

 (a)
= Pr


Mq,k−1⋃
a=1

Eṽa


(b)

≥
Mq,k−1∑
a=1

Pr {Eṽa} −
∑

0<a<b<Mq,k

Pr {Eṽa ∩ Eṽb}

(c)
=

Mq,k−1∑
a=1

Pr {Eṽa} −
1

2

∑
(s,t)∈D̃q,k

Pr {Evs ∩ Evt}

(d)
=

1

q − 1

∑
v∈C\{0}

Pr(Ev)−
1

2(q − 1)2

∑
(s,t)∈Dq,k

Pr{Evs ∩ Evt}

where: (a) is due to the fact that, if two codewords v and z belong to the same part Pa (i.e., they

are linearly dependent), then Ev occurs if and only if Ez occurs; (b) is a direct application of

degree-two Bonferroni inequality (3); (c) follows from the definition of D̃q,k given in Section III

and from Pr{Evs ∩Evt} = Pr{Evt ∩Evs} for any s and t; (d) is due the definition of Dq,k given

in Section III and to the fact that, if v1 and v2 belong to some part Pa and z1 and z2 belong

to another part Pb, then Ev1 ∩ Ez1 occurs if and only if Ev2 ∩ Ez2 occurs. The last obtained

expression is a degree-two Bonferroni lower bound for PF in the form PF ≥ S1 − S2. The term



S1 has been developed in Theorem 3 and equals the right-hand side of (15). The term S2 can

be further developed as

S2 =
1

2(q − 1)2

∑
(s,t)∈Dq,k

Pr{Evs ∩ Evt}
(e)
=

1

2(q − 1)2

∑
κ∈Kq,h

Sκ Pr{Ev∩ Ez|κ(v, z) = κ}

(f)
=

1

2(q − 1)2

∑
κ∈Kq,h

Sκ (Pr{{yv = 0} ∩ {yz = 0}|κ(v, z})k+δ . (29)

In the previous equation array, (e) holds since the probability Pr{Ev ∩ Ez} is the same for all

codeword pairs (v, z) with the same bicomposition. In (f) we have denoted by yv the output

symbol given that v is the intermediate codeword and we have exploited independence of output

symbols.

Next, let the random variable J represent the output symbol degree. Moreover, for given

bicomposition κ(v, z) = κ and given J = j, define Υ as the joint composition of the the two

vectors in F
j
q representing the j symbols selected in v and z. We have

Pr{{yv = 0} ∩ {yz = 0}|κ(v, z) = κ} =
dmax∑
j=1

Ωj Pr{{yv = 0} ∩ {yz = 0}|κ(v, z) = κ, J = j}

=
dmax∑
j=1

Ωj

∑
υ∈Υj

Pr{{yv = 0} ∩ {yz = 0}|Υ = υ}Pr{Υ = υ|J = j, κ(v, z) = κ}

=
dmax∑
j=1

Ωj

∑
υ∈Υj

B(γ1(υ))B(γ2(υ))

∏
0≤s≤q−1
0≤t≤q−1

(
κs,t
υs,t

)
(
h
j

) . (30)

where γ1(υ) and γ2(υ), defined in (8) and (9), are the compositions corresponding to υ.

Expression (17) is obtained by substituting (30) into (29). The two bounds in (16) then follow

as a direct application of degree-two Bonferroni and Dawson-Sankoff bounds, and from the

observation that Dawson-Sankoff bound is tighter than the S1 − S2 one.

For q = 2, the right-hand sides of (12) and (15) coincide. The S1 term is therefore equal

to right-hand side of (12) expressed with q = 2. Next, recall from Remark 1 that for q = 2

there is a one-to-one correspondence between joint compositions and joint weights. With this

correspondence in mind we can write Sκ = Jτ . Again owing to this correspondence, we can

establish a bijection between the set of joint compositions K2,k and the set of joint weights T2,h.

The right-hand side of (17) may thus be recast as

1

2

∑
τ∈Th

Jτ

dmax∑
j=1

Ωj

∑
υ∈Υj

B(γ1(υ))B(γ2(υ))

(
τ0
υ0,0

)(
τ1
υ0,1

)(
τ2
υ1,0

)(
τ3
υ1,1

)(
h
j

)
k+δ



which yields the statement by simply letting

υ =

 j − i1 − i2 − i3 i1

i2 i3

 .
�

6) Proof of Corollary 1: Due to Theorem 1 we may write

P̄F ≤ EC

[
1

q − 1

h∑
l=1

Al(C)πkC+δl

]
. (31)

For all outer codes C ∈ C we have kC ≥ k. Since πl ≤ 1 we can write πkC+δl ≤ πk+δl which

allows us to upper bound (31) as

P̄F ≤ EC

[
1

q − 1

h∑
l=1

Al(C)πk+δl

]
=

1

q − 1

h∑
l=1

Alπ
k+δ
l

where the last equality follows from linearity of expectation. �

The proofs of Corollaries 2, 3 and 4 follow closely that of Corollary 1. Thus, they are omitted

for the sake of brevity.

7) Proof of Corollary 5: Let m be the number of symbols collected by the receiver. Denote

by C the generic outer code in the ensemble. Denote by S1(C,m) and S2(C,m) the parameters

S1 and S2 for code C for a fixed number m of collected symbols. Using (4) we can write

P̄F =
∑
C∈C

Pr{C}PF(C) ≥
∑
C∈C

Pr{C}
[ 2

r + 1
S1(C,m)− 2

r(r + 1)
S2(C,m)

]
=

2

r + 1
EC[S1(C,m)]− 2

r(r + 1)
EC[S2(C,m)] =

2

r + 1
S̄1(m)− 2

r(r + 1)
S̄2(m)

for any r ∈ {1, . . . ,Mq,k}, where S̄1(m) and S̄2(m) are given by (21) and (22), respectively.

Taking r = 1 we obtain the looser bound in (20) (i.e., P̄F ≥ S̄1(m) − S̄2(m)). Maximization

with respect to r leads us to the tighter bound in (20). (The calculation is the same as that used

in [25] to obtain (5) from (4) via maximization with respect to r.)11 �

11In the extension of the upper bounds to Raptor ensembles, we expressed the number of collected symbols at the receiver

as kC + δ for each randomly drawn outer code C, i.e., we considered a fixed absolute overhead with respect to the outer code

dimension. In the extension of the lower bounds, instead, the number of collected symbols was expressed as a fixed m for all

outer codes. Note that we can also write P̄F = P̄F|kC=k Pr{kC = k} + P̄F|kC>k Pr{kC > k}. Since Pr{kC = k} < 1 and

P̄F|kC>k < 1, we obtain P̄F|kC=k > P̄F − Pr{kC > k}. If Pr{kC > k} is small compared to P̄F (as an example, for a linear

random outer code defined by m equations we have Pr{kC > k} < 2−(h−m)) then Corollary 5 with m = k + δ may be

regarded as an approximate lower bound for the average error probability when the outer code ensemble is expurgated from all

codes with dimension larger than k.



VII. ERROR EXPONENT ANALYSIS

In this section, we aim at deriving an error exponent analysis of Raptor code. In particular, a

lower bound to the error exponent is obtained for Raptor code ensembles as a function of the

outer code ensemble weight spectral shape and of the inner LT code distribution. The focus in

on both binary and nonbinary Raptor codes.12 Before proceeding with the derivation, we need

to introduce a few definitions.

Following the definitions of Section II-E above, we refer to a Raptor code ensemble sequence

as a sequence of Raptor code ensembles indexed by the code dimension k, where the kth Raptor

code ensemble is defined by an outer code ensemble Ck and an inner LT code with degree

distribution Ω(x), both over Fq. To emphasize the role of the code dimension, we re-write next

(19) as P̄
(k)
F = EC[PF(C)] where the average is over the outer code ensemble Ck. For a given

relative overhead ε = δ/k, with ε ≥ 0, the error exponent of the Raptor code ensemble sequence

is

E(ε) = lim
k→∞
−1

k
log2 P̄

(k)
F (ε). (32)

Before proceeding with the derivation of a lower bound to the error exponent for general Raptor

code ensemble sequences, we illustrate the case of linear random fountain codes as an example.

Example 2. The probability of decoding failure for a dimension-k linear random fountain code

over Fq can be tightly upper bounded as [19]

P̄
(k)
F <

1

q − 1
q−εk.

For linear random fountain codes we hence have

E(ε) = lim
k→∞
−1

k
log2 P̄

(k)
F (ε)

> lim
k→∞
−1

k
log2

(
1

q − 1
q−εk

)
= ε log2 q. (33)

Note that (33) is positive for positive ε, i.e., a positive relative overhead is sufficient to achieve

an exponential (in k) decay of the decoding failure probability.

12The analysis of Raptor code ensemble sequences over Fq with 0/1 LT codes is omitted due to the lack of a definition of

an equivalent of the weight spectral shape for (bivariate) composition enumerators.



For general Raptor code ensemble sequences, the following theorem provides a lower bound

to the error exponent (under mild conditions on the outer code ensemble sequence).

Theorem 6. Consider a Raptor code ensemble sequence over Fq defined by an outer code

ensemble sequence {Ck} and an inner LT code degree distribution Ω(x). Let the outer code

ensemble sequence spectral shape G(ω) be well-defined in [0, 1]. If 1
h

log2 A
(k)
bωhc

u−→ G(ω) then

the Raptor code ensemble sequence error exponent can be lower bounded as

E(ε) ≥ − sup
ω∈(0,1]

[
1

R
G(ω) + (1 + ε) log2 %ω

]
(34)

where %ω = 1
2

∑dmax

j=1 Ωj [1− (1− 2ω)j].

Proof. For a general Raptor code ensemble sequence, we re-write the upper bound of on the

decoding failure probability from Corollary 1 as

P̄
(k)
F ≤

1

q − 1

∑
ω∈Fh

A
(k)
bωhcπ

k(1+ε)
bωhc

where Fh =
{
l
h

}
with l = 1, . . . , h. Following (32), we have that

E(ε) = lim
k→∞
−1

k
log2 P̄

(k)
F (ε)

≥ lim
h→∞
− 1

hR
log2

1

q − 1

∑
ω∈Fh

A
(hR)
bωhcπ

hR(1+ε)
bωhc

= lim
h→∞
− 1

hR
log2

1

q − 1

∑
ω∈Fh

2log2 A
(hR)
bωhc+hR(1+ε) log2 πbωhc

≥ lim
h→∞
− 1

hR
log2

{
h sup
ω∈Fh

[
2log2 A

(hR)
bωhc+hR(1+ε) log2 πbωhc

]}
= − lim

h→∞
sup
ω∈Fh

[
1

R
log2 A

(hR)
bωhc + (1 + ε) log2 πbωhc

]
= − lim

h→∞
sup
ω∈(0,1]

[
1

R
log2 A

(hR)
bωhc + (1 + ε) log2 πbωhc

]
. (35)

If 1
h

log2 A
(hR)
bωhc converges uniformly to G(ω) in [0, 1], by observing that πbωhc

u−→ %ω (see [22,

Sec. III]), the order of the limit and the supremum operations in (35) can be inverted, yielding

(34). �

Remark 3. Observe that the error exponent lower bound is monotonically increasing with ε. Let

us assume next that, for a given Raptor code ensemble sequence, there exist an ε? > 0 s.t. the

right-hand side of (34) is strictly positive for all ε > ε?. We can conclude that the Raptor code



ensemble sequence is characterized by a decoding failure probability that decays exponentially

fast in k for ε > ε?. The value of ε? can be regarded as an upper bound on the ML decoding

threshold of the Raptor code ensemble. It is important to stress that this bound on the ML

decoding threshold may not be tight since it does not capture the performance in the region

ε ≤ ε?. In this latter region, the decoding failure probability may still become vanishing small

as k grows large at a sub-exponential rate (e.g., only polynomially-fast in k).

VIII. EXAMPLES OF APPLICATION TO RAPTOR CODES AND RAPTOR CODE ENSEMBLES

In this section, we apply the results of Sections V and VII to Raptor codes and Raptor code

ensembles. For the analysis, we use the LT output degree distribution employed by standard R10

Raptor codes [5], [6], given by

ΩA(x) = 0.0098x+0.4590x2 +0.2110x3 +0.1134x4 +0.1113x10 +0.0799x11 +0.0156x40. (36)

A. Raptor Code over F2 with a Hamming Outer Code

Consider a binary Raptor code over F2 with a Hamming outer code. The weight enumerator

of a binary Hamming code of length h = 2t− 1 and dimension k = h− t can be derived easily

using the recursion (i + 1)Ai+1 + Ai + (h − i + 1)Ai−1 =
(
h
i

)
with A0 = 1 and A1 = 0 [29].

The weight distribution obtained from this recursion can then be incorporated in Theorem 1 to

derive the corresponding upper bound on the failure probability. The lower bounds established

by Theorem 5 (binary case) can also be derived, by employing the Hamming code biweight

enumerator, an expression of which was developed in [29].

Fig. 3 shows the decoding failure rate for a Raptor code over F2 employing a (63, 57) binary

Hamming outer code as a function of the absolute overhead, δ, together with the upper bound

from Theorem 1 and the lower bounds from Theorem 5 (binary case). In order to obtain the

values of failure rate, Monte Carlo simulations were run for each δ until 200 errors were collected

using inactivation decoding. It can be observed how the upper bound is very tight and how the

gap between the upper and lower bounds is very small already for values of δ in the order
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Fig. 3. Decoding failure probability PF versus the absolute overhead δ for a binary Raptor code with a (63, 57) Hamming outer

code and LT distribution ΩA(x). Markers: simulation results. Solid: upper bound (Theorem 1). Dotted: Degree-two Bonferroni

lower bound (Theorem 5). Dot-dashed: Dawson-Sankoff lower bound (Theorem 5).

of 10. Interestingly, the order-two Bonferroni and the Dawson-Sankoff bounds are practically

coincident for δ ≥ 6 while for δ < 6 the Dawson-Sankoff bound turns to be remarkably tighter.13

B. Raptor Code Ensembles with Linear Random Outer Codes

Next, consider a Raptor code ensemble over Fq, with LT degree distribution ΩA(x) and in which

the outer code is picked from the uniform parity-check ensemble, with parity-check matrix of size

(h−k)×h and characterized by i.i.d. entries with uniform distribution in Fq. The expected weight

enumerator for an outer code drawn randomly in C is known to be Al =
(
h
l

)
q−(h−k)(q − 1)l.

The expected composition enumerator can be obtained from the expected weight enumerator,

as discussed in Appendix C, while the expected bicomposition enumerator can be obtained as

shown in Appendix D.

13The difference S1 − S2 is actually increasing for δ ∈ {0, . . . , 5}, it reaches a maximum at δ = 5 and then decreases. For

δ ∈ {0, . . . , 4} the difference is even negative. However, since the failure probability cannot increase as δ increases, we can

apply the value taken by S1 − S2 at δ = 5 to all δ < 5. In contrast, Dawson-Sankoff bound decreases monotonically over the

whole range of δ.
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Fig. 4. Expected probability of decoding failure P̄F vs absolute overhead for Raptor code ensembles where the outer code is

drawn randomly from the uniform parity-check ensemble with k = 64 and h = 70. LT distribution: ΩA(x). Lines: upper and

lower bounds. Markers: simulation results.

To obtain the experimental values of the expected decoding failure rate, 6000 different outer

codes were generated. For each outer code and for each overhead value, 1000 inactivation

decoding attempts were carried out. The average failure rate was calculated by averaging the

failure rates of the individual Raptor codes. To generate an outer code, an (h−k)×h parity-check

matrix was drawn randomly by picking its elements independently and uniformly in Fq.

In Fig. 4 we show simulation results for k = 64 and h = 70. Three different Raptor code

ensembles were considered, one constructed over F2, one constructed over F4, and one constructed

over F4 with a 0/1 LT code. We can observe how in all cases the upper bounds are tight, even for

small values of δ. Comparing the two ensembles over F4, it is remarkable that employing a 0/1

LT code results only in a small performance degradation, which vanishes as δ increases. Both

order-two Bonferroni and Dawson-Sankoff lower bounds are displayed for the binary ensemble.

Again, the Dawson-Sankoff bound turns out to be remarkably tighter for small δ.

In Fig. 5 lower bounds on the error exponents of various binary Raptor code ensemble se-

quences are provided. The Raptor code ensemble sequences are defined by the degree distribution

ΩA(x) and linear random outer code sequences with (outer) code rates R = 0.90, 0.95 and 0.98.
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Fig. 5. Lower bounds on the error exponent vs. relative overhead ε for binary Raptor code ensemble sequences defined by the

degree distribution ΩA(x) and linear random outer code sequences with (outer) code rates R = 0.90, 0.95 and 0.98. The error

exponent lower bound for linear random fountain codes of (33) is provided as reference.

When the outer code is picked from a binary linear random code ensemble, the error exponent

lower bound of (34) reduces to

E(ε) ≥ − sup
ω∈(0,1]

[
Hb(ω) +R− 1

R
+ (1 + ε) log2 %ω

]
where Hb(ω) = −ω log2 ω − (1 − ω) log2(1 − ω) is the binary entropy function. The error

exponent lower bound for linear random fountain codes of (33) is provided as a reference. As

intuition suggests, the error exponent lower bound for Raptor codes approaches the one of linear

random fountain codes as the outer code rate decreases. The upper bounds on the ML decoding

thresholds are ε? ≈ 6× 10−2 for R = 0.98, ε? ≈ 1.33× 10−2 for R = 0.95, and ε? ≈ 5× 10−4

for R = 0.90.

C. Raptor Code Ensembles with Regular LDPC Outer Codes

We now consider ensembles of Raptor codes in which the outer code is drawn from a (dv, dc)

regular low-density parity-check (LDPC) code ensemble, where dv and dc are the variable and

check node degrees, respectively. In order to draw a code from this ensemble we first generate
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Fig. 6. Average probability of decoding failure PF vs absolute overhead for two Raptor code ensembles where the outer code is

randomly drawn from the (dv = 3, dc = 15) regular LDPC ensemble with k = 1000 input symbols and h = 1250 intermediate

symbols. LT distribution: ΩA(x). Lines: upper bounds. Markers: simulation results.

a random permutation of the hdv = (h − k)dc edges between check and variable nodes. Then

we assign to each edge a non-binary label picked uniformly at random in Fq\{0}. The average

weight enumerator for this ensemble is reviewed in Appendix C, where an expression of its

expected composition enumerator is also derived.

In order to simulate the average probability of decoding failure of the ensemble, 10000 different

outer codes were generated. For each outer code and overhead value, 100 decoding attempts were

carried out. The average probability of decoding failure was obtained averaging the probabilities

of decoding failure obtained with the different outer codes.

Fig. 6 shows the average probability of decoding failure for three ensembles of Raptor codes

where the outer code is randomly drawn from the (dv = 3, dc = 15) regular LDPC ensemble with

k = 1000 input symbols and h = 1250 intermediate symbols. The first ensemble is constructed

over F2, the second over F4 and the third is also constructed over F4 but with a 0/1 LT code. It can

be observed how the upper bounds are very tight. Furthermore, as δ increases the performance

of the ensemble with a 0/1 LT code quickly converges to that of the ordinary ensemble over F4.
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Fig. 7. Decoding failure probability PF vs absolute overhead for a multi-edge type Raptor code where the outer code is a

(1023, 1013) Hamming code with hA = 900 and hB = 123. LT distribution: ΩA(x)(z2 + z3)/2. Line: upper bound. Markers:

simulation results.

D. Multi-Edge Type Raptor Code Ensembles

Next we consider multi-edge type Raptor codes with a bivariate LT output degree distribution

given by ΩA(x) (z2 + z3) /2.14

We consider first a multi-edge type Raptor code over F2 where the outer code is a (1023, 1013)

Hamming code, with hA = 900 intermediate symbols of type A and hB = 123 intermediate

symbols of type B. In order to obtain the bivariate weight enumerator of the Hamming code, the

bivariate weight enumerator of the dual code was first obtained by enumerating all its codewords.

Then, the extension of the MacWilliams identity developed in Appendix B was applied. Fig. 7

shows the average decoding failure probability, as well as its upper bound. It can be observed

how the upper bound is tight.

14This degree distribution is inspired by the one used in RaptorQ codes [24], where for type A intermediate symbols (called

LT symbols in [24]) a conventional LT output degree distribution is used, whereas for type B intermediate symbols (referred to

as permanently inactivated symbols in [24]) degrees 2 and 3 are chosen with probability 1/2. See [24] for more details.
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Fig. 8. Average probability of decoding failure P̄F vs absolute overhead for three multi-edge type Raptor code ensembles where

the outer code is randomly drawn from the (5, 55) regular LDPC ensemble with k = 100 and h = 110, with hA = 100 and

hB = 10. LT distribution: ΩA(x)(z2 + z3)/2. Lines: upper bounds. Markers: simulation results.

Next, we consider multi-edge type Raptor code ensembles where the outer code is again drawn

from the (dv, dc) regular LDPC code ensemble. In particular, the outer code is randomly drawn

from the (5, 55) regular LDPC ensemble with k = 100 input symbols and h = 110 intermediate

symbols. Out of the 110 intermediate symbols, 100 are of class A and 10 of class B. The average

bivariate weight enumerator for this ensemble is given by

Aa,b =

(
hA
a

)(
hB
b

)(
h
a+b

) Aa+b.

from which the average bivariate composition enumerator can be obtained through Proposition 4

in Appendix C.

Fig. 8 shows the average probability of decoding failure for three ensembles of multi-edge

type Raptor codes, one constructed over F2, another over F4, and a third one also constructed

over F4 but with a 0/1 LT code. It can be observed how the upper bounds are very tight in this

case too. If we compare the the probability of failure of the two ensembles built over F4, we

can see how their performance is almost the same. It is remarkable how restricting the LT code

to use only binary labels does not result in an appreciable performance loss.



IX. CODE DESIGN EXAMPLES

In this section we provide several code design examples that illustrate the practical impact of

the derived bounds.

A. Design of a Binary Raptor code with an LDPC Outer Code

We consider the case in which the outer code ensemble is given and run a computer search

in order to find an LT output degree distribution that optimizes a given metric subject to some

design constraints. In particular, we consider Raptor code ensembles where the outer code is

picked from the (dv = 3, dc = 33) binary regular LDPC ensemble with k = 1000 and h = 1100,

and we set as requirement minimizing the inactivation decoding complexity subject to a decoding

failure probability not exceeding 10−3.

Inactivation decoding [11] is the efficient ML decoding algorithm used to decode standardized

Raptor codes [5], [6]. It can be seen as an extension of iterative (peeling) decoding where,

whenever the iterative decoding process stops, an input symbol is declared as inactive, so that

iterative decoding is resumed. At the end, one is left with a number of input symbols that have

been inactivated, and whose values have to be recovered by means of Gaussian elimination. After

doing so, all input symbols can be resolved by back-substitution (i.e., using iterative decoding).

The complexity of inactivation decoding is generally dominated by the Gaussian elimination

step, whose complexity is cubic on the number of inactivations. Thus, minimizing the number

of inactivations can be used as a proxy for minimizing the decoding complexity.

The degree distribution ΩA, given in (36), has been designed for inactivation decoding.

However, as it can be observed in Fig. 9, if we use ΩA we do not fulfill the probability of

failure constraint, since there is an error floor around 2 × 10−3. Thus, we need carry out an

ad-hoc design.

The analysis presented in [15] can be used to determine the expected number of inactivations

for LT codes. Extending the analysis to Raptor codes is not easy, but, as it was shown in [15],

when the parity-check matrix of the outer code is considerably denser than the generator matrix

of the inner LT code, it is possible to design Raptor codes that require few inactivations by

optimizing the LT output degree distribution in isolation.15 In other words, if we design an LT

15Note that this heuristic observation holds true also for the case where the outer code parity-check matrix is not dense, e.g., to

the case where the outer code is an LDPC code, provided that the average check node degree of the LDPC code is considerably

larger than the average output degree of the LT code.



degree distribution that requires few inactivations, and then construct a Raptor code using this

degree distribution for the inner LT code, we obtain a Raptor code that requires few inactivations.

Following this approach, we can use simulated annealing [35] to design an LT degree dis-

tribution that minimizes the number of inactivations for the LT code in isolation, under the

constraint on the decoding failure probability for the resulting Raptor code, estimated using the

upper bounds derived in this paper. By using this approach we obtained the following degree

distribution

ΩB = 0.0108x+ 0.4557x2 + 0.1959x3 + 0.1195x4 + 0.0245x5 + 0.0243x6 + 0.0357x10

+ 0.0412x11 + 0.0440x15 + 0.0196x21 + 0.0115x26 + 0.0088x30 + 0.0085x40.

Fig. 9 shows the average probability of decoding failure and its upper bound in Corollary 1

for the designed ensemble based on ΩB. We can observe how the Raptor code ensemble meets

the design requirement, since P̄F < 10−3 for δ = 15.

If we now consider the number of inactivations, we have that the designed Raptor code

ensemble, which employs ΩB, needs in average 94 inactivations for an absolute overhead δ = 15.

In constrast, the Raptor code ensemble employing ΩA needs 87. This confirms how a reduction

in the number of inactivations forces the failure rate to jump above the maximum tolerable value.

B. Design of a Nonbinary Raptor code with an LDPC Outer Code

This design example is similar to the previous one, but this time we focus on a nonbinary

Raptor code ensemble. In particular we aim at designing a Raptor code ensemble over F4, where

the outer code is taken from the (dv = 3, dc = 63) regular LDPC ensemble with k = 200 and

h = 210. The goal is minimizing the number of inactivations16 subject to P̄F ≤ 10−4 at δ = 10.

Using simulated annealing, the following degree distribution is obtained:

ΩC(x) = 0.0214x+ 0.3213x2 + 0.2971x3 + 0.0276x4 + 0.0252x5 + 0.0418x9 + 0.0458x13

+ 0.0654x18 + 0.0457x23 + 0.0612x30 + 0.0295x35 + 0.0180x40.

16The analysis in [15] is also valid for non-binary codes. The number of inactivations is a product of the first phase of

inactivation decoding, triangulation, which is equivalent to column and row swapping and does not carry out any operations

over the finite field. Thus, the number of inactivations only depends on the elements of the generator matrix of the LT code

being zero or nonzero, and not on the particular value in Fq \ {0} that the elements take.
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Fig. 9. Average probability of decoding failure P̄F vs absolute overhead for 4 different Raptor code ensembles. The first and

second ensemble have outer codes randomly drawn from the binary (dv = 3, dc = 33) regular LDPC ensemble with k = 1000
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LDPC ensemble with k = 200 and the (dv = 3, dc = 15) regular LDPC ensemble with k = 100. The LT degree distributions

are ΩA, ΩB, ΩC and ΩD, respectively. Lines: upper bounds. Markers: simulation results.

Fig. 9 shows the average probability of decoding failure for the ensemble obtained from the code

design. We can observe how the constraint on P̄F is fulfilled. The average number of inactivation

needed for decoding at δ = 10 is approximately 32.

C. Design of a Raptor Code with a 0/1 LT Code

We now address the design of a nonbinary Raptor code ensemble with a 0/1 LT code. We

aim at designing a Raptor code ensemble over F4, where the outer code is taken from the

(dv = 3, dc = 15) regular LDPC ensemble with k = 100 and h = 125. The goal is minimizing



the number of inactivations subject to P̄F ≤ 2× 10−3 at δ = 5. Using simulated annealing, the

following degree distribution is obtained:

ΩD(x) = 0.0095x+ 0.3896x2 + 0.3159x3 + 0.0843x4 + 0.0611x10 + 0.0585x15 + 0.0811x22.

Fig. 9 shows the average probability of decoding failure for the designed ensemble. We can

observe how the constraint on P̄F is fulfilled. The average number of inactivations needed for

decoding at δ = 5 is approximately 22.

X. CONCLUSIONS

In this paper we have considered different Raptor code constructions over Fq under ML

decoding, deriving tight upper and lower bounds to the probability of decoding failure. The

bounds are first derived for Raptor codes with a deterministic outer code, and then they are

extended to Raptor code ensembles in which the outer code is drawn at random from an

ensemble of linear block codes. In all cases the upper bounds require the knowledge of the

weight enumerator of the outer code (ensemble) or its composition enumerator, whereas the lower

bounds require the knowledge of the joint weight/composition enumerators of the outer code

(ensemble). By means of extensive simulations we have illustrated how the bounds presented in

this paper are tight. A framework for the analysis of the error exponent of Raptor code ensemble

sequences is introduced, which allows deriving a lower bound on the error exponent. The result

allows gaining further insights on the performance of Raptor code ensemble sequences, by

identifying relative overhead regions where an exponential (in the input block size) decay of the

error probability can be achieved. The work is completed by selected examples of Raptor code

design based on the bounds derived in this paper. To the best of the authors’ knowledge, this is

the first work which considers Raptor codes with a generic q-ary outer code. An open question

relates to the concentration properties of Raptor code ensembles.

APPENDIX A

SUM OF RANDOM UNIFORM VARIABLES IN F2m\{0}

The following lemma is used in the proof of Theorem 1.

Lemma 4. Let X1, X2 ... Xl be discrete i.i.d random variables uniformly distributed over

F2m\{0}. Then

Pr{X1 +X2 + . . .+Xl = 0} =
1

q

(
1 +

(−1)l

(q − 1)l−1

)



where q = 2m.

Proof. Observe that the additive group of F2m is isomorphic to the vector space Zm2 . Thus, we

may let X1, X2 ... Xl be i.i.d random variables with uniform probability mass function over the

vector space Zm2 \{0}.
Let us introduce the auxiliary random variable W = X1 + X2 + . . . + Xl and let us denote

by PW (w) and by PX(x) the probability mass functions of W and Xi, respectively, where

PX(x) =

0 if x = 0

1
q−1 otherwise.

Due to independence we have PW = PX ∗ PX ∗ . . . ∗ PX which, taking the m-dimensional two-

points discrete Fourier transform (DFT) J {·} of both sides, yields J {PW (w)} = (J {PX(x)})l.
Next, since

P̂X(t) = J {PX(x)} =

1 if t = 0

−1
q−1 otherwise

we have

P̂W (t) = J {PW (w)} =

1 if t = 0

(−1)l
(q−1)l otherwise.

We are interested in PW (0) whose expression corresponds to

PW (0) =
1

q

∑
t

P̂W (t) =
1

q
+

1

q
(q − 1)

(−1)l

(q − 1)l

from which the statement follows. �

The result in this lemma appears in [17]. However, the proof in [17] uses a different approach

based on a known result on the number of closed walks of length l in a complete graph of size

q from a fixed but arbitrary vertex back to itself.

APPENDIX B

AN EXTENSION OF THE MACWILLIAMS IDENTITY

Consider a linear block code C ⊂ F
h
q . The same way we defined its bivariate weight enumerator

in (6), we can define its h-variate enumerator polynomial as

A(x1, . . . , xh) =
1∑

i1=0

. . .

1∑
ih=0

Ai1,...,ih

h∏
j=1

x
ij
j



where Ai1,...,ih denotes the multiplicity of codewords with w(v1) = i1, w(v2) = i2, ... and

w(vh) = ih, i.e., the number of codewords with support (ii, i2, . . . , ih). The following proposition

establishes an extension of the MacWilliams identity for h-variate weight enumerators.

Proposition 1. Let C be an (h, k) linear block code over Fq with h-variate weight enumer-

ator A(x1, . . . , xh). Let C⊥ be the dual of C and denote its h-variate weight enumerator by

B(x1, . . . , xh). Then

B(x1, . . . , xh) = q−k
h∏
i=1

(1 + (q − 1)xi)A

(
1− x1

1 + (q − 1)x1
. . . ,

1− xh
1 + (q − 1)xh

)
.

Proof. The proof builds on that that of the MacWilliams identity for linear block codes over Fq

[36]. We start by rewriting A(x1, . . . , xh) as

A(x1, . . . , xh) =
∑
v∈C

h∏
i=1

xi
w(vi)

Let us now define function g(u) as follows

g(u) =
∑
v∈Fh

q

χ (〈u,v〉)
h∏
i=1

xi
w(vi)

where χ is a non-trivial character of (Fq,+).

We have

∑
u∈C

g(u) =
∑
u∈C

∑
v∈Fh

q

χ (〈u,v〉)
h∏
i=1

xi
w(vi) =

∑
v∈Fh

q

h∏
i=1

xi
w(vi)

∑
u∈C

χ (〈u,v〉) (37)

=
∑
v∈C⊥

h∏
i=1

xi
w(vi)

∑
u∈C

χ (〈u,v〉) +
∑
v/∈C⊥

h∏
i=1

xi
w(vi)

∑
u∈C

χ (〈u,v〉)

=
∑
v∈C⊥

h∏
i=1

xi
w(vi)

∑
u∈C

χ (0) =
∑
v∈C⊥

h∏
i=1

xi
w(vi) |C|

= |C|B(x1, . . . , xn)



Let us now rewrite g(u) as follows

g(u) =
∑
v∈Fh

q

h∏
i=1

xi
w(vi) χ (u1v1 + . . .+ uhvh)

=
∑
v∈Fh

q

h∏
i=1

xi
w(vi)χ (uivi)

=
h∏
i=1

∑
v∈Fq

xi
w(v)χ (uiv)

Let us now look at the inner summation, we have

∑
v∈Fq

xi
w(v)χ (uiv) =


1 + (q − 1)xi, if ui = 0

1 + xi
∑

α∈Fq\{0}
χ (α) = 1− x, otherwise.

Thus, we can write

g(u) =
h∏
i=1

(1− xi)w(vi) (1 + (q − 1)xi)
1−w(vi) (38)

Finally, if we replace (38) into (37) we obtain

B(x, z) =
1

|C|
∑
u∈C

g(u)

=
1

|C|
∑
u∈C

h∏
i=1

(1− xi)w(vi) (1 + (q − 1)xi)
1−w(vi)

= q−k
h∏
i=1

(1 + (q − 1)xi)A

(
1− x1

1 + (q − 1)x1
. . . ,

1− xh
1 + (q − 1)xh

)
�

The result in Proposition 1 is strongly related to the result derived in [37, Appendix], where a

similar analysis is used to derive a maximum-a-posteriori decoding algorithm for a code based

on its dual. However, for the sake of completeness, we decided to include the result in the form

of a Theorem with its corresponding proof.

Now that we have a MacWilliams identity for h-variate weight enumerators it is easy to derive

a similar result for bi-variate weight enumerators.

Proposition 2. Let C be an (h, k) linear block code over Fq in which the h codeword symbols

are divided into hA symbols of class A and hB = h − hA of class B, with bivariate weight



enumerator of A(x, z). Let C⊥ be the dual of C and denote its bivariate weight enumerator by

B(x, z). Then

B(x, z) = q−k (1 + (q − 1)x)hA (1 + (q − 1)z)hB A

(
1− x

1 + (q − 1)x
,

1− z
1 + (q − 1)z

)
.

Proof. We just need to introduce the variable changes xi = x for i = 1, . . . , hA and xi = z for

i = hA + 1, . . . , h in Proposition 1. �

Note that the special case of Proposition 2 for hB = hA is proposed in [29, Chapter 5.6] as

an exercise.

APPENDIX C

AVERAGE COMPOSITION ENUMERATORS OF SOME CODES ENSEMBLES

This appendix provides results on the average composition enumerator of some code ensem-

bles. The following proposition states that, in some cases, the average composition enumerator

can be easily derived from the average weight enumerator.

Proposition 3. Consider an ensemble C of linear block codes, all with block length h, along

with a probability measure on each such code. Let Al be the expected weight enumerator of a

random code C ∈ C . Assume that Pr{v ∈ C|ς(v) = f} = Pr
{
v∈ C|w(v) =

∑q−1
i=1 fi

}
for all

v∈ Fhq . Then

Qf = Al

(
l

f1, f2, . . . , fq−1

)
(q − 1)−l (39)

where l =
∑q−1

i=1 fi.

Proof: We can express Qf as the number of vectors of composition f times the probability

that each such vector is a codeword. Letting l =
∑q−1

i=1 fi = w(v) we can write

Qf =

(
h

f

)
Pr{v∈ C|ς(v) = f} =

(
h

f

)
Pr{v∈ C|w(v) = l}

=

(
h

f

)
Al(

h
l

)
(q − 1)l

The last obtained expression yields (39) by applying the identity
(
h
f

)
=
(
h
l

)(
l

f1,f2,...,fq−1

)
.

Examples of ensembles for which the assumption on Proposition 3 holds are the uniform

parity-check ensemble and the (regular and irregular) LDPC code ensembles.



1) Uniform parity-check ensemble: For a uniform parity-check ensemble defined by a random

parity-check matrix of size (h − k) × h with i.i.d. entries uniformly distributed in Fq we have

Al =
(
h
l

)
(q − 1)lq−(h−k) and therefore (39) leads to

Qf =

(
h

f

)
q−(h−k).

2) Regular LDPC ensemble: Consider a (dv, dc) regular LDPC code ensemble of length h,

where dv and dc are the variable and check node degrees, respectively. The ensemble is defined

by all possible permutations of the hdv = (h − k)dc edges between check and variable node

sockets and by all possible ways to label the edges with nonzero symbols. Each edge permutation

is picked with uniform probability and the label of each edge is drawn uniformly at random in

Fq\{0}. The average weight enumerator for this ensemble is given by [38], [39]

Al =

(
h

l

)
coeff

(
p(x)h dv/dc , xl dv

)(
h dv
l dv

)
(q − 1)l(dv−1)

where p(x) = 1
q

(1 + (q − 1)x)dc + q−1
q

(1− x)dc . Hence, applying (39) we obtain

Qf =

(
h

f

)
coeff

(
p(x)h dv/dc , xldv

)(
h dv
l dv

) (q − 1)−ldv

Proposition 3 can be extended to bivariate enumerators using the same proof argument.

Proposition 4. Consider an ensemble C of linear block codes, all with block length h = hA+hB,

along with a probability measure on each such code. Let Al,s be the expected bivariate weight

enumerator of a random code C ∈ C . Assume that Pr{v ∈ C|ς(vA) = fA, ς(vB) = fB} =

Pr
{
v∈ C|w(vA) =

∑q−1
i=1 fA,i, w(vB) =

∑q−1
i=1 fB,i

}
for all v = (vA,vB) ∈ Fhq . Then

QfA,fB = Al,s

(
l

fA,1, fA,2, . . . , fA,q−1

)
(q − 1)−l

(
s

fB,1, fB,2, . . . , fB,q−1

)
(q − 1)−s

where
∑q−1

i=1 l = fA,i and s =
∑q−1

i=1 .

APPENDIX D

AVERAGE BICOMPOSITION ENUMERATOR OF UNIFORM PARITY-CHECK ENSEMBLES

This appendix provides results on the average bicomposition and biweight enumerators of

some ensembles.



Proposition 5. Consider the uniform parity-check ensemble defined by a random parity-check

matrix of size (h− k)× h with i.i.d. entries with uniform distribution in Fq. For all κ ∈ Kq,h,

the expected joint composition enumerator for a random code drawn for the ensemble is

Sκ =

(
h

κ

)
q−2(h−k).

Proof: The parameter Sκ may be expressed as the total number of pairs (r1, r2) ∈ Fhq × Fhq
with joint composition κ, times the probability that both r1 and r2 are codewords given that

their joint composition is κ. Hence, we can write

Sκ =

(
h

κ

)
Pr{{r1HT = 0} ∩ {r2HT = 0}|κ(r1, r2) = κ} =

(
h

κ

)
ph−kκ

where, letting h be the generic row of H, pκ = Pr{{r1hT = 0} ∩ {r2hT = 0}|κ(r1, r2) = κ}.
If κ ∈ Kq,h then five different cases may occur; next we show that in all of them we have

pκ = q−2. We repeatedly exploit the following property: if r ∈ Fhq and h is a random vector in

F
h
q whose elements are uniform i.i.d. random variables in Fq, then Pr{r hT = β} = q−1 for all

β ∈ Fq. For the sake of notational simplicity, we denote by Eκ the event that κ(r1, r2) = κ.

Case 1: |κ1| > 0, |κ2| > 0, |κ3| > 0 (r1 and r2 have partially overlapping supports). Without

loss of generality, assume r1 = (r1,1|r1,2|0|0) and r2 = (0|r2,1|r2,2|0), where r1,1, r1,2, r2,1, and

r2,2 are nonzero and all subvectors occupying the same position have the same length. Letting

h = (h1|h2|h3|h4) we have pκ = Pr{{r1,1hT
1 + r1,2h

T
2 = 0} ∩ {r2,1hT

2 + r2,2h
T
3 = 0}|Eκ} =

Pr{r1,1hT
1 + r1,2h

T
2 = 0|Eκ} Pr{r2,1hT

2 + r2,2h
T
3 = 0|Eκ} = (q−1)(q−1) = q−2, where we

exploited independence of h1, h2, and h3.

Case 2: |κ1| > 0, |κ2| = 0, |κ3| > 0 (the support of r2 includes that of r1). Same argument

with r1,1 = 0.

Case 3: |κ1| = 0, |κ2| > 0, |κ3| > 0 (the support of r1 includes that of r2). Same argument

with r2,2 = 0.

Case 4: |κ1| > 0, |κ2| > 0, |κ3| = 0 (r1 and r2 have disjoint supports). Same argument with

r1,2 = r2,1 = 0.

Case 5: |κ1| = |κ2| = 0, |κ3| > 0, κ0,0 +
∑q−1

i=1 κi,(i+b)modq < h for all b ∈ {0, . . . , q − 2} (r1

and r2 have the same support but are not linearly dependent). Let r1 = (r1,0, . . . , r1,h−1), r2 =

(r2,0, . . . , r2,h−1) and h = (h0, . . . , hh−1). Since r1 and r2 are nonzero and not linearly dependent,

there exist s and t such that the vectors (r1,s, r1,t) and (r2,s, r2,t) are linearly independent. Letting

β1 = −∑h−1
i=0,i 6=s,t r1,ihi and β2 = −∑h−1

i=0,i 6=s,t r2,ihi we obtain pκ = Pr{{r1,shs + r1,tht =



β1} ∩ {r2,shs + r2,tht = β2}|Eκ}. Linear independence of (r1,s, r1,t) and (r2,s, r2,t) implies that

for any β1 and β2 there exists a unique pair (hs, ht) fulfilling the two equations. Since all pairs

are equiprobable and their number is q2 we have pκ = q−2.

The following result is a direct consequence of Proposition 5 in the binary case.

Proposition 6. Consider the uniform parity-check ensemble defined by a random parity-check

matrix of size (h − k) × h with i.i.d. entries with uniform distribution in F2. For all τ ∈ T2,h,

the expected joint composition enumerator for a random code drawn for the ensemble is

Jτ =

(
h

τ

)
4−(h−k).

Proof: Recall from Remark 1 that for q = 2 the two concepts of joint composition and joint

weight become equivalent so that, letting τ = τ(κ), we can write Jτ = Sκ.
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