8 research outputs found

    Development and evaluation of an intrinsic gettering process for fabrication of integrated circuits

    Get PDF
    An internal gettering process to collect and trap potentially harmful defects in the bulk of the silicon wafer, away from the surface where the integrated circuits are fabricated, has been developed in this work. This gettering process was then incorporated into the standard metal gate PMOS process utilized at RIT. Capacitors and diodes were electrically characterized to compare wafers that were gettered versus wafers that were not gettered. Results show that gettering did improve device characteristics, but only in the center of the wafers. The experimental results indicate that the diffusion of impurities from the furnace tube and quartz boat is competing with the gettering process during the lengthy furnace times. As a result, devices near the perimeter of the wafer exhibit poorer electrical characteristics after gettering when compared with the standards. This work shows that gettering will improve device performance, but only when accompanied by attention to furnace contamination. Gettering alone will not guarantee a better device

    Design of a robotic arm for laboratory simulations of spacecraft proximity navigation and docking

    Get PDF
    The increasing number of human objects in space has laid the foundation of a novel class of orbital missions for servicing and maintenance. The main goal of this thesis is the development, building and testing of a robotic manipulator for the simulation of orbital maneuvers, with particular attention to Active Debris Removal (ADR) and On-Orbit Servicing (OOS). There are currently very few ways to reproduce microgravity in a non-orbital environment: among the main techniques, it is worth mentioning parabolic flights, pool simulations and robotic facilities. Parabolic flights allow to reproduce orbital conditions quite faithfully, but simulation conditions are very constraining. Pool simulations, on the other hand, have fewer constrictions in terms of cost, but the drag induced by the water negatively affects the simulated microgravity. Robotic facilities, finally, permit to reproduce indirectly (that is, with an appropriate control system) the physics of microgravity. State of the art on 3D robotic simulations is nowadays limited to industrial robots facilities, that bear conspicuous costs, both in terms of hardware and maintenance. This project proposes a viable alternative to these costly structures. Through dedicated algorithms, the system is able to compute in real time the consequences of these contacts in terms of trajectory modifications, which are then fed to the hardware in the loop (HIL) control system. Moreover, the governing software can be commanded to perform active maneuvers and relocations: as a consequence, the manipulator can be used as the testing bench not only for orbital servicing operations but also for attitude control systems, providing a faithful, real-time simulation of the zero-gravity behavior. Furthermore, with the aid of dynamic scaling laws, the potentialities of the facility can be exponentially increased: the simulation environment is not longer bounded to be as big as the robot workspace, but could be several orders of magnitude bigger, allowing for the reproduction of otherwise preposterous scenarios. The thesis describes the detailed mechanical design of the facility, corroborated by structural modeling, static and vibrational finite element verification. A strategy for the simulation of impedance-matched contacts is presented and an analytical control analysis defines the set of allowable inertial properties of the simulated entities. Focusing on the simulation scenarios, an innovative information theoretic approach for simultaneous localization and docking has been designed and applied for the first time to a 3D rendezvous scenario. Finally, in order to instrument the facility’s end effector with a consistent sensor suite, the design and manufacturing of an innovative Sun sensor is proposed

    A Data Fusion and Visualisation Platform for Multi-Phase Flow by Electrical Tomography

    Get PDF
    Electrical tomography, e.g. electrical resistance tomography (ERT) and electrical capacitance tomography (ECT), has been successfully applied to many industries for measuring and visualising multiphase flow. This research aims to investigate the data fusion and visualisation technologies with electrical tomography as the key data processing tools of a platform for multiphase flow characterisation. Gas-oil-water flow is a common flow in the gas and oil industries but still presents challenges in understanding its complex dynamics. This research systematically studied the data fusion and visualisation technologies using dual-modality electrical tomography (ERT-ECT). Based on a general framework, two data fusion methods, namely threshold and fuzzy logic with decision tree, were developed to quantify and qualify the flow. The experimental results illustrated the feasibility of the methods integrated with the framework to visualise and measure flows in six typical common flow regimes, including stratified, wavy stratified, slug, plug, annular, and bubble flow. In addition, the performance of ERT-ECT was also evaluated. A 3D visualisation approach, namely Bubble Mapping, was proposed to transform concentration distribution to individual bubbles. With a bubble-based lookup table and enhanced isosurface algorithms, the approach overcomes the limits of the conventional concentration tomograms in visualisation of bubbles with sharp boundaries between gas and liquid, providing sophisticated flow dynamic information. The experiments proved that Bubble Mapping is able to visualise typical flow regimes in different pipeline orientations. Two sensing methods were proposed, namely asymmetrical sensing and imaging (ASI) and regional imaging with limited measurement (RILM), to improve the precision of the velocity profile derived from the cross-correlation method by enhancing ERT sensing speed, which is particularly helpful for industrial flows that their disperse phase velocity is very high, e.g. 20 m/s of the gas phase. It is expected that the outcome of this study will significantly move electrical tomography for multiphase flow applications beyond its current challenges in both quantification and qualification

    Technology 2002: the Third National Technology Transfer Conference and Exposition, Volume 1

    Get PDF
    The proceedings from the conference are presented. The topics covered include the following: computer technology, advanced manufacturing, materials science, biotechnology, and electronics

    In-line metrology and inspection for process control during 3D stacking of IC's

    No full text

    Reliability Abstracts and Technical Reviews January-December 1968

    Get PDF
    No abstract availabl

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Aeronautical Engineering - A special bibliography with indexes /supplement 1/

    Get PDF
    Annotated reference bibliography on aeronautical engineering document
    corecore