6 research outputs found

    Learned Quality Enhancement via Multi-Frame Priors for HEVC Compliant Low-Delay Applications

    Full text link
    Networked video applications, e.g., video conferencing, often suffer from poor visual quality due to unexpected network fluctuation and limited bandwidth. In this paper, we have developed a Quality Enhancement Network (QENet) to reduce the video compression artifacts, leveraging the spatial and temporal priors generated by respective multi-scale convolutions spatially and warped temporal predictions in a recurrent fashion temporally. We have integrated this QENet as a standard-alone post-processing subsystem to the High Efficiency Video Coding (HEVC) compliant decoder. Experimental results show that our QENet demonstrates the state-of-the-art performance against default in-loop filters in HEVC and other deep learning based methods with noticeable objective gains in Peak-Signal-to-Noise Ratio (PSNR) and subjective gains visually

    Two-Stage Overfitting of Neural Network-Based Video Coding In-Loop Filter

    Get PDF
    Modern video coding standards like the Versatile Video Coding (VVC) produce compression artefacts, due to their block-based, lossy compression techniques. These artefacts are mitigated to an extent by the in-loop filters inside the coding process. Neural Network (NN) based in-loop filters are being explored for the denoising tasks, and in recent studies, these NN-based loop filters are overfitted on test content to achieve a content-adaptive nature, and further enhance the visual quality of the video frames, while balancing the trade-off between quality and bitrate. This loop filter is a relatively low-complexity Convolutional Neural Network (CNN) that is pretrained on a general video dataset and then fine-tuned on the video that needs to be encoded. Only a set of parameters inside the CNN architecture, named multipliers, are fine-tuned, thus the bitrate overhead, that is signalled to the decoder, is minimized. The created weight update is compressed using the Neural Network Compression and Representation (NNR) standard. In this project, an exploration of high-performing hyperparameters was conducted, and the two-stage training process was employed to, potentially, further increase the coding efficiency of the in-loop filter. A first-stage model was overfitted on the test video sequence, it explored on which patches of the dataset it could improve the quality of the unfiltered video data, and then the second-stage model was overfitted only on these patches that provided a gain. The model with best-found hyperparameters saved on average 1.01% (Y), 4.28% (Cb), and 3.61% (Cr) Bjontegaard Delta rate (BD-rate) compared to the Versatile Video Coding (VVC) Test Model (VTM) 11.0 NN-based Video Coding (NNVC) 5.0, Random Access (RA) Common Test Conditions (CTC). The second-stage model, although exceeded the VTM, it underperformed with about 0.20% (Y), 0.23% (Cb), and 0.18% (Cr) BD-rate with regards to the first-stage model, due to the high bitrate overhead created by the second-stage model

    DEEP LEARNING FOR IMAGE RESTORATION AND ROBOTIC VISION

    Get PDF
    Traditional model-based approach requires the formulation of mathematical model, and the model often has limited performance. The quality of an image may degrade due to a variety of reasons: It could be the context of scene is affected by weather conditions such as haze, rain, and snow; It\u27s also possible that there is some noise generated during image processing/transmission (e.g., artifacts generated during compression.). The goal of image restoration is to restore the image back to desirable quality both subjectively and objectively. Agricultural robotics is gaining interest these days since most agricultural works are lengthy and repetitive. Computer vision is crucial to robots especially the autonomous ones. However, it is challenging to have a precise mathematical model to describe the aforementioned problems. Compared with traditional approach, learning-based approach has an edge since it does not require any model to describe the problem. Moreover, learning-based approach now has the best-in-class performance on most of the vision problems such as image dehazing, super-resolution, and image recognition. In this dissertation, we address the problem of image restoration and robotic vision with deep learning. These two problems are highly related with each other from a unique network architecture perspective: It is essential to select appropriate networks when dealing with different problems. Specifically, we solve the problems of single image dehazing, High Efficiency Video Coding (HEVC) loop filtering and super-resolution, and computer vision for an autonomous robot. Our technical contributions are threefold: First, we propose to reformulate haze as a signal-dependent noise which allows us to uncover it by learning a structural residual. Based on our novel reformulation, we solve dehazing with recursive deep residual network and generative adversarial network which emphasizes on objective and perceptual quality, respectively. Second, we replace traditional filters in HEVC with a Convolutional Neural Network (CNN) filter. We show that our CNN filter could achieve 7% BD-rate saving when compared with traditional filters such as bilateral and deblocking filter. We also propose to incorporate a multi-scale CNN super-resolution module into HEVC. Such post-processing module could improve visual quality under extremely low bandwidth. Third, a transfer learning technique is implemented to support vision and autonomous decision making of a precision pollination robot. Good experimental results are reported with real-world data

    DCT-based Image/Video Compression: New Design Perspectives

    Get PDF
    To push the envelope of DCT-based lossy image/video compression, this thesis is motivated to revisit design of some fundamental blocks in image/video coding, ranging from source modelling, quantization table, quantizers, to entropy coding. Firstly, to better handle the heavy tail phenomenon commonly seen in DCT coefficients, a new model dubbed transparent composite model (TCM) is developed and justified. Given a sequence of DCT coefficients, the TCM first separates the tail from the main body of the sequence, and then uses a uniform distribution to model DCT coefficients in the heavy tail, while using a parametric distribution to model DCT coefficients in the main body. The separation boundary and other distribution parameters are estimated online via maximum likelihood (ML) estimation. Efficient online algorithms are proposed for parameter estimation and their convergence is also proved. When the parametric distribution is truncated Laplacian, the resulting TCM dubbed Laplacian TCM (LPTCM) not only achieves superior modeling accuracy with low estimation complexity, but also has a good capability of nonlinear data reduction by identifying and separating a DCT coefficient in the heavy tail (referred to as an outlier) from a DCT coefficient in the main body (referred to as an inlier). This in turn opens up opportunities for it to be used in DCT-based image compression. Secondly, quantization table design is revisited for image/video coding where soft decision quantization (SDQ) is considered. Unlike conventional approaches where quantization table design is bundled with a specific encoding method, we assume optimal SDQ encoding and design a quantization table for the purpose of reconstruction. Under this assumption, we model transform coefficients across different frequencies as independently distributed random sources and apply the Shannon lower bound to approximate the rate distortion function of each source. We then show that a quantization table can be optimized in a way that the resulting distortion complies with certain behavior, yielding the so-called optimal distortion profile scheme (OptD). Guided by this new theoretical result, we present an efficient statistical-model-based algorithm using the Laplacian model to design quantization tables for DCT-based image compression. When applied to standard JPEG encoding, it provides more than 1.5 dB performance gain (in PSNR), with almost no extra burden on complexity. Compared with the state-of-the-art JPEG quantization table optimizer, the proposed algorithm offers an average 0.5 dB gain with computational complexity reduced by a factor of more than 2000 when SDQ is off, and a 0.1 dB performance gain or more with 85% of the complexity reduced when SDQ is on. Thirdly, based on the LPTCM and OptD, we further propose an efficient non-predictive DCT-based image compression system, where the quantizers and entropy coding are completely re-designed, and the relative SDQ algorithm is also developed. The proposed system achieves overall coding results that are among the best and similar to those of H.264 or HEVC intra (predictive) coding, in terms of rate vs visual quality. On the other hand, in terms of rate vs objective quality, it significantly outperforms baseline JPEG by more than 4.3 dB on average, with a moderate increase on complexity, and ECEB, the state-of-the-art non-predictive image coding, by 0.75 dB when SDQ is off, with the same level of computational complexity, and by 1 dB when SDQ is on, at the cost of extra complexity. In comparison with H.264 intra coding, our system provides an overall 0.4 dB gain or so, with dramatically reduced computational complexity. It offers comparable or even better coding performance than HEVC intra coding in the high-rate region or for complicated images, but with only less than 5% of the encoding complexity of the latter. In addition, our proposed DCT-based image compression system also offers a multiresolution capability, which, together with its comparatively high coding efficiency and low complexity, makes it a good alternative for real-time image processing applications

    In-Loop Filters in HEVC

    No full text
    corecore