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Abstract
Modern video coding standards like the Versatile Video Coding (VVC) produce
compression artefacts, due to their block-based, lossy compression techniques. These
artefacts are mitigated to an extent by the in-loop filters inside the coding process.
Neural Network (NN) based in-loop filters are being explored for the denoising tasks,
and in recent studies, these NN-based loop filters are overfitted on test content to
achieve a content-adaptive nature, and further enhance the visual quality of the video
frames, while balancing the trade-off between quality and bitrate. This loop filter is a
relatively low-complexity Convolutional Neural Network (CNN) that is pretrained on a
general video dataset and then fine-tuned on the video that needs to be encoded. Only a
set of parameters inside the CNN architecture, named multipliers, are fine-tuned, thus
the bitrate overhead, that is signalled to the decoder, is minimized. The created weight
update is compressed using the Neural Network Compression and Representation
(NNR) standard. In this project, an exploration of high-performing hyperparameters
was conducted, and the two-stage training process was employed to, potentially,
further increase the coding efficiency of the in-loop filter. A first-stage model was
overfitted on the test video sequence, it explored on which patches of the dataset
it could improve the quality of the unfiltered video data, and then the second-stage
model was overfitted only on these patches that provided a gain. The model with
best-found hyperparameters saved on average 1.01% (Y), 4.28% (Cb), and 3.61%
(Cr) Bjontegaard Delta rate (BD-rate) compared to the Versatile Video Coding (VVC)
Test Model (VTM) 11.0 NN-based Video Coding (NNVC) 5.0, Random Access (RA)
Common Test Conditions (CTC). The second-stage model, although exceeded the
VTM, it underperformed with about 0.20% (Y), 0.23% (Cb), and 0.18% (Cr) BD-rate
with regards to the first-stage model, due to the high bitrate overhead created by the
second-stage model.

Keywords neural video coding, in-loop filter, overfitting, two-stage training,
content-adaptation, hyperparameter-tuning
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Symbols and abbreviations

Symbols
𝜎 neural network activation function
∗ convolutional operation
`x mean of vector x
𝜎2

x variance of vector x
𝜎xy covariance of vectors x and y

Abbreviations

AI artificial intelligence
ALF adaptive loop filter
B-frame bidirectional predicted frame
BD-rate Bjøntegaard’s delta-rate
BS boundary strength
CABAC context-based adaptive binary arithmetic coding
CC-ALF cross-componenet ALF
CNN convolutional neural network
CP-decomposition CANDECOMP/PARAFAC decomposition
CTC common test conditions
CTU coding tree unit
CU coding unit
Cb, Cr blue-, red-difference chroma, chrominance
DBLK deblocking filter
DCT discrete cosine transform
dPSNR dPSNR
fps frames per second
GOP group of pictures
H.264/AVC Advanced Video Coding
H.265/HEVC High Efficiency Video Coding
H.266/VVC Versatile Video Coding
HDR high dynamic range
I-frame intra-coded frame
JVET Joint Video Experts Team
LMCS luma mapping with chroma scaling
LSTM long short-term memory NN
LR learning rate
MAC multiply-accumulate
MAE mean absolute error
ML machine learning
MPEG Moving Picture Experts Group
MSE mean squared error
MSSIM multiscale structural similarity index
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NNR neural network coding and representation
NNVC NN-based video coding
P-frame predicted frame
POC picture order count
PSNR peak signal-to-noise ratio
PU prediction unit
QP quantization parameter
QStep quantization parameter step
QoE quality of experience
RA random access
RDO rate-distortion optimization
RHCNN residual highway CNN
RNN recurrent neural networks
ReLU rectified linear unit
SADL small ad-hoc deep-learning library
SAO sample adaptive offset
SDR standard dynamic range
SEI supplemental enhancement information
SPS sequence parameter set
UHD ultra-high definition
VTM VVC test model
WWW world wide web
Y luma, luminance

8



1 Introduction
The amount of people connected to the World Wide Web (WWW) is growing by large
margins every year, and the volume and demand for online content is also expanding.
It was predicted that in 2022, the internet traffic’s 82% will consist of video content,
and also the quality of these videos is improving rapidly. Cisco has anticipated that by
2023, 4K or Ultra High Definition (UHD) videos will make up for 66% of connected
flat-panel TV sets [1, 2]. With high-resolution video demand, the internet bandwidth
is not growing at the same pace, thus compression algorithms are being exploited and
developed to accommodate the quality of videos. Since research into deep learning
applications is on the rise, their usage is also employed by new video compression
techniques [3].

Compression can either be lossless, if the decoded data is bit-exact to the original
information, or lossy, if, during compression, some information is lost. Lossy
compression is used to decrease the bitrate needed to represent the data, which is
advantageous for storing purposes, however, the quality of the reconstructed data is
hindered. The goal of video coding is to maximize the video quality while minimizing
the bitrate needed to store the content. This oftentimes comes off as a trade-off between
the two. In our fast-growing world of video streaming, it is essential to represent
the video data in as less bits as possible, and even if the modern video compression
algorithms are only able to outperform the preceding standardized techniques by
a small margin (a couple of percentage points), in the vast amount of data that is
processed every day, those small margins account to big storing and processing impact.

Modern video coding standards, such as the High Efficiency Video Coding
(H.265/HEVC) [4], and the Versatile Video Coding (H.266/VVC) [5], are block-based
compression frameworks, which, despite having advanced coding efficiency, introduce
blocking, ringing, and blurring artefacts. The purpose of the in-loop filters is to
mitigate these artefacts with various techniques. For example, in the modern VVC
standard, there are successive in-loop filters, such as Deblocking Filter (DBLK),
Sample Adaptive Offset (SAO), and Adaptive Loop Filter (ALF). Although these
filters can alleviate the compression flaws and increase the visual quality, they do so
only to an extent, due to them being handcrafted with the assumption of stationary
signals in signal processing theory. However, natural video sequences are regularly
non-stationary, thus the efficiency of the implemented in-loop filters is limited [6].

Neural Networks (NN) are employed to learn on video data and act as a filter next to,
or in place of other filters inside the existing video coding standards. These NN-based
filters can improve visual quality by dealing with multiple artefacts simultaneously.
NN-based filters can be post-processing or in-loop filters that are used in hybrid video
coding techniques. A frame processed with an in-loop filter will stay as a reference
to encode other frames, while post-processing filters are applied after the decoding
and before outputting. Most NN-based filters are trained on large video datasets, their
architecture is sophisticated, and they count on favourable generalization instead of
being content-specific. While investigations have been made with content-adaptation
in video coding, research in this field is still scarce, but growing [7–9].

In recent studies, Convolutional Neural Networks (CNN) have been used as loop



filters, which have low complexity and can provide good coding gains. The content-
adaptive fine-tuning in CNNs can be done by first pretraining the network on a large
general dataset, and then overfitting it on one video sequence. The overfitted network’s
weights are then signalled to the decoder side, where it reconstructs the overfitted CNN
loop filter. To minimize the signalling bitrate, only a subset of weights are fine-tuned,
such as the biases of the network, or introduced variables, called multipliers, that
multiply the feature tensor output with a convolutional layer [10, 11].

1.1 Objectives of the study
In this work, optimal hyperparameter search was conducted on a low-complexity, and
content-adaptive CNN in-loop filter, to maximize the coding efficiency, while also
proposing two-stage overfitting as content-adaptive NN training for video coding. For
the two-stage training, a first-stage model was chosen that measured its performance
on the elements of the dataset, and the blocks that had negative Peak Signal-to-Noise
Ratio-gain (dPSNR) over the unfiltered video patches, were removed, forming a subset
of the video data. The second-stage model overfits on this subset of data, to gain
even greater performance on the subset of the dataset. With this two-stage training,
better Bjøntegaard Delta rate (BD-rate) [12] is anticipated, compared to the first-stage
model’s, because overfitting is usually accomplished on a smaller sample size [13].

With this research, insights are awaited on the different hyperparameters and their
effects, and on the achievements and limitations of two-stage overfitting.

1.2 Structure of the thesis
The background work, and literature review, where the key concepts of video coding,
and neural video coding are presented is written in Section 2. In Section 3, the
methodology of the experiments is presented, as well as an explanation of the
architecture, and setting used to produce the analysis. The results of the experiments,
divided into two subsections of hyperparameter tuning, and two-stage overfitting, are
shown in Section 4. The breakdown and analysis of these results and metrics are
discussed in Section 5, where next to the interpretation, also prospects of future research
are considered. A conclusion is done over the findings and the accomplishments of
the thesis are written in Section 6.
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2 Literature review

2.1 Video coding
Video coding typically refers to the process of compressing image/frame/video
sequences into binary code, i.e., bitstreams to reduce storage and transmission
needs [3]. The terms lossy or lossless refer to the reconstruction of the video if it is a
perfect or imperfect one. For natural images or videos, most often lossy coding is used,
where the optimization task lies mainly in two metrics: the compression efficiency,
i.e., the size of the image or video, measured in the number of bits, where the smaller
size, the shorter bitstream is more preferable; while the second aspect is the quality of
the decoded frames, that is compared to the original image/video data.

The first effective and used video coding standard created was the H.261, which was
developed by BT, Hitachi, NTT, PictureTel, and Toshiba, among others. Afterwards,
various standards have been developed too [14]:

• H.262/MPEG-2 Part 2, that was used in DVDs and early digital televisions.

• H.263, which was used in low-bit-rate communication.

• H.264/AVC (Advanced Video Coding), which became the standard for many
applications for mobile video and for high-definition streaming that are still the
most common ones our days. It was introduced in 2003 [15].

• H.265/HEVC (High Efficiency Video Coding), which was developed after the
H.264 standard, and it offers approximately double the compression efficiency.

• H.266/VVC (Versatile Video Coding), which was developed by the Joint Video
Experts Team (JVET) [16] and Moving Picture Experts Group (MPEG) in
2020. It supports resolutions ranging from very low resolution up to 4K and
16K. VVC promises up to 50% greater compression efficiency compared to its
predecessor, H.265/HEVC, without compromising on video quality [5, 17].

Video coding algorithms, in essence, work on the task of reducing redundancies
present in video data, which can be spatial (within frames) or temporal (between
frames). These algorithms are made up of different components that handle various
aspects of the process, such as motion estimation, transformation, quantization, and
entropy coding [14, 18].

2.1.1 Motion estimation and compensation

Through motion estimation and compensation, the algorithm analyzes the movement
of objects in a video and uses that information to predict the next frame on the reference
frames and the estimated motion vectors, which are compared to the actual frame, and
only the differences between the two are transmitted or stored, also called residuals.
This process reduces greatly the amount of transmitted data. In VVC, several new
techniques are used to improve the process of motion estimation and compensation,
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such as affine motion compensation, perspective affine motion compensation, and
deep affine motion compensation network [19].

2.1.2 Transformation

In this step, spatial domain data is converted into the frequency domain to reveal
insights about the image or video frame, most often using Discrete Cosine Transform
(DCT). It works by converting spatial domain representation, where pixel values are
correlated, into a set of uncorrelated coefficients that highlight the inherent patterns
and structures within the video frame. By focusing on compressing the energy into
fewer coefficients, DCT facilitates a significant reduction of data without substantially
compromising the visual quality [20, 21].

2.1.3 Quantization

The quantization step reduces the precision of the transformed coefficients. This
process, while inducing loss of information, significantly reduces the data size.
By mapping a range of input values to a single output value, it simplifies the data
representation and thus compresses the video’s size [22]. Modern video coding
standards implement adaptive quantization techniques that aim to improve subjective
coding performance. These techniques consider temporal characteristics to produce a
more visually friendly quantization parameter offset distribution [23].

The quantization parameter (QP) is the value that determines the level of
quantization, and it controls the trade-off between the percentage of compression and
the quality of the reconstructed video. A higher QP value means higher amounts of
quantization and compression [24].

2.1.4 Entropy coding

In this step, the data is converted into the compressed bitstream, in a lossless manner,
in which residual correlation in the coded data is exploited. Utilizing statistical coding
techniques, it aims to assign shorter bit sequences to frequently occurring symbols
and longer sequences to less frequent symbols, thereby minimizing the average code
length and consequently the file size [25].

Several entropy coding algorithms are used in video coding, including Huffman
coding [26], and Context-Based Adaptive Binary Arithmetic Coding (CABAC).
CABAC was introduced in H.264/AVC, and is based on arithmetic coding [27], in
which it encodes binary symbols, that allow probability modelling for frequent bits of
any symbol. Selection of these probability models is done adaptively based on local
conditions [22].

2.1.5 Loop filtering

Loop filtering is used to reduce artefacts introduced by block-based coding and
quantization, and to smooth the transitions between blocks, enhancing the visual
quality of the decompressed video [28] (more about loop filters in Subsection 2.2).
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Figure 1: Colour subsampling visualization [31]

2.1.6 Colour subsampling

Colour subsampling is a technique which reduces the amount of data needed for
the representation of the video sequence, without worsening the perceived visual
quality in a major way. It exploits the human visual system’s higher sensitivity to
brightness (luminance), compared to colour (chrominance) information [29]. This can
be done by converting from RGB colour space into YUV colour components, where
Y denotes luminance (luma), and U and V: chrominance (chroma), where U is the
blue projection, also noted as Cb, and V is the red projection, also noted as Cr [30].
Chroma components U and V may be reduced (subsampled) to half of the pixels in
both horizontal and vertical directions (4:2:0), or only in horizontal direction (4:2:2).
In the 4:2:0 setting, the data size is reduced by 50%, and in 4:2:2 by 30%. An example
visualization of colour subsampling can be seen in Figure 1.

2.1.7 Temporal layers

Temporal layers enable adaptive bitrate streaming, where different layers can be
selectively transmitted based on network conditions. They refer to the hierarchy of
the video frames in a video sequence. They are organized in different layers based
on their temporal distance from their key frame, which is an Intra-coded picture
(I-frame). These I-frames are complete images like JPG or BMP image files, whereas
the predicted images (P-frame) that are after the key frame only store the differences
from the I-frame. For example, the encoder isn’t required to store the background
pixels in a P-frame if it is unchanged from the previous frame, so it can save space. A
Bidirectional predicted picture (B-frame) can save even more space due to it referring
to both preceding and following frames to determine its content [32, 33].

In Figure 2 we can see an example of how each type of frame is referring to the
other ones. I-frames are called intra-frames, while P and B-frames are inter-frames. A
group of pictures, also called GOP structure refers to the order in which intra- and
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Figure 2: I, P, and B-frames in temporal layers example [33]

inter-frames are arranged. The encoded video streams consist of successive GOPs,
which are independent of each other, i.e., encountering a new GOP in an encoded
video stream allows one to decode it without access to other GOPs. Each GOP begins
with an I-frame [4].

During inter prediction, the prediction of the frame is done from one or more
frames that have been previously decoded. While in intra prediction, the decoding
of the frame is based on the spatial redundancy found within the image. Frames that
contain many smooth areas with the same colour or its gradients, can be decoded by
predicting the pixel values based on the values of the surrounding pixels. Here, instead
of relying on previously decoded frames, it relies on previously decoded parts of the
same frame. This technique is similar to image coding [34, 35].

2.1.8 Random access

Random access in VVC allows us to consume the video content from any position
instead of always at the start. Due to modern video coding standards mostly using
inter-picture prediction as their main means to compress video images that rely on
other frames, this option becomes complicated. To mitigate this, the encoded bitstream
is constructed in a way that the order of decoding is assembled in the order in which
the frames depend on each other, rather than the output order, i.e., the timely order in
which the video is played [5].

2.1.9 Partitioning

Flexible partitioning schemes are an advancement in modern video coding algorithms,
and it makes it possible for VVC to have a 50% higher efficiency over HEVC. A
Coding Tree Unit (CTU) is a data structure that represents a region of a video frame,
that the encoder is partitioning into smaller blocks or coding units (CU), which enables
compression on a smaller scale instead of whole frames. This hierarchical structure
allows the encoder to select adaptively the optimal block size based on the features of
the region that is being encoded [36–38].
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Figure 3: Frame partitioning into Coding Tree Units (CTU) and Coding Units (CU)
example [39]

Each frame in the video sequence is split up into fixed-size blocks or CTUs, which
are determined by the coding standard or settings. They can also be partitioned into
square CUs, using a quadtree structure. Recursively, depending on the content of the
CTU, these regions can be further split up, which gives different levels of complexity
and detail [39]. An example of CTUs and CUs can be seen in Figure 3. These CUs
are going to be the blocks/patches, or Prediction Units (PU) that, instead of the whole
frame, are going to be encoded.

2.1.10 Supplemental enhancement information

Supplemental Enhancement Information (SEI) is considered as additional data that is
sent alongside the main video stream and is stored in the encoded bitstream, adding a
bit-rate overhead. SEI messages are features that were used from H.264/AVC onwards.
These messages convey various types of information, including the video’s display
characteristics, content properties, or instructions for the decoding process [36, 40].

2.2 Loop filters
Loop filters are used on reconstructed video images in the HEVC and VVC standards,
and they minimize block artefacts and noise that often occur after the quantization
and transformation steps and also enhance the perceptual quality of the image before
storing them. Multiple loop filters are used in video coding techniques. The in-loop
filters are applied both during the encoding and decoding processes, before outputting
the frames. HEVC uses two of these loop filters, the deblocking filter, and the sample
adaptive offset, while VVC uses a few more on top of these, which are described in the
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Figure 4: Structure of HEVC decoder, and placement of loop filters [41]

Figure 5: Simplified structure of VVC decoder, and placement of loop filters [28]

following subsections [4, 5]. In Figures 4 and 5 the structure of the decoder of HEVC
and VVC can be seen, along with the placements of the in-loop filters.

2.2.1 Luma mapping with chroma scaling

The Luma Mapping with Chroma Scaling (LMCS) process alters the input signal’s
dynamic range by applying a luma inverse mapping function on the video frames, at the
start of the loop filters. This function is used on reference images, while, in the same
way, a forward mapping function is used by the encoder on the inter-picture prediction
signal. Furthermore, based on the luma mapping, chroma residual scaling adjusts the
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chroma signal, in order to balance the bitrate of luma and chroma components. Using
a piecewise linear model, the LMCS’s luma mapping process is implemented at the
pixel sample level. Meanwhile, the chroma scaling process is carried out at the chroma
block level, utilizing a scaling factor obtained from the reconstructed neighbouring
luma samples of that chroma block. [5, 42].

2.2.2 Deblocking filter

The Deblocking filter (DBLK) removes the block-based compression artefacts which
are mostly shown as blocky noise. The filter operates at block edges, smoothing the
transition between adjacent blocks. It functions by identifying and reducing sharp
intensity transitions from one block to another, which occur most often after the
quantization step [43].

2.2.3 Luma-adaptive deblocking

The Luma-Adaptive Deblocking tool adjusts the strength of the deblocking filter
based on the frame’s mean luma level. In the Sequence Parameter Set (SPS), at
most four luma level threshold values are signalled with their associated offset values
for intensified deblocking. This method is particularly beneficial for High Dynamic
Range (HDR) content, which possesses different non-linear transfer characteristics
compared to Standard Dynamic Range (SDR) video. When displayed, a corresponding
non-linear process transforms the decoded video signal into linear light, making
distortions from quantization more noticeable in areas with high or low brightness. By
allowing for stronger deblocking, the luma-adaptive deblocking effectively mitigates
visible distortions in these areas [5, 44–46].

2.2.4 Sample adaptive offset

Sample Adaptive Offset (SAO) is a nonlinear filtering tool, that additionally refines
the reconstructed signal, and it enhances the signal representation in smooth regions
and near the edges. It was designed to reduce banding and ringing artefacts. It applies
an offset to the pixel values in the decoded picture, that are calculated based on edge
direction or shape and pixel level [4, 41].

2.2.5 Adaptive loop filter

Adaptive Loop Filter (ALF) is applied to enhance the reconstructed video signal
through spatial filtering. It operates differently for luma and chroma components,
utilizing a 7×7 diamond-shaped region for luma and a 5×5 region for chroma. This
filter applies non-linear clipping on the differences between a current sample and
its neighbouring samples, facilitating the encoding process to consider the value
similarity between them by choosing suitable clipping parameters that get signalled as
well. On the decoding side, a local classification of a 4x4 block is used to choose the
luma filter. This classification, which divides the block into 25 categories, is based on
the directionality and the 2D Laplacian activity. This process, which signals an index
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for one of the 25 luma filters and one of the 8 chroma filters at the Coding Tree Unit
(CTU) level, allows for significant local adaptivity. The encoder establishes the filter
coefficients and clipping parameters and can signal various sets for every encoded
video through an Adaptive Parameter Set (APS) [5, 47].

2.2.6 Cross-component adaptive loop filter

Cross-Component ALF (CC-ALF) exploits correlations between the luma and chroma
channels, where it uses the luma channel to identify the chroma residuals which are
added to an earlier reconstructed chroma signal. It applies a 3x4 diamond-shaped
high pass filter for every chroma component to the luma input samples of ALF.
For the chroma components, the encoder defines up to four sets of CC-ALF filter
coefficients. This enhances local adaptivity by signalling one of the four filter sets for
each component at the Coding Tree Unit (CTU) level. The ALF parameters and the
CC-ALF filter sets are jointly utilized in an APS [5, 47, 48].

2.3 Neural network-based video coding
Techniques powered by Artificial Intelligence (AI) have demonstrated significant
promise in enhancing video coding efficiency, aiming to optimize the Quality of
Experience (QoE) for end-users within a constrained bit rate allocation. Traditional
video coding algorithms like AVC, and HEVC, rely on different processing steps such
as prediction, transformation, and quantization, while neural network-based video
coding uses the feature representation abilities of deep neural networks to enhance
various stages of the video coding pipeline. For instance, neural networks (NN) can
be used in the reconstruction stage to enhance the quality of the video frames, by
reducing the artefacts introduced in the compression phase. These advancements
are done with, next to other architectures, Convolutional Neural Networks (CNN)
and Recurrent Neural Networks (RNN), which are capable of capturing spatial and
temporal dependencies in video data. Motion compensation is one example where
Machine Learning (ML) architectures based on deep CNNs can improve greatly.
However, a downside to it is that it increases the runtime and memory requirements
needed to compress them, making them inadequate for real-time deployment. It is a
currently researched topic, where we can expect to have breakthroughs with the help
of AI [3, 49–54].

2.3.1 Overfitting

In Machine Learning (ML), overfitting is an undesirable occurrence when a model
excels on training data but struggles with new, unseen data [55]. However, in image
and video coding, intentionally overfitting a model during inference (or compression
simulation) for specific media elements within an image or video is actually a beneficial
strategy. This approach enhances the efficiency of codecs that rely on learning for
image and video processing [56–59].
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A decoder-side neural network model overfitting technique was introduced in [57]
This method is applied to a neural network-based post-processing filter for the Versatile
Video Coding (VVC) codec. It involves compressing weight updates by encouraging
sparsity and lower absolute values during the overfitting of the pre-trained model
on the image or video frame. Despite the initial method resulting in a significant
overhead due to the large number of parameters in neural networks, authors of [58]
suggest focusing on overfitting only the bias parameters of convolutional layers. This
approach, which impacts a smaller portion of the parameters but has a substantial
effect on performance, significantly reduces weight update overhead and achieves a
notable Bjøntegaard Delta rate (BD-rate) gain [60].

2.3.2 Neural network-based in-loop filter

Integrating CNN-based filters into the compression loop presents challenges as the
filtered image influences other coding tools. Various studies have explored different
approaches to this integration. Park and Kim [61] developed a CNN in-loop filter with
3-layers for HEVC, with specific models for different QP spectrums and conditions
for application based on quality improvement or Picture Order Count (POC). Meng
et al. [62] introduced an LSTM-based in-loop filter that is applied before the SAO
in HEVC, utilizing both Multiscale Structural Similarity Index (MSSIM) and Mean
Absolute Error (MAE) loss during training. Zhang et al. [63] proposed a residual
highway CNN (RHCNN) as an in-loop filter, with distinct models for I-, P-, and
B-frames and separate training for various QP ranges. Dai et al. and Jia et al. [7] both
developed deep CNNs as in-loop filters in HEVC, incorporating different strategies
for I and P/B-frames and utilizing CTU- and CU-level controls, with the latter also
introducing a content analysis network to optimize CNN model selection. These
approaches signify the ongoing efforts to optimize CNN-based in-loop filtering in
video coding [3].

Utilizing neural networks facilitates the creation of adaptive filters capable of
dynamically adjusting their parameters during the encoding process, to optimize
filtering operations based on the intrinsic particularities of the video data. The
existing in-loop filters in VVC, namely deblocking (DBLK), sample adaptive offset
(SAO), and adaptive loop filter (ALF), have been found to be insufficient in handling
complex compression artefacts. To combat this problem, NNs have been used to
remove compression artefacts either as in-loop filters [7, 8, 64–70] or post-filters
[9, 11, 57, 58, 71–77]. Most of these frameworks use a single offline trained neural
network which is used as a filter, or they propose a set of NNs from which one the best
suited is used based on, e.g., rate-distortion optimization (RDO) [10].

Content adaptation has been achieved by overfitting neural networks, and in many
cases, they resulted in higher coding efficiency [11, 57, 58, 76, 78, 79]. In these
techniques, a pretrained NN-based in-loop, or post-processing filter is trained at the
encoder side to overfit on the desired video data. In the supplemental enhancement
information (SEI) message the weight update, i.e., the difference between the pretrained
NN’s weights and the overfitted NN’s weights, is signalled next to the video bitstream
to the decoder side, where the overfitted NN is reconstructed with the help of this
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Figure 6: Convolutional Neural Network (CNN) outline [83]

weight update. With this restored NN the filtering can be done at decoding time.
To have the least amount of information sent along the bitstream, only the biases
are overfitted instead of all the NN’s weights. Santamaría et al. [10] introduced a
new learnable parameters inside the CNN filter, called multipliers, that are overfitted
instead of the biases. This multiplier is a vector that multiplies the feature tensor
output by a convolutional layer so that each element in the vector multiplies a single
channel of a feature tensor.

These NN-based in-loop filters can be placed in many positions next to the other
in-loop filters (DBLK, SAO, ALF). Common positioning schemes include placing
them before the Deblocking filter (DBLK), or between the DBLK and the Sample
Adaptive Offset (SAO), or by replacing any of these two. It is also common practice in
modern algorithms, to use it in parallel with either the DBLK or the SAO, in the way
that the datastream goes through both the deblocking filter and the trained NN filter,
and their outputs are combined.

2.3.3 Convolutional neural networks

Convolutional Neural Networks (CNN) are a subtype of artificial neural networks
that are categorized in the classification problems in Machine Learning (ML). They
are extensively used on image- and matrix-type data, such as videos, in the scopes
of object detection, image and video recognition, recommender systems, and image
generation [80, 81].

They are a type of feed-forward neural network, that learns feature engineering
through the optimization of filters or kernels. CNNs primarily consist of three layers:
convolutional, pooling, and fully connected layers. Each layer transforms the input
data with the aim of gradually extracting higher-level features. In the initial layers,
the model identifies basic attributes like colours and edges. As it advances to deeper
layers, it discerns more intricate patterns or shapes [82]. In Figure 6 the outline of the
CNN’s structure is shown.

• Convolutional layer is an essential building block of a CNN, which creates a
feature map by applying a filter or kernel to the input data. This kernel is a matrix
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that slides over the input datapoint, performing element-wise multiplication and
summation to produce a single value out of the feature map. This process is
repeated on the entire input data to create a complete feature map. Multiple
feature maps are created, where each focuses on different features of the image.

• Pooling layer is applied to reduce the spatial dimensions of the data while main-
taining useful information. It helps to decrease the computational complexity
and to avoid overfitting. The most common types of pooling are max pooling,
and average pooling, where either the maximum or average value is aggregated
from non-overlapping filters on the data.

• Fully connected layer is used to generate predictions from the features that
have been extracted. It takes the output from the last layer and flattens it into a
one-dimensional vector, which is then fed into a standard feed-forward NN to
make the prediction.

As for the activation function, Rectified Linear Unit (ReLU) is often used which is
linear for positive values, but 0 for negative ones. Leaky ReLU is based on ReLU,
but the difference lies in the negative values where the slope is a non-zero small
slope, allowing small non-zero gradients through the layer [84]. The mathematical
formulation for Leaky ReLU is given by:

𝜎 =

{︄
𝑥 if 𝑥 ≥ 0
𝑎 · 𝑥 otherwise

(1)

where 𝑎 is the slope coefficient that is determined before training.

2.3.4 Neural network coding and representation

Neural Network Coding and Representation (NNR) was developed by the ISO/IEC
Moving Picture Experts Group (MPEG) [85] as the first international standard for
efficient neural network (NN) compression. It is created as a toolbox of compression
methods, that can function as a standalone coding framework with its bitstream format
or can be used with other neural network formats and frameworks. Offering maximum
flexibility, it operates on a per-parameter tensor basis, ensuring accurate decoding
even without structural information. Incorporating advanced encoding and decoding
technologies like deep context-adaptive binary arithmetic coding (DeepCABAC), it
also facilitates neural network parameter optimization through various methods like
sparsification, pruning, low-rank decomposition, unification, local scaling and batch
norm folding. Notably, NNR maintains over 97% compression efficiency without
affecting classification quality in transparent coding scenarios [86]. In Figure 7 the
overview of the NNR is presented.

2.3.5 Neural network quantization

Neural networks are mostly trained with high-precision numerical formats like 32-bit
floating-point (float32), although, relying on floating-point arithmetic can lead to dis-
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Figure 7: Neural Network Coding and Representation (NNR) overview [86]

crepancies across different platforms, potentially resulting in corrupted reconstructions
during the decoding process due to data mismatch between the encoder and decoder.
Yang et al. [87] suggest that one way to mitigate this issue is by representing the network
parameters with fixed-point precision, which not only addresses the mismatch problem
but also offers benefits such as reduced power and memory usage, decreased network
delay, and smaller costs for individual Multiply-ACcumulate (MAC) operations. The
authors suggest using quantisation from float32 to 32-bit or 16-bit fixed-point values
(int32, or int16).
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3 Methodology

3.1 Overview
The goal of the research is to answer how well does two-stage overfitting of the
NN-based in-loop filter performs in video coding efficiency, where in the second
stage, the model overfits on only patches that give a positive Peak Signal-to-Noise
Ratio-gain. To test it, first, the hyperparameters were searched to obtain decent results
without two-stage overfitting.

In the first part of the hyperparameter tuning, an optimal learning rate was searched.
Afterwards, experiments were done on the loss functions, different epoch counts, and
loss weighting for colour components. Subsequently, during two-stage overfitting, two
models were tested: one that started overfitting from the pretrained model, and another
that continued the overfitting from the first-stage model that filtered out the patches
that gained negative delta-PSNR (dPSNR).

The overfitting was done on the multipliers inside the CNN in-loop filter. Loop
filter models were created by overfitting on each test sequence, and for multiple
quantization parameters (QP) (22, 27, 32, 37, 42), giving us 4 · 5 = 20 models per
experiment. In one experiment the models’ performances are aggregated into one set
of metric values.

Four different base in-loop filter models were trained on a general video dataset
(BVI-DVC), while the overfitting was performed on one of the base models on the
test sequences at the encoder side. Here, the resulting weight update of the model is
compressed and signalled with the encoded bitstream, which is then decoded at the
decoder side to reconstruct the overfitted loop filter.

3.1.1 Pipeline

A simplified encoding and decoding pipeline is shown in Figure 8.
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The process of overfitting the loop filter, and encoding the video sequence is
described in the following:

1. One pretrained base NN filter model is selected (out of 4 existing ones) to be
overfitted based on which model gives the highest PSNR on the given video
sequence.

2. The model is overfitted on one video sequence with one QP.

3. The weight update of the neural network (NN) is calculated as: overfitted
parameters - pretrained parameters.

4. The weight update is compressed using the NNR standard.

5. The decompressed weight update is used to reconstruct the overfitted NN filter.

6. The NN is quantized to fixed point precision (int).

7. The overfitted NN filter is integrated into the VVC Test Model (VTM) that
simulates the decoding.

8. The video sequence that the model overfitted on, gets encoded into a bitstream,
including the weight update of the NN. The VTM uses the VVC standard to
encode but uses the overfitted loop filter in its in-loop filtering process (if it
enhances the quality, thus improving the PSNR).

After the video and NNR bitstream are created, the decoding can take place as
follows:

1. The encoded NNR bitstream is decoded.

2. Using the weight update, the overfitted NN loop filter is reconstructed.

3. The network is quantized.

4. Integration into VTM.

5. The video bitstream is decoded using the NN in-loop filter, where the position
of the overfitted filter is in parallel with the Deblocking Filter (DBLK), and both
their outputs are combined.

After the decoding process, the final metrics and BD-rates are obtained.
The process of two-stage overfitting is shown on Figure 9, and listed here:

1. Overfit a model like before, on every patch from the dataset. This will be the
first-stage model.

2. Based on this model, compute the PSNR values over the patches of the video
sequence. Compare this value to the PSNR of the unfiltered data that the CNN
learns from.
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3. Remove those patches from the dataset that are getting negative delta-PSNR
(dPSNR), i.e., PSNRfirst-stage model − PSNRunfiltered data < 0, meaning that the
overfitted first-stage NN didn’t improve the quality of the video patches during
200 epochs.

4. Overfit a model over this subset of the dataset. This overfitting can be started 1.)
from the base model, as usual, or 2.) from the first-stage model, so that it has
already learnt from the video sequence, but now it has to focus on only a subset
of all the patches from the video data.

3.2 Common test conditions
The assessment is conducted utilizing the VVC Test Model (VTM) [88], the benchmark
software for the H.266/Versatile Video Coding (VVC) standard. This research utilized
version 11.0 NNVC 5.0 [89], a tool that has been used by the standardization specialists,
the Joint Video Experts Team (JVET) [16], to test and assess NN tools in the context
of hybrid video coding. The codec setup used is the JVET Random Access (RA)
Common Test Conditions (CTC) for NN-based Video Coding (NNVC) [90], in the RA
configuration, both intra-frame and inter-frame predictions are used. This software
and the corresponding configurations are used to produce the reconstructed data and
additional supplementary details necessary for the creation of training datasets.

From the CTC test sequences, four sequences from class D were considered during
inference time in this research, with the attributes shown in Table 2. Results were
compared to the anchor model’s results, that is the NNVC 5.0. These test sequences
were in YUV 4:2:0 format instead of RGB format, facilitating the possibility of
calculating PSNR on the luma and chroma channels, and also tweaking the weighting
of colour distributions of Y (luma), Cb (blue-difference chroma) and Cr (red-difference
chroma).

3.3 Pretraining
The base in-loop filter CNNs were pretrained on the BVI-DVC dataset which is an
extensive and representative video database, designed to train CNN-based video com-
pression systems. This database is particularly focused on facilitating the development
of machine learning tools that improve traditional compression frameworks. This
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Sequence name Frame count Resolution Frame rate Bit depth
RaceHorses 300 416x240 30 8
BQSquare 600 416x240 60 8

BlowingBubbles 500 416x240 50 8
BasketballPass 500 416x240 50 8

Table 2: Test sequences in class D from the JVET Common Test Conditions

includes aspects such as upscaling of spatial resolution and bit depth, post-processing,
and in-loop filtering. The BVI-DVC incorporates 800 sequences with spatial resolu-
tions ranging from 270p up to 2160p, including video content of a wide array of natural
scenes and objects, featuring diverse textures and motion types, and various camera
movements and activities involving humans, animals, and other objects [91, 92].

There are 4 in-loop filter base models that were pretrained on the BVI-DVC dataset.
Each of these base models is used in the decoding process, but only one is used for
one frame or block. The loop-filter model used is decided based on Rate-Distortion
Optimization (RDO). One of these base models is overfitted and used instead of the
original base model. The model selection is based on the highest PSNR gain on the
whole sequence.

3.4 Overfitting
3.4.1 Preprocessing

As a preprocessing step, the YUV 4:2:0 format images of size 144x144 were converted
into 6 blocks/patches of size 72x72. They were also normalized into the range of
[0, 1]. These patches from the frames are then randomized and put into batches of size
64. If it was needed, the patches were padded, in the same way as the VTM does it.

The bit-depth of the video sequences shall be 10-bit, as restricted by the CTC [90],
and for this reason, the 8-bit sequences are converted into 10-bit.

Each video sequence has been coded with VTM 11.0, RA configuration, with
different Quantization Parameters (QPs) of 22, 27, 32, 37, and 42.

3.4.2 Architecture

The content-adaptive in-loop filter is a CNN with 46 layers, based on [67] and [93].
The network architecture is shown in Figure 10, with the difference that the multiplier
layers are added after each convolutional block. The output of a multiplier layer is
defined as:

y = 𝜎 ((K ∗ x + b) · m) (2)

where K is the kernel, x is the input to the layer, ∗ is the convolution operator, b is the
bias, m is the multiplier, and 𝜎 is the activation function [10, 87].

The CNN is made up of 13 filter blocks, out of which 11 filter blocks are used
as hidden layers. These hidden blocks consist of two 1x1 convolution layers with a
Leaky ReLU activation layer between them, and a 3x3 convolution layer, where 𝑀 =
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Figure 10: CNN loop filter architecture [79]

72, 𝐾 = 24, 𝐿 = 6, and rank 𝑅 = 24, such that 𝑀 > 𝐾. CANDECOMP/PARAFAC
decomposition (CP) [94] blocks are added to each hidden layer that decomposes the
3x3 convolutional layer, and fuse the adjacent 1x1 pointwise convolutions. These 3x3
convolutions are decomposed into 4 layers with rank R followed by fusion of adjacent
1x1 convolution:

• 1st layer: 1x1xKxR pointwise convolution

• 2nd layer: 3x1xRxR separable convolution

• 3rd layer: 1x3xRxR separable convolution

• 4th layer: 1x1xRxK pointwise convolution

The input to the CNN loop filter are:

• the reconstruction Coding Tree Unit (CTU) and 8 neighbouring samples to each
side of the CTU, which is derived from video compression following the VVC
standard, i.e., the original video is first fed through the VVC Test Model (VTM)
and the network will learn to enhance the quality of this reconstruction, to get
closer to the original video

• 4 luma (Y) and 2 chroma (U, V) tensors with size 72x72. The luma samples
from the patch are interleaved into four blocks, as shown in Figure 11

• frame-level normalized Quantization Parameter (QP) Step

• Boundary Strength (BS), which is a map that contains the boundaries/edges of a
frame relative to the CTU partitioning

The output is a filtered CTU with size 64x64x6, including 4 luma channels that were
interleaved as at the input, and 2 chroma channels [67, 78, 79, 93].
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3.4.3 Process

The encoder will try to overfit the pretrained base CNN loop filter on the particular
[video sequence, QP] pair by optimizing over the loss function which is the weighted
Mean Squared Error (MSE). The weights used for the loss function were 4:1:1,
and 12:1:1 for the Y:Cb:Cr separate losses. ADAM [95] is used as a stochastic
optimizer, with a fixed learning rate that is set and tuned as a hyperparameter. The
overfitting is done in 100, 200, or 400 epochs, which each consist of batches of size 64.
Experiments were done on the number of epochs as well, thus the varying numbers.
The specifications of the overfitting are shown in Table 3.

Framework TensorFlow 2.8.0 [96]
Epoch 100/200/400

Batch size 64
Loss function Weighted-MSE/MAE/SSIM

Colour weights for loss function 4:1:1/12:1:1
Patch size 72x72

Learning rate 1e-4/1e-3/1e-2
Learning rate update strategy Constant learning rate

Optimizer ADAM
Total Convolutional Layers 46

Total Fully Connected Layers 0
Number of Parameters 53724

Number of Trainable Parameters 1158
Quantization parameters (QPs) 22, 27, 32, 37, 42

Table 3: Overfitting specifications and technicalities

3.4.4 Two-stage overfitting

After the best hyperparameters were obtained, we used the model with those hyper-
parameters as a first-stage model. On the whole dataset of patches taken from the
video sequence, the PSNR metric is calculated between the model’s reconstruction
(output of video sequence filtered with the model) and the ground truth (the original
video). This PSNR is compared with the PSNR of the unfiltered data, i.e., the video
reconstruction from the VTM (original video fed through the VVC coding), which
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serves as the input data to the loop filter neural network. Throughout the overfitting
the goal is to obtain a gain over the unfiltered data, i.e., to obtain a positive PSNR-gain
(dPSNR). This goal is achieved, however not on all patches of the video data, but some
patches are left with negative dPSNR, i.e., the model is performing worse in those
instances. The purpose of the two-stage overfitting is to remove those patches that have
negative dPSNR from the dataset and to overfit the model on only a subset of the video
data. If some patches show no gain, it means the model can’t learn the characteristics
of them, thus by removing them, it is believed that it will boost the performance on
the patches that have already shown that the model is capable of obtaining positive
dPSNR.

Two types of two-stage overfitting were experimented on, depending on where the
overfitting starts from in the second-stage model:

1.) base model. The second-stage model is overfitted like the other models, but on
the subset of the dataset, that has positive PSNR-gain from the first-stage model.

2.) first-stage model. The first-stage model continues the overfitting, but on the
subset of the dataset, instead of the whole video sequence, like before.

The second-stage models are further overfitted for 200 epochs. The model at point
2.) has been overfitted on the whole dataset for 200 epochs, then on the subset for
another 200 epochs, totalling 400 epochs. To compare the results, this model has to
be compared to another model that is trained for 400 epochs on the whole dataset.
The model at point 1.) can be compared with the first-stage model which has been
overfitted for 200 epochs.

Since these models are optimized for only a subset of the video data, not for all
the patches in the sequence, the rest of the sequence will yield worse performance.
However, due to the VTM’s ability to choose whether it uses the NN in-loop filter or
not, for those patches that have negative dPSNR, it will either way choose to not use
the overfitted model. Thus, only optimizing for the positive dPSNR patches should
yield higher BD-rates overall.

3.5 Inference
To obtain the final results and measurements, the compression pipeline has to be
simulated. The simulation, also called inference, was done with the help of the Small
Ad-hoc Deep-Learning Library (SADL) and the VVC Test Model software (VTM),
which performed the encoding of the CTC video sequences with the compressed NN
loop filter model, and then the decoding as well.

Before the encoding happens, the coded weight update is decoded and used to
recreate the overfitted loop filter by adding the multiplier update to the pretrained
CNN filter. This NN filter is integrated into the VTM 11.0 with NNVC 5.0, which,
during encoding, can choose to use the overfitted NN loop filter on a CTU partition,
or not. This decision is based on Rate-Distortion Optimisation (RDO), where also the
bitrate overhead created by the NN model is considered. For this reason, there exists a
flag that determines (i) if the filter is not used on all the CTUs within a frame, (ii) if
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the filter is used for all CTUs, or (iii) if the filter has been used partially on the frame
CTUs, in which case another CTU-level flag signals if the NN is used on the particular
CTU or not [11,76]. After the encoding, the decoding can take place, using the VTM,
and the final BD-rates and other metrics can be calculated, and compared against the
performance of VTM 11.0 NNVC 5.0 in RA configuration (random access).

SADL was used with int16 precision, meaning that the NN model’s parameters
and activations were quantized to int16, instead of float32, as in [87].

SADL (Small Ad-hoc Deep-Learning Library) is a C++ source code library
designed for neural network inference (compression simulation), which was created
to provide a simple framework, that is compatible with JVET software development
policy. Furthermore, it can be integrated with VTM and it can function without any
dependencies [97].

3.6 Metrics
During the overfitting of the filter models, Mean Squared Error (MSE), and Peak
Signal-to-Noise Ratio (PSNR) loss functions were used. Also experimented with
Mean Absolute Error (MAE), and Structural Similarity Index (SSIM) loss functions.
Traditionally, MSE and PSNR have been the most commonly used loss functions in
video coding due to their simplicity and ease of computation. However, they often
do not align well with human perception of quality, as well as SSIM and Multiscale
SSIM (MSSIM).

The quality was assessed using the PSNR and MSSIM metrics, and also the
Bjøntegaard-Delta rate (BD-rate) was calculated for each metric. The bitrate of the
weight update, which was transmitted outside of the video bitstream, but was still
included in the BD-rate calculation. Thus this metric takes into account both visual
quality and compression efficiency (bitrate). It is calculated for the luma, and the two
chroma components separately [90].

The bitrate of the weight-update 𝑟 is calculated with the following equation:

𝑟 =
𝑏 · 𝑓

1000 · 𝑛 (3)

where 𝑏 is the bits of the weight-update, 𝑓 is the frame rate of the video sequence
measured in frames per second (fps), and 𝑛 is the number of frames in the video
sequence [76].

Bjøntegaard Delta-rate

3.6.1 Peak signal-to-noise ratio

Mean Squared Error (MSE) is a widely used loss function that calculates the average
of the squares of the differences between the actual and predicted values [98, 99]. The
formula of MSE is as follows:

1
𝑛

𝑛∑︁
𝑖=1

(︁
𝑌𝑖 − 𝑌�̂�

)︁2 (4)
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Peak Signal-to-Noise Ratio (PSNR) measures the quality of reconstructed images
or video frames compared to the original ground-truth, where the with the quality
increase the PSNR value also increases, i.e., a lesser amount of distortion or noise
introduced during the compression or reconstruction process. PSNR denotes the
proportion between the upper boundary of a signal and the power of the interfering
noise that impacts its representation quality. Given that many signals possess a wide
dynamic range (the disparity between the maximum and minimum potential values
of a variable quantity), the PSNR is typically expressed in the logarithmic decibel
scale [100]. The PSNR is calculated using the Mean Squared Error (MSE) between the
original and the compressed or reconstructed image/video. The formula for calculating
PSNR is given by:

PSNR = 10 · log10

(︃
MAX2

MSE

)︃
= 20 · log10

(︃
MAX
√

MSE

)︃ (5)

where MAX is the maximum possible pixel value of the image. For an 8-bit image, it
is 255 (however, since the data is normalized, the maximum value is 1), and MSE is
the mean squared error between the original and the compressed/reconstructed image.

During the overfitting, the PSNR value of one loop filter model is compared to the
PSNR of the unfiltered data that comes from the VTM’s reconstruction that serves as
input to the CNN, thus trying to obtain a PSNR-gain over the VTM. This comparison
is done under the metric of delta-PSNR (dPSNR), where the higher dPSNR value is
preferred, showing that the overfitted model has gained a higher PSNR.

During overfitting, a weighted loss is used, where MSE and PSNR are calculated
over the luma (Y), and two chroma channels (Cb, Cr). In the loss function, these three
measures are added together with their weights (𝑤), like the following:

MSEYCbCr = MSEY · 𝑤Y + MSECb · 𝑤Cb + MSECr · 𝑤Cr (6)

PSNRYCbCr = PSNRY · 𝑤Y + PSNRCb · 𝑤Cb + PSNRCr · 𝑤Cr (7)

Higher weights are given to the luma component due to humans’ higher sensitivity
to luma than to chroma. In the experiments the following weights were tested for
Y:Cb:Cr: 4:1:1, 4:2:2, and 12:1:1.

3.6.2 Structural similarity index

The Structural Similarity Index (SSIM) was developed to better assess the visual
quality of images and videos as perceived by humans, as the human visual system
is good at looking for and extracting structural information from scenes. In this
metric, changes in structural information of images and videos are considered, such
as luminance and contrast. Its value ranges from −1 and 1, where the higher values
indicate similarity and lower values indicate major differences in terms of structural
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information, luminance, and contrast [98,101]. The formula of SSIM is given as in
the following:

SSIM(x, y) =
(︁
2`x`y + 𝐶1

)︁ (︁
2𝜎xy + 𝐶2

)︁(︂
`2

x + `2
y + 𝐶1

)︂ (︂
𝜎2

x + 𝜎2
y + 𝐶2

)︂ (8)

where `x, 𝜎
2
x and 𝜎xy is the mean of x, the variance of x, and the covariance of x and

y, respectively.
Multiscale SSIM (MSSIM) was developed to incorporate the variations of viewing

conditions, compared to traditional single-scale structural similarity methods.

3.6.3 Bjøntegaard-delta rate

The Bjøntegaard Delta rate (BD-rate) is a method for calculating the average differ-
ence between two rate-distortion (RD) curves. It was introduced in 2001 by Gisle
Bjøntegaard. The BD-rate measures the percentage of bitrate reduction provided by a
codec provides while preserving the same quality, as determined by objective metrics
(usually measured in terms of PSNR or SSIM). It has become a standard metric in the
video coding community to compare the efficiency of different video compression
algorithms. A negative BD-rate indicates that the first codec is more efficient (i.e.,
requires fewer bits to achieve the same quality), while a positive BD-rate indicates
that the second codec is more efficient. This also means that the order of codecs is
important in the calculations. To calculate the BD-rate the curves have to be fitted to
the rate-distortion points and the area between these curves is integrated [12, 24].
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4 Results
The results are divided into two sections. At first, optimal hyperparameters were
searched, in terms of the learning rate, loss function, colour weighting for loss
calculation (Y:U:V; in what portion does each channel’s loss metric contribute to the
weighted loss), epoch number (number of times to iterate over all the batches, i.e.,
over the dataset of video patches). In the second section, experiments were done on
two-stage overfitting. The first-stage model in the two-stage overfitting comes from
the best model attained in the hyperparameter tuning.

4.1 Hyperparameter tuning
The results in Table 4 show experiments on Learning Rate (LR), colour weighting
for the loss function, and epoch numbers. The metric value is the Bjøntegaard-Delta
rate (BD-rate), which is calculated with regard to the Peak Signal-to-Noise Ratio
(PSNR) for the luma (Y), and chroma (U, V) components separately. When regarding
the BD-rates, the lower values are preferred, showing a gain over the anchor model:
NNVC 5.0.

LR Colour weight Epochs Y-PSNR U-PSNR V-PSNR
0.01 4:1:1 100 -0.63% -8.28% -7.69%
0.001 4:1:1 100 -0.88% -7.71% -6.95%
0.0001 4:1:1 100 -0.94% -5.86% -5.52%
0.0001 12:1:1 100 -0.96% -3.50% -3.21%
0.0001 12:1:1 200 -1.01% -4.28% -3.61%

Table 4: BD-rate results for hyperparameter tuning, with MSE loss function

The PSNR-Y-gain training curve of one model is shown in Figure 12. This model
was overfitted on BasketballPass video sequence with Quantization Parameter (QP) of
22.

One experiment was done with another loss function other than the Mean Squared
Error (MSE), which was the Structural Similarity Index (SSIM). This model was
overfitted for 100 epochs, with 4:1:1 colour weighting, and with a learning rate of
0.001. The BD-rates were: 4.01% for Y-PSNR, 3.04% for U-PSNR, and 2.65%
for V-PSNR. Since these values were very high, experimentation on the SSIM loss
function was discontinued.

When experimenting with the learning rate, BD-rate was calculated by aggregating
5 QP levels, but also by aggregating only 4 QP levels. Two sets of results were
obtained, for the lower QPs (22, 27, 32, 37), and the higher ones (27, 32, 37, 42).
These results are displayed in Tables 5, and 6.

There have been experiments on hyperparameters, that weren’t simulated, thus no
BD-rates were obtained. However, through the overfitting losses, we can still conclude
insights about the hyperparameters. These results are shown in Table 7. For the losses,
Mean Squared Error (MSE), and Mean Absolute Error (MAE) were tried. In the
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Figure 12: Delta-PSNR-Y(dPSNR-Y) curve during overfitting for one video sequence.
LR=0.0001, colour weighting=12:1:1, epoch count=200, loss function=MSE

LR Colour weight Epochs Y-PSNR U-PSNR V-PSNR Y-MSSIM
0.01 4:1:1 100 -0.95% -7.37% -7.26% 0.30%
0.001 4:1:1 100 -1.24% -6.84% -6.64% -0.04%
0.0001 4:1:1 100 -1.18% -4.98% -5.22% -0.30%

Table 5: BD-rate results for hyperparameter tuning, for the lower 4 QP values (22,
27, 32, 37), with MSE loss function

YCbCr-Loss column, the separate losses were combined with the colour weights for
Y:Cb:Cr. The results were sorted by the Y-dPSNR component.

4.2 Two-stage overfitting
From the results of the previous section displayed in Table 4, the best performing
model was selected as the first-stage model, which is the last entry in the table, i.e.,
LR = 0.0001, loss function = MSE, colour weighting = 12:1:1, epoch count = 200.
Results are in Table 8. The horizontal line is put below the second entry for ease of
comparison. The 2nd stage model that started from the base model has to be compared
with the 1st stage model that also started from the base model because both have been
trained for 200 epochs. The same is true for the 400 epoch models.

Delta-PSNR-Y has been calculated on these 4 overfitted models, averaged on all
the sequences and QP values, on both the whole dataset of all the patches from the
video sequence, and also on the subset of the dataset which only contains the patches
from the video frames that had a positive dPSNR-Y for the first-stage model. These
results are in Table 9. Next to the PSNR-gain, the average number of patches were
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LR Colour weight Epochs Y-PSNR U-PSNR V-PSNR Y-MSSIM
0.01 4:1:1 100 -0.33% -9.23% -8.35% 0.95%
0.001 4:1:1 100 -0.60% -8.69% -7.45% 0.70%
0.0001 4:1:1 100 -0.75% -6.74% -5.91% 0.17%

Table 6: BD-rate results for hyperparameter tuning, for the higher 4 QP values (27,
32, 37, 42), with MSE loss function

LR Loss Colour weight Y-dPSNR Y-Loss YCbCr-Loss
0.001 MSE 12:1:1 0.11046 0.0004955 0.0004405
0.001 MSE 4:1:1 0.10374 0.0004963 0.0003666
0.01 MSE 4:1:1 0.10127 0.0004964 0.0003666
0.001 MSE 4:2:2 0.09555 0.0004972 0.0003015
0.01 MSE 4:2:2 0.09153 0.0004976 0.0003014
0.001 MAE 4:1:1 0.08923 0.0122756 0.0100800

Table 7: Loss results for hyperparameter tuning, without simulation. Epochs=100

counted, that had positive dPSNR-Y out of the batches of size 64. On the top row of
this table, the base model’s performance is displayed. This is the model from which
the overfitting starts in all cases.

The weight update generated by overfitting the CNN model is also transmitted
to the decoder, next to the encoded video bitstream. This weight update is encoded
using the Neural Network Compression and Representation (NNR) standard, and it
also accounts for the compression efficiency of the overall coding. The bitrates of
these encoded NNR updates are calculated and they resulted in a 0.82% increase for
the second-stage model which started from the base model compared to the first-stage
model’s NNR update, and a 98.2% increase for the second-stage model which started
from the first-stage model.

35



Stage Start Epochs Y-PSNR U-PSNR V-PSNR
1st base 200 -1.01% -4.28% -3.61%
2nd base 200 -1.00% -4.13% -3.60%
1st 1st stage 400 -1.01% -4.74% -3.68%
2nd 1st stage 400 -0.62% -4.43% -3.33%

Table 8: BD-rate results for two-stage overfitting. LR=0.0001, loss function=MSE,
colour weighting=12:1:1

Stage Start dPSNR-Y dPSNR-Y Nr. pos. Nr. pos.
model Full Subset Full Subset

base - 0.197 0.208 56.1 58.2
1st base 0.272 0.28435 61.3 64
2nd base 0.271 0.28428 61.1 63.7
1st 1st stage 0.2767 0.28897 61.5 63.9
2nd 1st stage 0.2764 0.28898 61.3 63.8

Table 9: PSNR-Y-gain (dPSNR-Y), and the average number of positive dPSNR-Y
patches in a batch out of 64 (Nr. pos.) for the models shown in Table 8. The top row
shows the base model’s performance. Calculated on the full dataset of patches from
the video frames, and on the subset of the dataset (dPSNR-Y > 0)
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5 Discussion
In this section, analysis and explanation will be given for the above-listed results,
while also recommendations for future research are given.

5.1 Interpretation of results
When comparing model performances, mostly the luma (Y) component is taken into
account due to the human eye’s sensitivity to luminance over chrominance (U, V). For
the Bjøntegaard-Delta rates (BD-rates), lower values are preferred, such that if the
value is negative, it shows a gain over the VVC Test Model’s (VTM) performance.
Also for the losses: MSE, MAE, and SSIM, the lower values are more advantageous,
while in the Peak Signal-to-Noise Ratio (PSNR), and delta-PSNR metrics, the greater
values indicate better performance, due to it inversely correlating to the Mean Squared
Error (MSE).

5.1.1 Hyperparameter search

From the fine-tuning experiments, we were able to draw conclusions about which
hyperparameters were suited for the overfitting task on the architecture presented in
Section 3.4.2:

• Learning rate
Out of the tested Learning Rates (LR) of 1e-2, 1e-3, and 1e-4, based on the
BD-rates obtained in Table 4 we concluded that the LR of 1e-4 gives the best
results. The learning rate is dependent on many factors, such as the NN being
trained, the data and its characteristics. Therefore, it’s difficult to predict a
priori. For this reason, the best-suiting LR is found mostly by trial and error.
Preliminary tests were made with LR of 1e-5 that weren’t displayed in the results
section, however, their evaluation didn’t perform that well, giving us the insight
that the best-suited learning rate for this task lies between 1e-3 and 1e-5.
A limitation of this approach is that the learning rates tried were all constant.
Using adaptive learning rates, or learning rate schedulers would yield us
more profound results, because these methods adjust the learning rate based
on the characteristics of the data, potentially obtaining a good learning rate
automatically [13].

• Loss function
While developing neural video coding techniques, the standardized way to
compare different models is by the Peak Signal-to-Noise Ratio (PSNR), which
is directly correlated with Mean Squared Error (MSE). Thus, if the network
is optimizing over the MSE, it will obtain the best PSNR values as well. This
reasoning is proven with the overfitting dPSNR-Y values in Table 7, and from
the BD-rates of the SSIM loss function. From these results, we saw that using
the Mean Absolute Error (MAE) and the Structural Similarity Index (SSIM),
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the metrics were performing worse compared to the models using MSE by a
greater margin. These two losses aren’t related directly to PSNR. Also, the MSE
is more sensitive to outliers, which is an advantage since it minimizes large
errors, not allowing bigger artefacts in the decoded video sequence [24, 98].

• Epoch count
Experimenting with epoch counts brings with itself a trade-off between quality
and training time, since with a higher epoch count better results can be obtained,
however training for a very long time is not preferred in the context of video
coding, when usually the videos have to be served without much delay [13].
Although, for the purpose of fine-tuning the models, long overfitting times are
experimented with, to observe how well can the NN model perform.
During the experiments, epoch counts of 100, 200, and 400 were tested, in
Tables 4, and 8. Sequentially, the higher epoch counts brought better results.
From Figure 12 can be observed that the model hasn’t yet converged, i.e., with
further epochs, higher dPSNR-Y could be obtained, although it slowed down
after approximately epoch 50.

• Colour weighting
Colour weighting influences the loss function calculation since losses are
calculated for each colour (and luma) component separately. These separate
losses are added together, each having a weight associated with it. Results from
Tables 4, and 7 suggest that the weights of 12:1:1 are the most preferable and
that 4:2:2 weighting yields worse results than 4:1:1 weighting.
In the 12:1:1 weighting, 12

14 of the loss is given by the loss of the luma
component, i.e., the model is largely optimizing over the luma component.
This is advantageous due to the higher priority of luminance over chrominance.
Higher Y-weights obtain better Y-loss, Y-dPSNR, and Y-BD-rates. These are
the metrics that are mostly taken into consideration when comparing models.
From the table that shows results without simulation (Table 7), the aggregated
YCbCr-loss is displayed which also takes into account the chroma components
(Cb, Cr). Based on this metric, the weighting of 4:2:2 performs the best (lower
loss is preferred).

5.1.2 Insight on quantization parameters

The Quantization Parameters (QP) indicate how much quantization and compression
is done to the video frames, where lower QP values mean a higher quality. From
Tables 5, and 6, where the BD-rate of 3 models are shown but not for all QPs, but for
the lower- (22, 27, 32, 37), and higher (27, 32, 37, 42) QP values, it can be observed
that for the lower QPs, the models perform better. This quality is also reassured by the
Y-Multiscale-Structural Similarity Index (Y-MSSIM), which is more closely related to
the visual quality of images and videos as perceived by humans. This finding suggests
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that a higher gain is possible to obtain on the sequences with higher QPs, i.e., on
videos with higher quality.

5.1.3 Two-stage overfitting

In the two-stage overfitting, the best-performing first-stage model was preserved and
held as an anchor model, to which the second-stage model is compared. This first-stage
model has as hyperparameters the following: LR=1e-4, loss function=MSE, colour
weighting=12:1:1, and epoch counts=200. This first-stage model was the baseline on
which the PSNR-Y of each patch in the video sequence was calculated. After that, the
negative PSNR-Y patches were removed to form a subset of the dataset on which the
second-stage model was overfitted. Since there were two second-stage models, one
that started overfitting from the base NN model, and the other that started from the
first-stage model, one of them had 200 epochs of training, and the other had 400 since
the first-stage model already trained for 200 epochs (but on the whole dataset). For
comparability, the first-stage model was further trained for 200 epochs to match the
epoch count of the 400-epoch second-stage model.

The results in Table 8 show the BD-rates of the 4 models, and suggest that
the second-stage models underperform, i.e., they have higher Y-PSNR BD-rates,
compared to the first-stage models. The second-stage model with 200 epochs also
underperformed compared to its first-stage model, although, only by a small margin.
This is also shown in the table with the overfitting dPSNR values (Table 9), where
we don’t see improvement in second-stage dPSNR values. For comparison, in the
same table, we can observe that the difference between the base model’s and the
first-stage model’s dPSNR-Y is much greater than between the first- and second-stage
models’ dPSNR-Y values. These results are contradictory to the anticipated results,
since by removing the "bad elements" from the dataset, i.e., the patches that brought
negative PSNR-gain, the metrics should have improved. Also, general overfitting
usually happens due to fewer amounts of samples in the dataset, since the model has
fewer characteristics to learn on, so it can pick up on the particularities, which is our
purpose during the content-adaptive training of loop filters [13]. Instead, they have
gotten worse.

Since the VVC Test Model (VTM) decides at each Coding Tree Unit (CTU) if it
will use the overfitted NN in-loop filter or not, if some patches have negative dPSNR
for the first-stage model, the gain that the overfitting brings only shows up in the
patches with positive dPSNR, thus by only focusing on the positive patches to make
them obtain even higher gains, should bring better BD-rates as well.

The reason why this is not happening is that during inference (simulation), the
second-stage model obtains higher bitrate overhead if it gets used, thus the VTM
tries to minimize its usage since the decision to use the NN filter depends on the
Rate-Distortion Optimization (RDO) (where the bitrate is also being taken into
account). After observing the NN’s weight update bitrates, it was shown that the drop
in performance is most likely due to this reason. For the second-stage model which
started overfitting from the first-stage model, its NNR bitrate nearly doubled compared
to the first-stage model’s weight update bitrate. It is true that for the second-stage
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model that started from the base model, the weight update bitrate is almost identical to
its first-stage correspondence, however, its BD-rate is also almost identical

Another possible explanation is that during overfitting, the model "sacrifices" some
patches (on average 2.6) that don’t "follow the trend" of the majority, in the favour of the
others, so the others can perform better. Thus, by removing these patches, the model
doesn’t have other patches to "sacrifice". In Table 9, we can observe that the average
number of positive dPSNR patches in the subset of data for the second-stage model
drops from 64 to 63, i.e., on average one patch obtains negative dPSNR instead of
maintaining its characteristic of having positive dPSNR-Y value. (Since the beginning
of the training of the second-stage model, all 64 patches in a batch have positive
dPSNR.)

From Table 9, we can observe that the second-stage models omit on average 2.6
patches from each batch of size 64. This is not a substantial amount from each batch,
however, it means that if the whole dataset had 60 batches in total, in the subset of
the dataset, the number of batches of size 64 would only amount to 55 batches. This
means that over 200 epochs, less training is happening for the second-stage model, by
1000 iterations of batches (if we look at the processing of one batch as one iteration).
This could be the reason why in the same table, we don’t see improvement in dPSNR-Y
values for the 2nd stage models compared to the 1st stage ones.

5.2 Future work
Possible future research can be performed both on hyperparameter tuning and two-stage
overfitting.

In the hyperparameter search, adequate results and insights were obtained with
the best-performing models, however, it is not believed that the search was extensive
enough to find the best possible model. For this reason, the following opportunities
could be exploited:

• The learning rates used in the experiments were all constant LRs, which has
its limitations, due to different stages of the training might require different
granularities, e.g., in higher epochs, a smaller learning rate is required when the
model shows signs of convergence. Thus, the use of adaptive learning rates, or
LR schedulers ought to be used to explore the model’s highest possible training
curves [13, 55].

• As mentioned, choosing the epoch count is a trade-off between training time
and performance. For those applications where training time is not a substantial
aspect, much larger epoch counts could be considered to understand the neural
network’s ability to overfit on one sequence, i.e., experiments could be done to
find out at what point the model converges.

• Because out of all the metrics calculated the most regarded metrics are the
ones of the luma component, the higher weighting the Y-losses get, the better
they shall perform. Experiments could be done on different colour weighting
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schemes, where higher weight would go on luminance, but not too large, to
overthrow the chrominance components.

• Since, during the whole process, the multipliers of the CNN loop filter were
overfitted, experiments could be done on overfitting on the bias of the NN
model, instead of the multiplier. Research has already shown successful content-
adaptive overfitting biases for post-filters [11, 76]. The same techniques could
be used for in-loop filters too.

In the two-stage training, as we have concluded, the first-stage models outperform
their corresponding second-stage models. However, it is concluded that it happens
due to the bitrate overhead caused by the weight update of the CNN. Further testing
and research could be done to see the reasons behind it. One could examine the flags
during inference that show if the VTM has used the overfitted loop filter, to check
the difference between the first and second-stage models. They could be indicative
of the ratio of patches with the NN loop filter used and not used. This could show if
the patches that have been overfitted on, are being decoded with the NN in-loop filter.
Examination can also be done on the reasoning for why the bitrate overhead is higher
than for the first-stage model, and to experiment with reducing this overhead.
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6 Conclusions
The constantly growing need to develop and evolve new techniques in the realm of
video coding is pushing the research in the direction of Machine Learning (ML).
Neural Networks (NN) are exploited to reduce blocking, ringing, and blurring artefacts
produced by the block-based modern video coding standards such as the High Efficiency
Video Coding (HEVC), or Versatile Video Coding (VVC).

In-loop filters are used to enhance the visual quality of video frames, and NN-based
in-loop filters are employed to be used next to the existing filters, such as the Deblocking
Filter (DBLK), Sample Adaptive Offset (SAO), or the Adaptive Loop Filter (ALF).
These filters differ from post-processing filters because the frames that have gone
through the loop filter, are referenced for other frames to be coded.

Low-complexity Convolutional Neural Networks (CNN) have been utilized to
learn from the video that is meant to be coded, in a content-adaptive nature, such
that after a base loop filter model has been pretrained on a large general dataset, it is
further overfitted on one video sequence, and the network’s weight update is signalled
to the decoder side while being encoded using the Neural Network compression and
Representation (NNR) standard. To minimize this bitrate overhead caused by the
overfitting, only one set of parameters, named multipliers is fine-tuned.

While using a particular CNN architecture that has shown favourable results, a
hyperparameter search has been conducted during this study to shed light on the
hyperparameters that can enhance the performance of these NN loop filters:

• Results have shown that the optimal Learning Rate (LR), out of the tested
ones, is of value 1e-4, however, it is assumed that an adaptive learning rate
or a learning rate scheduler would yield better results, due to their aspect of
dynamically changing when learning slows down.

• Experimenting with epoch counts is a trade-off between training time and visual
quality since the models haven’t converged with 200 or 400 epochs, thus with
more epochs, better performance can be achieved, however, training times would
multiply.

• The Mean Squared Error (MSE) is visibly the leading loss function to use in
this context, where the comparison between different video coding techniques
is done with the Peak Signal-to-Noise Ratio (PSNR) metric, that is computed
with the MSE.

• Since modern video coding algorithms exploit the human visual system’s
sensitivity to luminance (Y) over chrominance (U, V), more emphasis is
put on the luma component of the metrics. With this reasoning, the loss
function is calculated by giving higher priority to the luma component, with
the hyperparameter of colour weighting. In the experiments, better results were
obtained with 12:1:1 weighting for Y:U:V components, compared to the 4:1:1,
and 4:2:2 settings.
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With the best-performing hyperparameters, we were able to produce a gain over
the unfiltered video data, i.e., the reconstruction of the VTM NNVC 5.0 standard. This
gain accounted for, on average, 1.01% (Y), 4.28% (Cb), and 3.61% (Cr) Bjøntegaard
Delta rate (BD-rate).

After finding a beneficial set of hyperparameters, the best-performing model was
set as the first-stage model and baseline of comparison for the second-stage models.
Based on this model, the patches that returned negative PSNR-Y-gain, compared to the
pretrained base loop filter, were removed from the dataset, forming a subset of patches.
The second-stage models overfitted on this subset, either by starting their training from
the pretrained model, just like the first-stage model, or from the first-stage model that
has already trained for 200 epochs on the full dataset. Although their performance was
still outputting positive results, they underperformed by, on average, 0.20% (Y), 0.23%
(Cb), and 0.18% (Cr) BD-rate compared to the first-stage models. This phenomenon
happens due to the bitrate overhead caused by the second-stage model, which is so
high that the Versatile Video Coding (VVC) Test Model (VTM) decides to use the
overfitted in-loop filter less often than the first-stage model. However, prospective
research could be conducted on understanding the reason, and to reduce the bitrate
overhead.

While the two-stage overfitting technique has partly failed to outperform its first-
stage model, research is needed to exploit every possibility to enhance the video coding
efficiency demanded by the modern worldwide usage of the internet.
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