778 research outputs found

    In Vivo Monitoring of Adult Neurogenesis in Health and Disease

    Get PDF
    Adult neurogenesis, i.e., the generation of new neurons in the adult brain, presents an enormous potential for regenerative therapies of the central nervous system. While 5-bromo-2′-deoxyuridine labeling and subsequent histology or immunohistochemistry for cell-type-specific markers is still the gold standard in studies of neurogenesis, novel techniques, and tools for in vivo imaging of neurogenesis have been recently developed and successfully applied. Here, we review the latest progress on these developments, in particular in the area of magnetic resonance imaging (MRI) and optical imaging. In vivo in situ labeling of neural progenitor cells (NPCs) with micron-sized iron oxide particles enables longitudinal visualization of endogenous progenitor cell migration by MRI. The possibility of genetic labeling for cellular MRI was demonstrated by using the iron storage protein ferritin as the MR reporter-gene. However, reliable and consistent results using ferritin imaging for monitoring endogenous progenitor cell migration have not yet been reported. In contrast, genetic labeling of NPCs with a fluorescent or bioluminescent reporter has led to the development of some powerful tools for in vivo imaging of neurogenesis. Here, two strategies, i.e., viral labeling of stem/progenitor cells and transgenic approaches, have been used. In addition, the use of specific promoters for neuronal progenitor cells such as doublecortin increases the neurogenesis-specificity of the labeling. Naturally, the ultimate challenge will be to develop neurogenesis imaging methods applicable in humans. Therefore, we certainly need to consider other modalities such as positron emission tomography and proton magnetic resonance spectroscopy (1H-MRS), which have already been implemented for both animals and humans. Further improvements of sensitivity and neurogenesis-specificity are nevertheless required for all imaging techniques currently available

    Iron Labeling and Pre-Clinical MRI Visualization of Therapeutic Human Neural Stem Cells in a Murine Glioma Model

    Get PDF
    Treatment strategies for the highly invasive brain tumor, glioblastoma multiforme, require that cells which have invaded into the surrounding brain be specifically targeted. The inherent tumor-tropism of neural stem cells (NSCs) to primary and invasive tumor foci can be exploited to deliver therapeutics to invasive brain tumor cells in humans. Use of the strategy of converting prodrug to drug via therapeutic transgenes delivered by immortalized therapeutic NSC lines have shown efficacy in animal models. Thus therapeutic NSCs are being proposed for use in human brain tumor clinical trials. In the context of NSC-based therapies, MRI can be used both to non-invasively follow dynamic spatio-temporal patterns of the NSC tumor targeting allowing for the optimization of treatment strategies and to assess efficacy of the therapy. Iron-labeling of cells allows their presence to be visualized and tracked by MRI. Thus we aimed to iron-label therapeutic NSCs without affecting their cellular physiology using a method likely to gain United States Federal Drug Administration (FDA) approval.For human use, the characteristics of therapeutic Neural Stem Cells must be clearly defined with any pertubation to the cell including iron labeling requiring reanalysis of cellular physiology. Here, we studied the effect of iron-loading of the therapeutic NSCs, with ferumoxide-protamine sulfate complex (FE-Pro) on viability, proliferation, migratory properties and transgene expression, when compared to non-labeled cells. FE-Pro labeled NSCs were imaged by MRI at tumor sites, after intracranial administration into the hemisphere contralateral to the tumor, in an orthotopic human glioma xenograft mouse model.FE-Pro labeled NSCs retain their proliferative status, tumor tropism, and maintain stem cell character, while allowing in vivo cellular MRI tracking at 7 Tesla, to monitor their real-time migration and distribution at brain tumor sites. Of significance, this work directly supports the use of FE-Pro-labeled NSCs for real-time tracking in the clinical trial under development: "A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically modified Neural Stem Cells Expressing Escherichia coli Cytosine Deaminase for Treatment of Recurrent High-Grade Gliomas"

    Imaging Breast Cancer Progression and Lymph Node Metastases in Murine Models Using MRI and Magnetic Nanoparticles

    Get PDF
    Most breast cancer related deaths are caused by the spread or metastasis of the primary tumor to distant sites in the body. The lymph nodes are one of the first places where metastases can be detected and are frequently examined for macroscopic metastases to help determine course of treatment for patients. However, little is known about the significance of microscopic metastases and disseminated individual cancer cells within the nodes. The goal of this work was to use MRI to monitor the development of primary tumors and lymphatic metastases in models of breast cancer. In this thesis, we examined the MRI appearance of lymph nodes in several different strains of immune compromised mice (nude, CB -17 SCID, NOD/SCID IL2Rnull) and compared the appearance to immune competent C57/Bl6 strain. We found that immune deficiencies influenced the MRI appearance of nodes and that the nude strain had highly variable lymph node appearance and volume. We also compared orthotopic transplantation models of breast cancer that used both the nude and CB-17 SCID strains using MRI. We found that MRI was most reliable for detecting metastases in the lymph nodes of SCID mice and that the variability of the appearance of nodes in nude mice can lead to their misclassification. We then used the SCID orthotopic breast cancer model to monitor the appearance and retention of iron oxide nanoparticle labeled cancer cells in both the primary tumor and lymph nodes. We found that iron-labeled cells are still detected within the primary tumor after 28 days post-implantation and that these labeled cells almost exclusively migrated to the lymph nodes. The development of improved methods for monitoring the development of the primary tumor and metastases and the roles that different cells populations have in these processes will allow for more accurate knowledge of how cancer cell heterogeneity impacts disease progression. These tools will allow for more effective monitoring of the treatment effect of new drugs on primary tumors and metastatic dissemination

    The effect of adipose tissue-derived stem cells in a middle cerebral artery occlusion stroke model depends on their engraftment rate

    Get PDF
    Background: In the field of experimental stem cell therapy, intra-arterial (IA) delivery yields the best results concerning, for example, migrated cell number at the targeted site. However, IA application also appears to be associated with increased mortality rates and infarction. Since many rodent studies systemically apply 1 × 106 cells, this could also be a consequence of engrafted cell number. The aim of this study was therefore to investigate the effect of different doses of adipose tissue-derived stem cells (ASCs) on engraftment rates and stroke outcome measured in vivo using 9.4-T high-field magnetic resonance imaging (MRI). Methods: Male Wistar rats (n = 43) underwent a middle cerebral artery occlusion (MCAo) for 45 or 90 min, followed by IA delivery of either saline or 1 × 106, 3 × 105, or 5 × 104 ASCs pre-labelled with very small superparamagnetic iron oxide particles (VSOPs). MRI (9.4-T) analysis was performed 48 h and 9 days post-MCAo. Lesion volumes were assessed by analysis of T2-weighted images and cell signal tracking showing cell engraftment and active cell migration by an improved T2*-analysis. Results: The ASC-derived signal intensity increased in the affected hemisphere 48 h post MCAo with injected cell number (p < 0.05). The analysis of stroke volumes revealed an increased infarction after injection of 1 × 106 ASCs compared to controls or application of 5 × 104 ASCs (p < 0.05). At 9 days post-MCAo, injection of 3 × 105 ASCs resulted in reduced infarct volumes (p < 0.05). Correspondingly, MRI analysis revealed no changes in cell numbers between both MRI examinations but showed active ASC migration to the site of infarction. Conclusion: Our results confirm that IA injection is an efficient way of targeting damaged brain tissue but its usefulness strongly depends on the right dose of delivered stem cells since this factor has a strong influence on migration rate and infarct volume, with better results for doses below 1 × 106 cells. Future challenges will include the determination of therapeutic doses for best cellular engraftment and stroke outcome

    Reporter gene-expressing bone marrow-derived stromal cells are immune-tolerated following implantation in the central nervous system of syngeneic immunocompetent mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell transplantation is likely to become an important therapeutic tool for the treatment of various traumatic and ischemic injuries to the central nervous system (CNS). However, in many pre-clinical cell therapy studies, reporter gene-assisted imaging of cellular implants in the CNS and potential reporter gene and/or cell-based immunogenicity, still remain challenging research topics.</p> <p>Results</p> <p>In this study, we performed cell implantation experiments in the CNS of immunocompetent mice using autologous (syngeneic) luciferase-expressing bone marrow-derived stromal cells (BMSC-Luc) cultured from ROSA26-L-S-L-Luciferase transgenic mice, and BMSC-Luc genetically modified using a lentivirus encoding the enhanced green fluorescence protein (eGFP) and the puromycin resistance gene (Pac) (BMSC-Luc/eGFP/Pac). Both reporter gene-modified BMSC populations displayed high engraftment capacity in the CNS of immunocompetent mice, despite potential immunogenicity of introduced reporter proteins, as demonstrated by real-time bioluminescence imaging (BLI) and histological analysis at different time-points post-implantation. In contrast, both BMSC-Luc and BMSC-Luc/eGFP/Pac did not survive upon intramuscular cell implantation, as demonstrated by real-time BLI at different time-points post-implantation. In addition, ELISPOT analysis demonstrated the induction of IFN-γ-producing CD8+ T-cells upon intramuscular cell implantation, but not upon intracerebral cell implantation, indicating that BMSC-Luc and BMSC-Luc/eGFP/Pac are immune-tolerated in the CNS. However, in our experimental transplantation model, results also indicated that reporter gene-specific immune-reactive T-cell responses were not the main contributors to the immunological rejection of BMSC-Luc or BMSC-Luc/eGFP/Pac upon intramuscular cell implantation.</p> <p>Conclusion</p> <p>We here demonstrate that reporter gene-modified BMSC derived from ROSA26-L-S-L-Luciferase transgenic mice are immune-tolerated upon implantation in the CNS of syngeneic immunocompetent mice, providing a research model for studying survival and localisation of autologous BMSC implants in the CNS by real-time BLI and/or histological analysis in the absence of immunosuppressive therapy.</p

    Longitudinal Tracking of Human Fetal Cells Labeled with Super Paramagnetic Iron Oxide Nanoparticles in the Brain of Mice with Motor Neuron Disease

    Get PDF
    Stem Cell (SC) therapy is one of the most promising approaches for the treatment of Amyotrophic Lateral Sclerosis (ALS). Here we employed Super Paramagnetic Iron Oxide nanoparticles (SPIOn) and Hoechst 33258 to track human Amniotic Fluid Cells (hAFCs) after transplantation in the lateral ventricles of wobbler (a murine model of ALS) and healthy mice. By in vitro, in vivo and ex vivo approaches we found that: 1) the main physical parameters of SPIOn were maintained over time; 2) hAFCs efficiently internalized SPIOn into the cytoplasm while Hoechst 33258 labeled nuclei; 3) SPIOn internalization did not alter survival, cell cycle, proliferation, metabolism and phenotype of hAFCs; 4) after transplantation hAFCs rapidly spread to the whole ventricular system, but did not migrate into the brain parenchyma; 5) hAFCs survived for a long time in the ventricles of both wobbler and healthy mice; 6) the transplantation of double-labeled hAFCs did not influence mice survival

    Magnetic Resonance Imaging Studies of Angiogenesis and Stem Cell Implantations in Rodent Models of Cerebral Lesions

    Get PDF
    Molecular biology and stem cell research have had an immense impact on our understanding of neurological diseases, for which little or no therapeutic options exist today. Manipulation of the underlying disease-specific molecular and cellular events promises more efficient therapy. Angiogenesis, i.e. the regrowth of new vessels from an existing vascular network, has been identified as a key contributor for the progression of tumor and, more recently, for regeneration after stroke. Donation of stem cells has proved beneficial to treat cerebral lesions. However, before angiogenesis-targeted and stem cell therapies can safely be used in patients, underlying biological processes need to be better understood in animal models. Noninvasive imaging is essential in order to follow biological processes or stem cell fate in both space and time. We optimized steady state contrast enhanced magnetic resonance imaging (SSCE MRI) to monitor vascular changes in rodent models of tumor and stroke. A modification of mathematical modeling of MR signal from the vascular network allowed for the first time simultaneous measurements of relaxation time T2 and SSCE MRI derived blood volume, vessel size, and vessel density. Limitations of SSCE MRI in tissues with high blood volume and non-cylindrically shaped vessels were explored. SSCE MRI detected angiogenesis and response to anti-angiogenic treatment in two rodent tumor models. In both tumor models, reduction of blood volume in small vessels and a shift towards larger vessels was observed upon treatment. After stroke, decreased vessel density and increased vessel size was found, which was most pronounced one week after the infarct. This is in agreement with two initial, recently published clinical studies. Overall, very little signs of angiogenesis were found. Furthermore, superparamagnetic iron oxide (SPIO) labels were used to study neural stem cells (NSCs) in vivo with MRI. SPIO labeling revealed a decrease in volume of intracerebral grafts over 4 months, assessed by T2* weighted MRI. Since SPIO labels are challenging to quantify and their MR contrast can easily be confounded, we explored the potential of in vivo 19F MRI of 19F labeled NSCs. Hardware was developed for in vitro and in vivo 19F MRI. NSCs were labeled with little effect on cell function and in vivo detection limits were determined at ~10,000 cells within 1 h imaging time. A correction for the inhomogeneous magnetic field profile of surface coils was validated in vitro and applied for both sensitive and quantitative in vivo cell imaging. As external MRI labels do not provide information on NSC function we combined 19F MRI with bioluminescence imaging (BLI). The BLI signal allowed quantification of viable cells whereas 19F MRI provided graft location and density in 3D over 4 weeks both in the healthy and stroke brain. A massive decrease in number of viable cells was detected independent of the microenvironment. This indicates that functional recovery reported in many studies of NSC implantation after stroke, is rather due to release of factors by NSCs than direct tissue replacement. In light of these indirect effects, combination of the imaging methods developed in this dissertation with other functional and structural imaging methods is suggested in order to further elucidate interactions of NSCs with the vasculature

    Clinical Stem Cell Imaging and In vivo Tracking

    Get PDF

    Tracking endogenous and grafted neural progenitor cells in normal and ischaemic brains using MRI contrast agents and genetic labelling

    Get PDF
    Cerebral ischaemia is a major cause of mortality and morbidity globally. Neural stem and progenitor cells (NPC) have the potential to contribute to brain repair and regeneration after an ischaemic event. Both endogenous and grafted NPC have been shown to migrate towards the ischaemic lesion, and differentiate into neurons. This thesis investigates methods of labeling and tracking the migration neural progenitor cells to a site of cerebral ischaemic injury, using magnetic resonance imaging (MRI) contrast agents and transgenic lineage tracing techniques. First, labeling of exogenous NPC populations was investigated, for use in cell tracking in grafting studies. Cell labeling was optimized in vitro with fetal NPC using the iron oxide-based MRI contrast agent. A labeling method was developed using the FePro contrast agent, which maximized iron oxide uptake, was non-toxic to NPC, and did not interfere with NPC proliferation and differentiation. Labelled cells were then grafted into the brain after cerebral ischaemia, and imaged over four weeks using MRI. NPC migration was not observed in vivo, but an endogenous contrast evolved over time within the lesioned tissue, which presented a source of confounding signal for cell tracking. Endogenous ferric iron was observed in the lesion on histological sections. Several limitations of using MRI-based iron oxide contrast agents were highlighted in this study. To circumvent these limitations, we considered the development of gadolinium-based MRI contrast agents for cellular labeling and tracking, in collaboration with Imperial College chemistry department. Polymeric Gd-DOTA chelates were synthesized and designed for maximal r1 relaxivity, and their relaxivity and effects on cell viability were assessed. Through this approach, we identified a number of candidate polymeric Gd-DOTA chelates with high relaxivity and low cytotoxicity for use in cellular imaging and tracking studies. Next, cell tracking of endogenous NPC was investigated, using MRI contrast agent and transgenic lineage tracing approaches. A method of in situ labeling of endogenous NPC with the MRI contrast agent FePro was developed. NPC were labeled with FePro in situ, and their normal migration to the olfactory bulb, where they contribute to neurogenesis, could be imaged in vivo and ex vivo. In a second study, the migration of NPC constitutively expressing green fluorescent protein (GPF) under the promoters of genes of two developmentally distinct cortical and striatal NPC populations, was investigated following cerebral ischaemia. Both cortical and striatal populations of NPC were observed to contribute to the migrating streams of NPC that were observed in the striatum after five weeks post-ischaemia. These studies demonstrate that MRI contrast agents offer the potential for in vivo, longitudinal tracking of NPC migration, in both grafted and endogenous NPC populations. Coupled with transgenic lineage tracing, and used in animal models of CNS injury such as cerebral ischaemia, labeling and tracking the migration of NSC with MRI contrast agents can contribute to our understanding of NPC biology in pathological environments
    corecore