49 research outputs found

    tCAD: a 3D modeling application on a depth enhanced tabletop computer

    Get PDF
    Tabletop computers featuring multi-touch input and object tracking are a common platform for research on Tangible User Interfaces (also known as Tangible Interaction). However, such systems are confined to sensing activity on the tabletop surface, disregarding the rich and relatively unexplored interaction canvas above the tabletop. This dissertation contributes with tCAD, a 3D modeling tool combining fiducial marker tracking, finger tracking and depth sensing in a single system. This dissertation presents the technical details of how these features were integrated, attesting to its viability through the design, development and early evaluation of the tCAD application. A key aspect of this work is a description of the interaction techniques enabled by merging tracked objects with direct user input on and above a table surface.Universidade da Madeir

    Abstraction, Visualization, and Evolution of Process Models

    Get PDF
    The increasing adoption of process orientation in companies and organizations has resulted in large process model collections. Each process model of such a collection may comprise dozens or hundreds of elements and captures various perspectives of a business process, i.e., organizational, functional, control, resource, or data perspective. Domain experts having only limited process modeling knowledge, however, hardly comprehend such large and complex process models. Therefore, they demand for a customized (i.e., personalized) view on business processes enabling them to optimize and evolve process models effectively. This thesis contributes the proView framework to systematically create and update process views (i.e., abstractions) on process models and business processes respectively. More precisely, process views abstract large process models by hiding or combining process information. As a result, they provide an abstracted, but personalized representation of process information to domain experts. In particular, updates of a process view are supported, which are then propagated to the related process model as well as associated process views. Thereby, up-to-dateness and consistency of all process views defined on any process model can be always ensured. Finally, proView preserves the behaviour and correctness of a process model. Process abstractions realized by views are still not sufficient to assist domain experts in comprehending and evolving process models. Thus, additional process visualizations are introduced that provide text-based, form-based, and hierarchical representations of process models. Particularly, these process visualizations allow for view-based process abstractions and updates as well. Finally, process interaction concepts are introduced enabling domain experts to create and evolve process models on touch-enabled devices. This facilitates the documentation of process models in workshops or while interviewing process participants at their workplace. Altogether, proView enables domain experts to interact with large and complex process models as well as to evolve them over time, based on process model abstractions, additional process visualizations, and process interaction concepts. The framework is implemented in a proof-ofconcept prototype and validated through experiments and case studies

    Real-time person re-identification for interactive environments

    Get PDF
    The work presented in this thesis was motivated by a vision of the future in which intelligent environments in public spaces such as galleries and museums, deliver useful and personalised services to people via natural interaction, that is, without the need for people to provide explicit instructions via tangible interfaces. Delivering the right services to the right people requires a means of biometrically identifying individuals and then re-identifying them as they move freely through the environment. Delivering the service they desire requires sensing their context, for example, sensing their location or proximity to resources. This thesis presents both a context-aware system and a person re-identification method. A tabletop display was designed and prototyped with an infrared person-sensing context function. In experimental evaluation it exhibited tracking performance comparable to other more complex systems. A real-time, viewpoint invariant, person re-identification method is proposed based on a novel set of Viewpoint Invariant Multi-modal (ViMM) feature descriptors collected from depth-sensing cameras. The method uses colour and a combination of anthropometric properties logged as a function of body orientation. A neural network classifier is used to perform re-identification

    The Performance and Preference of Different Fingers and Chords for Pointing, Dragging, and Object Transformation

    Get PDF
    International audienceThe development of robust methods to identify which finger is causing each touch point, called “finger identification,” will open up a new input space where interaction designers can associate system actions to different fingers. However, relatively little is known about the performance of specific fingers as single touch points or when used together in a “chord.” We present empirical results for accuracy, throughput, and subjective preference gathered in five experiments with 48 participants exploring all 10 fingers and 7 two-finger chords. Based on these results, we develop design guidelines for reasonable target sizes for specific fingers and two-finger chords, and a relative ranking of the suitability of fingers and two-finger chords for common multi-touch tasks. Our work contributes new knowledge regarding specific finger and chord performance and can inform the design of future interaction techniques and interfaces utilizing finger identification

    The tool space

    Get PDF
    Visions of futuristic desktop computer work spaces have often incorporated large interactive surfaces that either integrate into or replace the prevailing desk setup with displays, keyboard and mouse. Such visions often connote the distinct characteristics of direct touch interaction, e.g. by transforming the desktop into a large touch screen that allows interacting with content using one’s bare hands. However, the role of interactive surfaces for desktop computing may not be restricted to enabling direct interaction. Especially for prolonged interaction times, the separation of visual focus and manual input has proven to be ergonomic and is usually supported by vertical monitors and separate – hence indirect – input devices placed on the horizontal desktop. If we want to maintain this ergonomically matured style of computing with the introduction of interactive desktop displays, the following question arises: How can and should this novel input and output modality affect prevailing interaction techniques. While touch input devices have been used for decades in desktop computing as track pads or graphic tablets, the dynamic rendering of content and increasing physical dimensions of novel interactive surfaces open up new design opportunities for direct, indirect and hybrid touch input techniques. Informed design decisions require a careful consideration of the relationship between input sensing, visual display and applied interaction styles. Previous work in the context of desktop computing has focused on understanding the dual-surface setup as a holistic unit that supports direct touch input and allows the seamless transfer of objects across horizontal and vertical surfaces. In contrast, this thesis assumes separate spaces for input (horizontal input space) and output (vertical display space) and contributes to the understanding of how interactive surfaces can enrich indirect input for complex tasks, such as 3D modeling or audio editing. The contribution of this thesis is threefold: First, we present a set of case studies on user interface design for dual-surface computer workspaces. These case studies cover several application areas such as gaming, music production and analysis or collaborative visual layout and comprise formative evaluations. On the one hand, these case studies highlight the conflict that arises when the direct touch interaction paradigm is applied to dual-surface workspaces. On the other hand, they indicate how the deliberate avoidance of established input devices (i.e. mouse and keyboard) leads to novel design ideas for indirect touch-based input. Second, we introduce our concept of the tool space as an interaction model for dual-surface workspaces, which is derived from a theoretical argument and the previous case studies. The tool space dynamically renders task-specific input areas that enable spatial command activation and increase input bandwidth through leveraging multi-touch and two-handed input. We further present evaluations of two concept implementations in the domains 3D modeling and audio editing which demonstrate the high degrees of control, precision and sense of directness that can be achieved with our tools. Third, we present experimental results that inform the design of the tool space input areas. In particular, we contribute a set of design recommendations regarding the understanding of two-handed indirect multi-touch input and the impact of input area form factors on spatial cognition and navigation performance.Zukunftsvisionen thematisieren zuweilen neuartige, auf großen interaktiven Oberflächen basierende Computerarbeitsplätze, wobei etablierte PC-Komponenten entweder ersetzt oder erweitert werden. Oft schwingt bei derartigen Konzepten die Idee von natürlicher oder direkter Toucheingabe mit, die es beispielsweise erlaubt mit den Fingern direkt auf virtuelle Objekte auf einem großen Touchscreen zuzugreifen. Die Eingabe auf interaktiven Oberflächen muss aber nicht auf direkte Interaktionstechniken beschränkt sein. Gerade bei längerer Benutzung ist aus ergonomischer Sicht eine Trennung von visuellem Fokus und manueller Eingabe von Vorteil, wie es zum Beispiel bei der Verwendung von Monitoren und den gängigen Eingabegeräten der Fall ist. Soll diese Art der Eingabe auch bei Computerarbeitsplätzen unterstützt werden, die auf interaktiven Oberflächen basieren, dann stellt sich folgende Frage: Wie wirken sich die neuen Ein- und Ausgabemodalitäten auf vorherrschende Interaktionstechniken aus? Toucheingabe kommt beim klassischen Desktop-Computing schon lange zur Anwendung: Im Gegensatz zu sogenannten Trackpads oder Grafiktabletts eröffnen neue interaktive Oberflächen durch ihre visuellen Darstellungsmöglichkeiten und ihre Größe neue Möglichkeiten für das Design von direkten, indirekten oder hybriden Eingabetechniken. Fundierte Designentscheidungen erfordern jedoch eine sorgfältige Auseinandersetzung mit Ein- und Ausgabetechnologien sowie adequaten Interaktionsstilen. Verwandte Forschungsarbeiten haben sich auf eine konzeptuelle Vereinheitlichung von Arbeitsbereichen konzentriert, die es beispielsweise erlaubt, digitale Objekte mit dem Finger zwischen horizontalen und vertikalen Arbeitsbereichen zu verschieben. Im Gegensatz dazu geht die vorliegende Arbeit von logisch und räumlich getrennten Bereichen aus: Die horizontale interaktive Oberfläche dient primär zur Eingabe, während die vertikale als Display fungiert. Insbesondere trägt diese Arbeit zu einem Verständnis bei, wie durch eine derartige Auffassung interaktiver Oberflächen komplexe Aufgaben, wie zum Beispiel 3D-Modellierung oder Audiobearbeitung auf neue und gewinnbringende Art und Weise unterstützt werden können. Der wissenschaftliche Beitrag der vorliegenden Arbeit lässt sich in drei Bereiche gliedern: Zunächst werden Fallstudien präsentiert, die anhand konkreter Anwendungen (z.B. Spiele, Musikproduktion, kollaboratives Layout) neuartige Nutzerschnittstellen für Computerarbeitsplätze explorieren und evaluieren, die horizontale und vertikale interaktive Oberflächen miteinander verbinden. Einerseits verdeutlichen diese Fallstudien verschiedene Konflikte, die bei der Anwendung von direkter Toucheingabe an solchen Computerarbeitsplätzen hervorgerufen werden. Andererseits zeigen sie auf, wie der bewusste Verzicht auf etablierte Eingabegeräte zu neuen Toucheingabe-Konzepten führen kann. In einem zweiten Schritt wird das Toolspace-Konzept als Interaktionsmodell für Computerarbeitsplätze vorgestellt, die auf einem Verbund aus horizontaler und vertikaler interaktiver Oberfläche bestehen. Dieses Modell ergibt sich aus den vorangegangenen Fallstudien und wird zusätzlich theoretisch motiviert. Der Toolspace stellt anwendungsspezifische und dynamische Eingabeflächen dar, die durch räumliche Aktivierung und die Unterstützung beidhändiger Multitouch-Eingabe die Eingabebandbreite erhöhen. Diese Idee wird anhand zweier Fallstudien illustriert und evaluiert, die zeigen, dass dadurch ein hohes Maß an Kontrolle und Genauigkeit erreicht sowie ein Gefühl von Direktheit vermittelt wird. Zuletzt werden Studienergebnisse vorgestellt, die Erkenntnisse zum Entwurf von Eingabeflächen im Tool Space liefern, insbesondere zu den Themen beidhändige indirekte Multitouch-Eingabe sowie zum Einfluss von Formfaktoren auf räumliche Kognition und Navigation

    Advances towards behaviour-based indoor robotic exploration

    Get PDF
    215 p.The main contributions of this research work remain in object recognition by computer vision, by one side, and in robot localisation and mapping by the other. The first contribution area of the research address object recognition in mobile robots. In this area, door handle recognition is of great importance, as it help the robot to identify doors in places where the camera is not able to view the whole door. In this research, a new two step algorithm is presented based on feature extraction that aimed at improving the extracted features to reduce the superfluous keypoints to be compared at the same time that it increased its efficiency by improving accuracy and reducing the computational time. Opposite to segmentation based paradigms, the feature extraction based two-step method can easily be generalized to other types of handles or even more, to other type of objects such as road signals. Experiments have shown very good accuracy when tested in real environments with different kind of door handles. With respect to the second contribution, a new technique to construct a topological map during the exploration phase a robot would perform on an unseen office-like environment is presented. Firstly a preliminary approach proposed to merge the Markovian localisation in a distributed system, which requires low storage and computational resources and is adequate to be applied in dynamic environments. In the same area, a second contribution to terrain inspection level behaviour based navigation concerned to the development of an automatic mapping method for acquiring the procedural topological map. The new approach is based on a typicality test called INCA to perform the so called loop-closing action. The method was integrated in a behaviour-based control architecture and tested in both, simulated and real robot/environment system. The developed system proved to be useful also for localisation purpose
    corecore