1,181 research outputs found

    Hybrid entanglement for quantum communication

    Get PDF
    A dissertation submitted to the Faculty of Science in partial fulfillment of the requirements for the Degree of Master of Science School of Physics University of Witwatersrand November 1, 2017The generation and detection of entangled photons is a topic of interest in quantum communication. With current state-of-the-art methods it is possible to manipulate any degree of freedom (DoF) of photons, e.g, polarisation, transverse momentum, orbital angular momentum and energy. Furthermore, it is possible to combine these DoF to realise hybrid entanglement { entanglement between the DoF of photons. In this dissertation we focus on hybrid entanglement between photon states of coupled orbital angular momentum and polarisation. We engineer hybrid-entanglement using geometric phase control between spatially separated photons produced from spontaneous parametric down conversion. We present a new type of quantum eraser that does not rely on physical path interference. We show that in principle any other degree of freedom can be used and demonstrate this e ectively through polarisation control. The use of high dimensional hybrid photon states in quantum communication, particularly in quantum cryptography, is still in its infancy. Here we tailor photon states that are coupled in their polarisation and spatial DoF (orbital angular momentum) to realise high dimensional encoding alphabets. We show how photons entangled in their internal DoF can be generated and deterministically detected. We exploit them in a demonstration of a high dimensional quantum key distribution protocol and show that our scheme generates secure keys at high rates.MT 201

    A novel two-party semiquantum key distribution protocol based on GHZ-like states

    Full text link
    In this paper, we propose a novel two-party semiquantum key distribution (SQKD) protocol by only employing one kind of GHZ-like state. The proposed SQKD protocol can create a private key shared between one quantum party with unlimited quantum abilities and one classical party with limited quantum abilities without the existence of a third party. The proposed SQKD protocol doesn't need the Hadamard gate or quantum entanglement swapping. Detailed security analysis turns out that the proposed SQKD protocol can resist various famous attacks from an outside eavesdropper, such as the Trojan horse attacks, the entangle-measure attack, the double CNOT attacks, the measure-resend attack and the intercept-resend attack.Comment: 15 pages, 2 figures, 1 tabl

    Roadmap on structured waves

    Full text link
    Structured waves are ubiquitous for all areas of wave physics, both classical and quantum, where the wavefields are inhomogeneous and cannot be approximated by a single plane wave. Even the interference of two plane waves, or a single inhomogeneous (evanescent) wave, provides a number of nontrivial phenomena and additional functionalities as compared to a single plane wave. Complex wavefields with inhomogeneities in the amplitude, phase, and polarization, including topological structures and singularities, underpin modern nanooptics and photonics, yet they are equally important, e.g., for quantum matter waves, acoustics, water waves, etc. Structured waves are crucial in optical and electron microscopy, wave propagation and scattering, imaging, communications, quantum optics, topological and non-Hermitian wave systems, quantum condensed-matter systems, optomechanics, plasmonics and metamaterials, optical and acoustic manipulation, and so forth. This Roadmap is written collectively by prominent researchers and aims to survey the role of structured waves in various areas of wave physics. Providing background, current research, and anticipating future developments, it will be of interest to a wide cross-disciplinary audience.Comment: 110 pages, many figure

    Test of mutually unbiased bases for six-dimensional photonic quantum systems

    Get PDF
    In quantum information, complementarity of quantum mechanical observables plays a key role. If a system resides in an eigenstate of an observable, the probability distribution for the values of a complementary observable is flat. The eigenstates of these two observables form a pair of mutually unbiased bases (MUBs). More generally, a set of MUBs consists of bases that are all pairwise unbiased. Except for specific dimensions of the Hilbert space, the maximal sets of MUBs are unknown in general. Even for a dimension as low as six, the identification of a maximal set of MUBs remains an open problem, although there is strong numerical evidence that no more than three simultaneous MUBs do exist. Here, by exploiting a newly developed holographic technique, we implement and test different sets of three MUBs for a single photon six-dimensional quantum state (a qusix), encoded either in a hybrid polarization-orbital angular momentum or a pure orbital angular momentum Hilbert space. A close agreement is observed between theory and experiments. Our results can find applications in state tomography, quantitative wave-particle duality, quantum key distribution and tests on complementarity and logical indeterminacy.Comment: 8 pages, 4 figure

    Multi-photon entanglement and interferometry

    Full text link
    Multi-photon interference reveals strictly non-classical phenomena. Its applications range from fundamental tests of quantum mechanics to photonic quantum information processing, where a significant fraction of key experiments achieved so far comes from multi-photon state manipulation. We review the progress, both theoretical and experimental, of this rapidly advancing research. The emphasis is given to the creation of photonic entanglement of various forms, tests of the completeness of quantum mechanics (in particular, violations of local realism), quantum information protocols for quantum communication (e.g., quantum teleportation, entanglement purification and quantum repeater), and quantum computation with linear optics. We shall limit the scope of our review to "few photon" phenomena involving measurements of discrete observables.Comment: 71 pages, 38 figures; updated version accepted by Rev. Mod. Phy
    • …
    corecore