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Introduction

The qubit, the basic unit of quantum information, is a two level quantum system [155]
which plays a central role in several field from fundamental quantum mechanics to quantum
communication. In general, qubits are experimentally implemented by exploiting different
physical systems like atoms, semiconductor quantum dots or photons. Each one of these
systems is characterized by some useful properties and some drawbacks. For instance energy
levels in a trapped atom are an optimal system for qubits storing [192] but they are not
suitable for the communication between different partners. On the other hand photons are
difficult to store but they provide a natural system for quantum communication where they
are known as “flying qubits” due to their speed and their resilience to decoherence. Another
good reason to choose photons for information encoding is that they are easy to produce,
manipulate and detect with standard quantum optics techniques. Photonic qubits are usually
encoded by exploiting the polarization degree of freedom of photons. These qubits are
easily encoded, manipulated and decoded by using standard optical devices like birefringent
waveplates and polarizers which give a complete control on the polarization bidimensional
space.

In the last decades many efforts have been spent in the investigation of the multidi-
mensional extension of the qubit, quantum d-dimensional systems known as qudits. Such
a resource has opened new perspectives in many fields, from fundamental quantum me-
chanics [114, 202, 68, 120] to quantum cryptography [58, 50] and quantum computation
[86, 126]. To give some examples, high dimensional quantum systems assure higher security
in quantum key distribution protocols [58], higher information density coding due to a larger
alphabet [147], stronger violations in Bell-like tests[114, 63]. Moreover, only Hilbert spaces
with dimension d > 2 allow to study fundamental quantum correlations known as contextual
correlations [120, 68].

In order to enlarge the dimension of the system two approaches are possible. One
way is to exploit states of N photons and encode a multiqubit state in a 2N dimensional
Hilbert space. However the experimental preparation of states with large N is extremely
challenging, and to date only states with N = 3, N = 4, and N = 5 have been experimentally
realized [146, 204, 153, 3]. Moreover, as N grows, N-photon entangled states become
increasingly sensitive to losses, as the loss of a single photon is enough to destroy all the
phase information [76].

An alternative route is to encode qudits in single photon states.
Being defined in a two dimensional space, polarization is not suitable for this task,

however, in order to realize multidimensional quantum systems, it is possible to exploit other
degrees of freedom of single photons such as path or orbital angular momentum (OAM).
This last degree of freedom is related to the photon’s transverse-mode spatial structure [5]
and has been recognized as a new promising resource, allowing the implementation of a
qudit encoded in a single photon [147, 87]. Related to its higher dimensionality, the OAM
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can provide an elevated degree of security and higher information-density coding, with a
major channel capacity in the field of quantum communication [44, 88]. Furthermore, it can
be exploited in quantum imaging, free-space communication and other fields distant from
quantum physics like micromechanics, astronomy and biophysics [87, 199]. A qudit can be
encoded in a d-dimensional orbital angular momentum subspace alone, or, as alternative
approach, it is possible to employ OAM in combination with polarization or path. Such
approach is known as Hybrid encoding.

The goal of this thesis has been the experimental investigation of the properties of
single photon qudits encoded in orbital angular momentum and polarization as well as
their applications in fundamental quantum mechanics, quantum information and quantum
communication.

One of the first goals of this research has been the development of a novel device (a
transferrer) for the manipulation of hybrid ququarts encoded by exploiting polarization and
OAM of single photons [69]. Indeed, although it has been proposed as a new degree of
freedom more than twenty years ago [5], the orbital angular momentum of light is still
lacking of a complete set of tools which allows to manipulate and detect it as simply as it is
done with polarization.

This transferrer has been then exploited as a measurement device of hybrid ququarts
in two different experiments on fundamental quantum mechanics focused on the study of
contextual correlations in four dimensional systems. In the first experiment we realized a
task in which quantum mechanics gives an advantage respect to classical mechanics and
there exist no post quantum theory which can do it better [149]. The second experiment has
been realized in collaboration with the quantum optics group of Stockholm University and
reports the first experimental implementation of a Kochen-Specker set of quantum tests[68].
Kochen-Specker sets are a keystone in fundamental quantum mechanics.

Concerning application of qudits in quantum communication, we identified a bidimen-
sional subspace of hybrid ququart space whose states are invariant under rotations along the
propagation axis [70]. This property allows to overcome the alignment problem between
reference frames of distant users and could find application in satellite based quantum
communication.

Starting from the rotational invariant qubits working principle we then identified a class
of hybrid ququart subspaces which, giving rise to a “super resolved” Malus law, greatly
enhance the precision in roll angles measurements and can find applications in metrology
[71].

High dimensional quantum systems are also a resource in quantum cryptography. In
[50] we analyzed the extra security provided by ququarts against a class of possible attacks
to a BB84-like protocol and proposed a possible experimental realization based on hybrid
ququarts.

Finally, we exploited qudits to experimentally investigate the concept of mutually
unbiased bases (MUBs) in dimension d = 6 (qusix) which is the lowest dimension for
which, the maximal number of MUBs that can be simultaneously defined, is not known yet
[67] . Mutually unbiased bases are directly correlated to the concept of complementarity
in quantum mechanics and play a crucial role in quantum state tomography and quantum
cryptography.

The high fidelity needed for the generation of a good quality set of MUBs has led to
develop a novel holographic technique that allow to generate qudits of high dimension with
high fidelity in the OAM Hilbert space. Such achievement can be the starting point for
further investigations of high dimensional quantum systems.
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The thesis is organized as follows:

• Chapter one is divided in two parts. The first one presents some preliminary remarks
on fundamental concepts like quantum entanglement and quantum cryptography. The
second part is devoted to some of the possibilities opened by the introduction of qudits.
In particular how high dimensional systems allow a deeper understanding of quantum
theory through quantum contextuality.

• Chapter two focuses on the photonic implementation of qudits by single photon states.
In particular some details are given on the orbital angular momentum of light and the
most common tools for its manipulation. In the last part of the chapter the quantum
transferrer that have been developed in this thesis is described.

• In chapter three we will introduce two particular photon states which can be used to
perform alignment-free quantum communication. Although these are qubits, they are
obtained as a decoherence free subspace of a four dimensional hybrid space (ququarts).
Hence their properties are related to high dimensional Hilbert space and the joint
action of polarization and OAM.

• Chapter four focuses on the photonic gear concept. Here a particular subspace of four
dimensional hybrid spaces is exploited to perform super-resolved measurement of roll
angles.

• Chapter five is dedicated to quantum contextuality, a fundamental property of systems
of dimension d > 3. Here two experiments are reported: the realization of the simplest
task with impossible to beat quantum advantage and the first experimental realization
of the famous Kochen-Specker theorem. In the last section of the chapter is also
proposed a hybrid ququart implementation of QKD cryptographic protocol in which
extra security is provided by contextuality.

• Chapter six deals with six dimensional quantum states and their use for the investiga-
tion in the field of mutually unbiased bases.

• A discussion of the results and some considerations on the perspectives of future
research on high dimensional quantum systems is reported in the last section of the
thesis.
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Chapter 1

Fundamental Quantum Mechanics
and Quantum Information

A qubit is a two-dimensional quantum system (a vector in a two dimensional Hilbert space)
which can be defined as:

|φ〉 = α|0〉 + β|1〉 (1.1)

where α and β are complex numbers, |α|2 + |β|2 = 1 and |0〉 and |1〉 are two orthogonal
quantum states which consitute the so called logical basis. Being the simplest quantum
system, the qubit is also a basic tool for quantum mechanics foundations investigations and
the constitutive brick of quantum information.

Indeed, being a coherent superposition of |0〉 and |1〉, qubits can be seen as the quantum
extension of a bit of classical information allowing a new class of tasks which are not
possible with classical bits and that constitute the field of quantum information. Two qubits
are also the simplest system to show properties like quantum entanglement which puzzled
(and still puzzle) scientists for years. Although the fundamental nature of entanglement
is still a subject of studies, this quantum property is already exploited as a resource for
computational tasks as well as for security in communication.

When we extend the concept of qubit to d-dimensional Hilbert spaces (H) we obtain a
qudit:

|φ〉 =

d∑
i=1

αi|i〉 (1.2)

where αi are complex number such that
∑d

i=1 |αi|
2 = 1 and vectors |i〉 form an orthonormal

basis in H. The introduction of high dimensional Hilbert spaces open new perspectives in
every field in which qubit gives contributions. For instance qudits allow the extension of
the alphabet for quantum communication, the simplification of quantum logic in quantum
computation [126], stronger violations of Bell-like inequalities [114] and the study of
contextuality [122], a particular kind of quantum correlation in systems with dimension
d > 3 which is a fundamental keystone in quantum mechanics.

1.1 Entanglement and non-locality

Entanglement [110] is one of the most famous features of quantum mechanics (QM) and
is a central notion for quantum information. Being considered to be the most nonclassical
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2 1. Fundamental Quantum Mechanics and Quantum Information

manifestation of quantum formalism, entanglement was first used in 1935 by Einstein
Podolsky and Rosen in their attempt to prove that Copenhagen interpretation of quantum
theory is not complete [79]. It was only in 1964 that entanglement evolved from a subject
of philosophical debates to a property that could be tested in an experiment thanks to the
work of Bell [25] who showed that the probabilities for the outcomes obtained when some
entangled quantum state is suitably measured violate the Bell inequality.

To define entanglement, let us consider a multipartite system consisting of n subsystems.
According to the quantum formalism, the total Hilbert space is a tensor product of the
subsystems spaces:

H = ⊗n
i=1Hi (1.3)

and the total state of the system is in the form:

|ψ〉 =
∑

i1,...,in

ci1,...,in |i1〉 ⊗ |i2〉 ⊗ · · · |in〉, (1.4)

which cannot in general be described as a product of states of individual subsystems

|ψ〉 , |ψ1〉 ⊗ |ψ2〉 · · · ⊗ |ψn〉, (1.5)

If a state can be written as a product state of individual subsystems, it is called separable
state, otherwise it is an entangled state. In the general case when we consider mixed states
instead of pure states, it can be proven [208] that a system is entangled if it cannot be written
as a convex combination of product states:

ρ ,
∑

i

piρ
i
1 ⊗ ρ

i
2 ⊗ · · · ⊗ ρ

i
n (1.6)

For the sake of simplicity hereafter we will omit the tensor product symbol between states
of different subsystems. The simplest example of entangled states is given by the four
Bell-states which are defined for bipartite systems of qubits:

|ψ±〉 = 1√
2

(|0〉|1〉 ± |1〉|0〉) (1.7)

|φ±〉 = 1√
2

(|0〉|0〉 ± |1〉|1〉) (1.8)

and which are a basis in the total four dimensional space. Such states are maximally
entangled and unitary operation applied to only one of the two subsystems allows to
transform from any Bell state to any other one of the three. Indeed, by defining Pauli
operators as:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(1.9)

it is easy to check that, given a Bell state, the other three can be obtained by applying
respectively σx, σy and σz to one of the two subsystems.

In the case of two-qudits systems, the general bipartite entangled state is given by:

|ψ〉 = UA ⊗ UB|Φ
+〉AB, (1.10)

where UA and UB are unitary transformations and

|Φ+〉AB =
1
√

d

d∑
i=1

|i〉A|i〉B (1.11)
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is the “canonical” maximally entangled state.
The physical consequences of the existence of entanglement are closely related to the

concept of locality.
In their though experiment, Einstein Podolsky and Rosen showed that quantum theory

leads to a contradiction (due to existence of entanglement) if we accept the following two
assumptions:

• Reality principle: If we can predict with certainty the value of an observable, then
this value has physical reality, independtly of our observation.

• Locality principle: If two systems are casually disconnected, the result of any mea-
surement performed on one system cannot influence the result of a measurement
performed on the second system.

In particular if we consider a system in the maximally entangled singlet state

|ψ−〉 =
1
√

2
(|0〉A|1〉B ± |1〉A|0〉B) (1.12)

where the two subsystems A and B are casually disconnected (i.e. space-like separated),
the EPR paradox rises from the fact that, if an observer measures σz = +1 on system A,
the system B results to be in the state |1〉. If instead the observer in A measures σx = +1
the system B results to be in the state |+〉 = 1√

2
(|0〉 + |1〉) that is different from state |1〉.

This means that, a measurement performed on system A has an effect on system B, even
if they are casually disconnected. This property is in contrast with locality principle and,
since such assumption seems more than reasonable, Einstein and co workers concluded that
quantum theory was not complete which means that there could exist other theories based on
quantities (hidden variables) which are not accesible to us and that allow to describe all the
experimental results without being in contrast with the two principles reported above. These
theories are called “local hidden variables” (LHV) theories. The EPR work was the starting
point of a deep philosophical debate, which was brought on a experimentally testable ground
only in 1964 with Bell’s work.

Bell indeed showed that there are quantum mechanical prediction which can not be
described by any theory of local hidden variables [25], hence that there exist experiments
based on correlations that allows us to test if nature can be described by hidden variable
theories. There exist several versions of Bell inequalities. The most widely used for
experimental verification is probably the one due to Claus Horne Shimony and Holt known
as CHSH inequality [62].

CHSH inequality derivation

Let us assume that there exist a hidden variable λ such that, for any value of λ, a well defined
result O(λ) is obtained from the measurement of a physical observable O. The average value
for the observables have to be the same that we would obtain in the quantum mechanics
framework. Hence the probability distribution ρ(λ) must be such that:

〈O〉 =

∫
O(λ)ρ(λ)dλ (1.13)

Let us define A (a, λ) and B (b, λ) as the result of the measurements of the (casually
disconnected) observables σA · a and σB · b along the directions a and b performed by Alice
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and Bob, respectively. As already observed, assuming the locality principle, the outcome of
Alice’s measurement cannot depend on the outcome of Bob’s measurement and vice versa.
Therefore, the mean value of the correlations between their polarization measurements is
given by:

E(a,b) =

∫
A(a, λ)B(b, λ)ρ(λ)dλ. (1.14)

while in the quantum mechanics formalism it is defined as:

E(a,b) = 〈σA · a ⊗ σB · b〉 (1.15)

Let us compute:

E(a,b) − E(a,b′) =
∫

[A(a, λ)B(b, λ) − A(a, λ)B(b′, λ)]ρ(λ)dλ (1.16)

=
∫

A(a, λ)B(b, λ)[1 ± A(a′, λ)B(b′, λ)]ρ(λ)dλ (1.17)

−
∫

A(a, λ)B(b′, λ)[1 ± A(a′, λ)B(b, λ)]ρ(λ)dλ. (1.18)

From the triangular inequality follows that:

|E(a,b) − E(a,b′)| ≤
∫

[1 ± A(a′, λ)B(b′, λ)]ρ(λ)dλ (1.19)

+

∫
[1 ± A(a′, λ)B(b, λ)]ρ(λ)dλ (1.20)

which implies that

|E(a,b) − E(a,b′)| ≤ −|E(a′,b′) − E(a′,b)| + 2
∫

ρ(λ)dλ. (1.21)

since the probability distribution is normalized to one we finally obtain the CHSH inequality:

S = |E(a,b) − E(a,b′)| + |E(a′,b′) + E(a′,b)| ≤ 2 (1.22)

The main point of this inequality is that exist some observables (a, a′,b,b′) and some
states such that quantum mechanics violates the inequality. In the maximum violation
conditions, quantum mechanics gives S = 2

√
2 which is known as Cirel’son bound [61].

The most famous experimental violation of Bell inequalities was performed by Aspect
and co -workers in 1982 [13]. By exploiting an entangled photon pair in the polarization
state |ψ−〉 = 2−1/2 (|H〉A|V〉B − |V〉A|H〉B) where |H〉 and |V〉 are respectively horizontal and
vertical linear polarization they violated CHSH inequality by five standard deviations.

After these pioneering works, many efforts have been developed to better understanding
the nature of entanglement and in general of quantum correlations. For instance, entan-
glement is only a necessary and not sufficient condition for a state to be non-local so one
can ask which quantum states do not admit LHV model. Indeed, although any entangled
pure state violates a Bell inequality, for mixed states it turns out that the relation between
entanglement and nonlocality is much more subtle, and in fact not fully understood yet
[208][96][43]. Another issue, for istance, is related to the quantification of entanglement
itself, a problem that has given rise to several entanglement measures and the concept of
entanglement witness [109]. More in general, entanglement is not the only possible kind
of quantum correlation, indeed there exist states which are quantum correlated but are also
separable, this introduces the concept of quantum discord[156].
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To conclude this section let us stress that, although the study of entanglement itself (and
quantum correlations in general) is still a very active and interesting field (a detailed review
can be found in [110] and in [43]), the availability of this resources has opened the way to
the development of fields like quantum information and quantum communication.

1.2 Quantum Communication and Quantum Cryptography

Quantum communication (QC) plays a fundamental role in the modern view of quantum
physics and opens the possibility of a variety of technological applications. Current im-
plementations of QC use photons as the carriers of qubits. This is due to the fact that
photons, known as so-called “flying qubits", are easy to transport from one location to
another. In a typical bipartite scenario the emitter and receiver, conventionally called Alice
and Bob, chose to encode qubits in the polarization of single photons so that the linear
horizontal and vertical polarization states (respectively |H〉 and |V〉) correspond to logical
basis qubits (respectively |0〉 and |1〉). The main advantage of quantum communication
respect to classical one is that a qubit could also be a coherent superposition of states |0〉 and
|1〉, this means that Alice and Bob can freely choose a different basis to encode and measure
their qubits and, as a consequence, they can perform secure communication protected by
laws of quantum mechanics [97].

In order to communicate in a secret way, two users can indeed exploit quantum cryptog-
raphy to share a secret key which can be used to encrypt and decrypt the message. Sharing a
quantum key is much more convenient than directly sending the message because in this
way Alice and Bob can detect an attack during their key distribution and eventually decide
to stop the communication before sending any part of the secret message. A very famuos
protocol for quantum key distribution is the Bennet-Brassard 84 [29] (BB84). This protocol
uses four quantum states that consitute two mutually unbiased bases (see Chapter 6): for
instance the logical basis {|0〉,|1〉} and the diagonal one {|+〉,|−〉} where

|+〉 =
1
√

2
(|0〉 + |1〉) , |−〉 =

1
√

2
(|0〉 − |1〉) (1.23)

In the first step of BB84 protocol Alice sends a qubit to Bob in a polarization state chosen at
random among the four states. Next Bob measures the polarization of the incoming photon
in one of the two bases chosen at random. At this point they get correlated (uncorrelated)
results depending on if they chose the same (different) basis to encode and measure the
qubits. Hence Bob obtains a string of bits with 25% of errors, called the “raw key”. In the
next step of the protocol Bob announces publicly in which basis he measured every qubit
and Alice tells whether or not the state in which she encoded that qubit is compatible with
the basis chosen by Bob. If they are compatible they keep the bit, otherwise they disregard
it. The new key is called “sifted key”.

This protocol is secure against attacks because, when an eavesdropper (usually called
Eve) tries to catch some information performing a measurement on the system she modifies
the system itself it and Alice and Bob can notice her eavesdropping. Eve could plan to make
a copy of the qubit in order to send one to Bob and store the other one. Unfortunately for
her, the “No cloning theorem” [210] assures that perfect copying is impossible in quantum
word so she will be only able to keep an imperfect copy for herself. This constitutes the
starting point for a series of attacks and corresponding security enhancement strategies
which are one of the main topic of quantum cryptography. A complete discussion about
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these strategies, although interesting both from fundamental and practical point of view,
is out of the topic for this thesis and an extensive review can be found in ref [97]. As a
conclusion of this section, let us mention that an ultimate security proof for BB84 protocol
has been given in [187] showing that communication is secure if the quantum bit error rate
is less than 11% which is known as Shor-Preskill security treshold.

A possible attack to BB84 can be performed if the adversary replaces the quantum
system with a classical one for which all the outcomes of measurements can be preassigned
[195] (see also Section 5.3). This attack works because, although the BB84 protocol is
based on a quantum system (a qubit), there is no way for Alice and Bob to check if their
communication is classical or quantum as it would be possible for instance by exploiting
entangled particles.

The first protocol based on entanglement was proposed in 1991 by Ekert [80]. In this
protocol Alice and Bob share an entangled system in the state |ψ−〉. They independently and
randomly choose the basis in which measure the qubit among the same four bases of the
BB84 protocol. Again they get correlated (uncorrelated) results depending on if they chose
the same (different) basis to measure the qubits. The main difference between Ekert91 and
BB84 is that in the former Alice and Bob share an EPR state so they can always check the
quantumnes (and so the security) of the communication by checking the violation of a Bell
inequality. Hence, if Eve tries to substitute the EPR couple with a classical system the two
users are immediately aware of her presence.

1.3 Quantum metrology

The precise estimation of a physical quantity is a relevant problem in many research areas. A
key aim in metrology is to find new physical methods for enhancing measurement precision.
Classical estimation theory asserts that by repeating an experiment N times, the precision
of a measurement, defined by the inverse statistical error of its outcome, can be increased
at most by a factor of

√
N. In quantum physics, this scaling is known as the standard

quantum or shot-noise limit, and it holds for all measurement procedures that do not exploit
quantum effects such as entanglement. Remarkably, using certain N-particle entangled
states it could be possible to attain a precision that scales as N. This is known as the
Heisenberg limit, and is the ultimate bound set by the laws of quantum mechanics [93].
Proof-of-principle demonstrations of these quantum-metrology concepts have been given
in recent experiments of optical-phase estimation, magnetic-field sensing and frequency
spectroscopy [146, 204, 153, 3, 191, 133, 179, 112]. In photonic approaches, the optimal
measurement strategy typically relies on the preparation of “NOON" states [132]

|NOON〉 =
1
√

2
(|N〉a|0〉b + |0〉a|N〉b) (1.24)

in which all N photons propagate in one arm (a) or the other (b) of an interferometer. How-
ever, the experimental preparation of NOON states with large N is extremely challenging,
and to date only N = 3, N = 4, and N = 5 photonic NOON states have been reported
[146, 204, 153, 3]. Moreover, as N grows, N-photon entangled states become increasingly
sensitive to losses, as the loss of a single photon is enough to destroy all the phase infor-
mation [76]. It has been proven that, in the presence of losses or other types of noise, no
two-mode quantum state can beat the standard limit by more than just a constant factor in the
limit of large N [124, 82, 121, 74]. For these reasons, although quantum metrology bears a
great promise for parameters estimation, it is unlikely to become practical in the near future.
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1.4 Beyond the qubit: The qudit

Most of the concepts and techniques described in the previous sections, although general, are
based on qubit or a couple of qubits. All the non-locality considerations, for instance, have
been based on a bipartite scenario of two qubits. The same holds for quantum communication
and cryptography. In this paragraph we will see how the increasing of the dimensions of the
Hilbert space can be exploited as a resource in fundamental quantum mechanics as well as
in quantum information.

1.4.1 Violation of Bell inequalities

Bell inequalities have been violated in numerous experiments however, experimental im-
perfections open various loopholes that could be in principle exploited by a locally casual
model to reproduce the experimental data [43]. In particular one of the main loopholes for
experiments involving photons is called “Detection Loophole” since it is due either to losses
between the source of particles and the detectors or to the fact that the detectors themselves
have non-unit efficiency. As a result we need to consider three outcomes instead of two (+1 ,
-1, “no-click”) for a measurement apparatus used to test Bell inequalities. If the detection
efficiency is below a certain threshold it is possible to design a local model which can
completely reproduce the observed data. For the CHSH Bell inequality using a two-qubit
maximally entangled state it is possible to show that this threshold efficiency is η∗ = 82.8%
which can be lowered to η∗ = 2/3 by considering partially entangled states [78]. Recently a
new kind of superconducting high efficiency detectors has been developed[137, 89] however
they need the photon to be coupled to a fiber ending in the detector in a cryostat operating at
low temperature, hence the overall photodetection efficiency is still in many cases insufficient
for a detection loophole-free Bell test [209, 190]. Only very recently it has been reported a
Bell-violation using entangled photons which closes the detection loophole [98]. However
in this framework high dimensional systems can be exploited as an alternative resource for
closing the detection efficiency loophole. Indeed if we consider entangled ququarts and four
(binary) measurements settings, the threshold efficiency results to be as low as η∗ = 61.8%
while, in an asymmetric scenario (in which we consider atom-photon entanglment) in Bell
tests with d measurement settings and d-dimensional systems, an efficiency as low as 1/d
can be tolerated [202].

It is also possible to show that violations of local realism by two entangled qudits are
stronger than the ones obtained with two qubits [114]. We can indeed consider a system in
the state:

ρN(FN) = FNρnoise + (1 − FN)|ψN
max〉〈ψ

N
max| (1.25)

where the positive parameter FN ≤ 1 determines the noise fraction within the full state,
ρnoise = 1

N21 and |ψN
max〉 is the maximal entangled state 1.11 for a qudit with d = N. The

threshold maximal Fmax
N for which the state ρN(FN) still does not allow a local realistic

model can be considered as a value of the strength of violation of local realism. In can
be shown that the value of Fmax

N increases with the dimension N of the system. Figure 1.1
reports the numerical calculation of Fmax

N for qudits with q up to 9 as performed in Ref.
[114].
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Figure 1.1. Violations of local realism by two entangled qudits are stronger than for two qubits:
numerical calculation of Fmax

N for qudits with d up to 9. [114]

1.4.2 Contextuality

One of the most important features of high dimensional quantum systems in fundamental
quantum mechanics is that, for d ≥ 3, different bases in the Hilbert space may have some
vectors in common. Such simple mathematical property has deep physical implications.
Indeed, the classical description of nature is based on the assumption that all physical
systems possess properties, such as position and velocity, that can be revealed by the act of
observation and whose objective existence is independent of whether or not the observation
does actually take place. A consequence of this assumption is that there should exist a
joint probability distribution for the results of any set of joint measurements revealing these
properties [84]. However, for d ≥ 3 there is a fundamental theorem (Kochen and Specker
(KS) theorem [122]) that states that, if quantum mechanics is correct, then nature cannot be
described in classical terms [193, 26, 122]. This theorem highlighs quantum correlations,
called contextual correlations, which are more general than non-local correlations considered
for the violation of Bell’s inequalities. Contextuality arguments are based on the concept of
compatible measurements and context which we will now briefly recall.

Compatible measurements and context

If a matrix A is not degenerate, there is only one basis in which A is diagonal. That basis
corresponds to a maximal quantum test which is equivalent to a measurement of the physical
observable represented by the matrix A. More precisely, let N be the maximum number of
different outcomes obtainable in a test of a given quantum system; then, any test that has
exactly N different outcomes is called maximal [165]. If, on the other hand, A is degenerate,
there are different bases in which A is diagonal. Given a matrix B which commutes with A it
is possible to find a basis in which both matrices are diagonal. Such a basis corresponds
to a maximal test, which provides a measurement of both A and B. It follows that two
commuting operators correspond to compatible measurements (i.e they can be measured
simultaneously). If, on the other hand, A and B do not commute, there is no basis in which
both are diagonal hence the measurements of A and B are mutually incompatible. The
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generalization to a larger number of operators is straightforward: A set of commuting
operators is called complete if there is a single basis in which all these operators are diagonal.
Therefore, the simultaneous measurement of a complete set of commuting operators is
equivalent to the measurement of a single nondegenerate operator, by means of a maximal -
or complete - quantum test [165]. In other words, two tests are compatible when, for any
preparation, each measurement will always yelds identical results, no matter how many
times the tests are performed or in which order.

Let us now assume that A is compatible with B and C. A non-contextual theory is one for
which the result of a measurement of A does not depend on its context, namely on whether
we measure A alone or A and B, or A and C. In the next paragraph we show that quantum
mechanics cannot be explained by non-contextual hidden variable theories.

KS theorem

KS proved that, for any quantum system of dimension d ≥ 3, there are sets of yes-no
tests (represented in QM by projectors Πi = |vi〉〈vi| onto unit vectors |vi〉) for which it is
impossible to assign results 1 (yes) or 0 (no) in agreement with two predictions of QM:

• (i) If two exclusive tests (represented by orthogonal projectors) are performed on the
same system, both cannot give the result 1.

• (ii) If d pairwise exclusive tests (i.e., satisfying
∑d

i=1 Πi = 1) are performed on the
same system, then one of the tests gives 1.

For a given d, these sets, called KS sets, are universal in the sense that assigning results
is impossible for any quantum state. The existence of KS sets demonstrates quantum
contextuality, namely the fact that, for any quantum state, it is impossible to reproduce
the predictions of QM with theories in which the measurement results are independent of
other compatible measurements. These theories are called non-contextual hidden variable
(NCHV) theories. Quantum contextuality, can be experimentally detected though the
violation of inequalities satisfied by NCHV models, called noncontextuality inequalities.
While violation of Bell inequalities described in section1.1 applies only to a statistical
measurement procedure, the paradoxes arising from contextuality arguments results from
counterfactual logic, are valid for systems in any quantum state and therefore do not require
the system to be prepared in specific quantum states, as is the case for the violation of Bell
inequalities. However, as already said, Bell inequalities can be regarded as a restricted form
of non contextual inequalities, where compatibility of measurement is replaced by a more
stringent requirement of spatial separation [182].

The original KS set had 117 yes-no tests in d = 3 [122]. In d = 3, the simplest known
KS set has 31 tests [165] and it has been proven that a KS set with less than 19 tests does
not exist [163, 46, 11]. Indeed, numerical evidence suggests there is no KS set with less
than 22 tests in d = 3 [163]. However, in d = 4, there is a KS set with 18 yes-no tests
[53], and it has been proven that there is no KS set with a smaller number of yes-no tests
[163, 46]. Moreover, there is numerical evidence that the same holds for any dimension
[163], suggesting that, as conjectured by Peres [166], the 18-test KS set is the simplest one
in any dimension. In the next section a demonstration of such 18-test KS set is given.
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Figure 1.2. KS demonstration: The projectors in Table1.1 can be arranged in 9 different bases
(columns). For any NCHV theory, in each column there is only one “yes” answer so the total number
of “yes” is an odd number. The contradiction comes from the fact that every projectors appears two
times in the table (different colors indicate different projectors) hence the total number of “yes” has
to be an even number.

KS set - a proof with 18 tests

Let us consider the set of 18 projectors over ququarts represented in Table 1.1. There, each
vector represents the projection operator onto the corresponding normalized state. The
states of table 1.1 can be arranged in 9 sets of four mutually orthogonal vectors so that
the corresponding projectors sum the identity (see fig 1.2 where each column groups four
mutually orthogonal states). The contradiction follows from the fact that, respect to figure
1.2, for any NCHV theory, each column must have assigned the answer “yes” to one and
one only vector. However each vector appears in two columns, so the total number of “yes”
answers must be an even number while the number of column is an odd number.

State Projectors
(1, 0, 0, 0) (0, 0, 1, 0)
(0, 1, 0, 0) (0, 1, 0, 1)
(0, 0, 1, 1) (1, 0, 0, 1)

(0, 0, 1,−1) (1, 0, 0,−1)
(1, 1, 1, 1) (1,−1, 1, 1)

(1, 1,−1,−1) (1, 1,−1,−1)
(1,−1, 0, 0) (0, 1, 1, 0)
(1, 0,−1, 0) (1, 1, 1,−1)
(0, 1, 0,−1) (1,−1, 1, 1)

Table 1.1. A KS of 18 projectors in dimension d=4.

Exclusivity graph of a NC inequality

In order to experimentally test contextuality we need to define some inequalities which hold
for NCHV theories but are violated with a quantum system. A useful way to represent NC
inequalities is based on the graph representation. Two different graphs can be associated to
any given NC inequality: a compatibility graph and an exclusivity graph. In a compatibility
graph, each vertex corresponds to a test and adjacent vertices represent compatible tests [51].
Let us consider for example the CHSH inequality in the following form:

S = 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 ≤ 2 (1.26)

where the four observables A0, A1, B0, B1 can assume the values +1 or -1. All possible pairs
of observables are compatible except for the pairs (A0, A1) and (B0, B1) . The corresponding
compatibility graph is represented in Fig1.3 a.
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Figure 1.3. (a) The compatibility graph of the CHSH experiment. (b) The exclusivity graph of the
CHSH inequality [51]

In order to deduce its exclusivity graph, let us rewrite the CHSH inequality taking into
account that:

± 〈AiB j〉 = 2[P(1,±1|i, j) + P(−1,∓1|i, j)] − 1 (1.27)

where P(a, b|i, j) is the probability of the event “the result a has been obtained when
measuring Ai and the result b has been obtained when measuring B j”. We can then rewrite
the inequality as:

Σ =
S
2

+ 2 = P(1, 1|0, 0) + P(−1,−1|0, 0) + P(1, 1|0, 1) +

+P(−1,−1|0, 1) + P(1, 1|1, 0) + P(−1,−1|1, 0)

+P(1,−1|1, 1) + P(−1, 1|1, 1) ≤ 3 (1.28)

where the left-hand side is now a convex sum of probabilities of all the events. In the
corresponding exclusivity graph fig1.3 b, each vertex is one of the eight events involved in
the inequality while adjacent vertices represent events that cannot occur simultaneously.

The exclusivity graph (G) is a fundamental tool for studying NC inequalities and all the
experiments reported in Chapter 5 are designed starting from such kind of graph. Indeed, the
most interesting property of an exclusivity graph is that the maximum value of Σ for NCHV
theories and for quantum mechanics is exactly given by two numbers related to the graph.
For a NCHV theory, the upper bound for Σ is given by the maximum number of pairwise
nonadjacent vertices in G, which is known as the independence number of the graph α(G).

Σ ≤ α(G) (NCHV theories) (1.29)

The upper bound for Σ for quantum mechanics is instead given by a number called Lovász
number ϑ(G)[54] which is defined as:

ϑ(G) = max
∑

i∈V(G)

|〈ψ|vi〉|
2, (1.30)

where the maximum is taken over all unit vectors |ψ〉 and |vi〉 and all dimensions, where
each |vi〉 corresponds to a vertex of G, and two vertices are adjacent if and only if the
corresponding vectors are orthogonal. Hence for quantum mechanics:

Σ ≤ ϑ(G) (QM) (1.31)
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Figure 1.4. Exclusivity graph for the original 117 contextual questions in the Kochen-Specker
theorem (left) and the simplest equivalent set with 18 questions in dimension 4 (right). Colours
indicate duplicated questions. [178]

By exploiting this formalism, any experiment producing quantum contextual correlations
can be associated to an exclusivity graph for which α(G) < ϑ(G).

Of course an exclusivity graph can be associated also to any KS set [122]. The funda-
mental feature of KS graphs is that for these sets, the violation of the NC inequality holds
for any tested state. Fig. 1.4 shows the graph corresponding to the original 117-test (left)
compared to the 18-test KS set (right) which is the simplest possible KS set. This last
representation will be analyzed in detail in Chapter 5 together with the report of the first
experimental verification of the KS theorem.

Indeed, while Bell inequalities [25] revealing quantum nonlocality have stimulated a
large number of experiments (e.g., [13, 198, 207, 181]) and have a number of applications
(e.g., [80, 41, 170]), the awareness that quantum contextuality and, specifically, state-
independent quantum contextuality can also be observed in actual experiments is relatively
recent [47] and a complete KS set of yes-no tests, in the original form defined by KS, has
never been experimentally implemented before.

Post quantum theories

We have seen how to represent in a graph form a series of experiments to be performed on a
physical system in order to discriminate what kind of correlations are present in the system
itself. Since there are graphs for which α(G) < ϑ(G) we deduce that, if our measurements
violates the NC inequality :

α(G) < Σ ≤ ϑ(G) (1.32)

our system shows quantum correlation which cannot be explained by preassigning the value
to the outcomes of the tests of the graph.

However in general quantum mechanics does not give the maximum possible value for
Σ allowed by laws of probability. Indeed, it is possible to design post-quantum theories
in which ϑ(G) < Σ. The only requirement defining these post-quantum theories is that
they cannot assign a value larger than 1 to the sum of probabilities of mutually exclusive
possibilities. In this case the upper bound for Σ is given by α∗(G), the fractional packing
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number of G, which is defined as

α∗(G) = max
∑

i∈V(G)

wi, (1.33)

where V(G) is the set of vertices of G, and the maximum is taken for all 0 ≤ wi ≤ 1 and for
all subsets of pairwise adjacent vertices c j of G, under the restriction

∑
i∈c j wi ≤ 1 [55].

Since for any graph:
α(G) ≤ ϑ(G) ≤ α∗(G) (1.34)

the existence of these post quantum theories open a fundamental question on quantum
mechanics. Indeed experimental values of Σ are always bounded by the Lovátz number
hence there have never been observed post quantum correlations that violate quantum
mechanics. Nevertheless the physical principle that prevents quantum mechanics from being
more contextual has not been found yet. However, recently an interesting conjecture has
tried to explain the existence of quantum correlation by mean of a fundamental principle:
the exclusivity principle (E) which states that “the sum of probabilities of pairwise exclusive
events cannot exceed 1” [49][212].

It is however possible to find some experiments in which the Lovátz number is equal to
the fractional packing number. In this case the quantum advantage is impossible to beat by
any post-quantum theory.

Chapter 5 reports the experimental verification of the simplest task with this property.

1.4.3 Quantum Communication and Cryptography

Quantum cryptographic protocols based on complementarity (for instance BB84) are nonse-
cure against attacks in which complementarity is imitated with classical resources [195]. As
we will show in Chapter 5, the Kochen-Specker theorem provides protection against these
attacks, without requiring entanglement or spatially separated composite systems.

Qudits are a resource also for secure quantum communication, indeed new quantum key
distribution protocols have been conceived in which a larger error rate can be tolerated while
preserving security [58, 57]. Moreover a different protocol extending Ekert91 [80] by using
entangled qutrits has been experimentally realized [103].

As a last remark let us stress that usually, all the free space communication protocols are
based on photon polarization. It is implicitly assumed that the reference frames of Alice
and Bob are perfectly aligned, i.e. when Alice sends a polarization state |H〉 Bob has 100%
of probability of measure |H〉. This is not taking into account experimental imperfections
and the fact that Alice and Bob can be in a situation in which their relative orientation is
completely unknown. Even here, high dimensional systems can be exploited as a resource.
Indeed in Chapter 3 we present a method that, based on qudits in dimension four, allows to
perform quantum communication in alignment-free settings.





Chapter 2

Qudits and Photonics

In the previous chapter we have seen how high dimensional systems can find applications
in fundamental quantum mechanics and in quantum information. Here we will describe a
convenient physical system to implement qudits in order to perform experiments. Among
the systems usually exploited to encode information, photons are with no doubt a very
convenient choice as information carriers. Indeed photons are easy to transmit, to generate,
to manipulate and to detect with technologies which are available today in many quantum
optics labs. As we have seen in Chapter 1, in a typical quantum communication scenario,
Alice and Bob exploit photon polarization in order to encode their qubits. This is a natural
choice since polarization qubits are easily written, manipulated and decoded by using
standard optical elements like birefringent waveplates and polarizing beam splitters.

However, if we want to encode a qudit in a photon, polarization is not enough anymore.
We could decide to exploit more photons (like for instance in a NOON state) but this
approach presents some drawbacks related to demanding experimental resources and extreme
sensitivity to photon losses. Fortunately a single photon presents, apart polarization, several
degrees of freedom (DOF) that are suitable for information encoding like path or orbital
angular momentum (OAM) that are both defined in an infinite dimensional Hilbert space.
Hence it is possible in principle to encode a qudit of arbitrary dimension in a single photon
state avoiding all the problems of multiparticle states encoding. It is also possible to exploit
two DOF at the same time, in this case we will refer to hybrid encoding. This last encoding
presents some advantages that will be described in the following chapters.

In this thesis we will focus mainly on orbital angular momentum of light as a degree
of freedom for information encoding, alone or in combination with polarization. OAM is
related to the spatial modes of the electromagnetic field 1 and allows to manipulate qudits
without the need of cascade interferometers which are a fundamental tool when we work
with qudits encoded in path. The study of properties of optical orbital angular momentum
is relatively a new field since the sistematic study of this degree of freedom has started
only in the early 90s after a seminar paper by Allen and co workers [5]. Starting from this
paper the OAM of light has attracted more and more attention not only in the quantum
information community [147, 139, 4] but also for instance in microscopy [90, 30], optical
tweezing [160], biophysics [102] and astronomy[197]. Despite this success, there is still a
lack of a complete and efficient instrumentation for orbital angular momentum manipulation
which would make this DOF as easy to manipulate as polarization. One of the goals of this
thesis has been the development of a new tool for OAM manipulation that will be presented

1There are also other ways to encode information in spatial modes like for instance in [85, 154, 159, 1]

15



16 2. Qudits and Photonics

Figure 2.1. In order to encode quantum information it is possible to exploit several degrees of
freedom of a single photon like polarization (a), path (b) and orbital angular momentum (c)

in section 2.14 and which has been a fundamental resource in some of the experiments
presented in the following chapters.

2.1 Polarization and path encoding

A polarization qubit can be defined as:

|φ〉 = α|0〉 + β|1〉 = α|H〉π + β|V〉π (2.1)

where |H〉π and |V〉π are the linear horizontal and vertical polarization states and correspond
to the logical basis states |0〉 and |1〉 respectively. Qubits {|+〉, |−〉} that are needed for the
BB84 protocol are immediately obtained as superposition of |H〉π and |V〉π and correspond
to diagonal and antidiagonal linear polarizations:

|+〉 = |A〉π =
1
√

2
(|H〉π + |V〉π) (2.2)

|−〉 = |D〉π =
1
√

2
(|H〉π − |V〉π) (2.3)

These two sets of states, togheter with circular polarization states:

|L〉π =
1
√

2
(|H〉π + i|V〉π) (2.4)

|R〉π =
1
√

2
(|H〉π − i|V〉π) (2.5)

constitute a maximal set of mutually unbiased bases (see Chapter 6) in polarization space
and are easily generated, manipulated and detected by exploiting standard optical devices
like polarizers and birefringent waveplates (in particular half waveplate (HWP) and quarter
waveplate (QWP)). In fig 2.1a are depicted the electric field vectors at a given time for
circular polarized light beams.

A path qubit is usually defined as:

|φ〉 = α|0〉 + β|1〉 = α|a〉k + β|b〉k (2.6)
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where |a〉k and |b〉k indicate two separate possible paths for the photon propagation. Such a
state can be immediately generalized to higher dimensions as:

|φ〉 =

d∑
i=1

αi|ai〉k (2.7)

which can be experimentally obtained by dividing the paths via beam splitters (BS) and
adding suitable phase shifters in each path (Fig. 2.1 b).

The experimental fundamental link between polarization and path is given by a device
called polarizing beam splitter (PBS). A PBS, realizing the following transformation:

(α|H〉π + β|V〉π) |a〉k −→ α|H〉π|a〉k + β|V〉π|b〉k (2.8)

allows to switch from a polarization qubit to one defined in a hybrid space between polar-
ization and path. Let us notice that the state 2.8 is a single photon entangled state where
entanglement is between two different DOF of the same photon. This follows from the fact
that a PBS can be seen as a CNOT gate where the control qubit is given by polarization and
the target by path. This is just one example of single photon qudit and of an optical device
which acts as an interface between two different DOF of the same photon. More examples
can be found in the next section where the orbital angular momentum of light is described
together with the main tools for its manipulation and its interfacing to polarization and path.

2.2 Orbital Angular Momentum

The existence of mechanical properties of light has been already supposed by Kepler in the
XVII century in order to explain the existence of comets’ tail. After a couple of centuries
Maxwell formulated his beautiful theory which summarizes all properties of electromagnetic
field in four famous equations from which it is possible to derive all the classical properties
of light, including linear and angular momentum. Angular momentum in particular can be
in most cases divided in two distinct contribution. The first one is related to polarization of
light and it is called spin angular momentum (SAM). Already in 1909 Poynting anticipated
that circularly polarized light should have an angular momentum to energy ratio of σ/ω
(where helicity is σ = ±1 for left and right handed polarized light respectively) and that any
transformation of polarization state must correspond to an angular momentum exchange
with the optical system[175]. Such effect was actually observed by Beth in 1936 [31] in a
famous experiment with a birefringent waveplate suspended on a filmament. But SAM is
only a part of the total angular momentum of light.

The other contribution is associated with the spatial distribution of the field as first
recognized by Darwin in 1932[72]. Such contribution is needed also because higher-order
atomic transitions require emitted light to carry multiple units of ~ angular momentum
and hence orbital angular momentum in addition to spin. It was in 1992 that Allen and co
workers [5] recognized that all helically phased beams carry an OAM equivalent which is
multiple of ~. This separation of orbital and spin components is complex in the presence
of tight focusing, and in such situations one needs to analyze the various components in
terms of angular momentum flux[16]. Although a general decomposition of light’s angular
momentum is still a subject of research [158, 141, 32] in most cases the orbital and spin
angular momenta remain distinct quantities and useful concepts with which to analyze
many experimental situations. In particular, in paraxial approximation SAM and OAM
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contribution are well defined and have been observed separately in several experiments
[87, 213]. Paraxial regime is also the natural framework to describe laser beams that have
been used in all the experiments here reported, hence hereafter we will always refer to this
approximation.

2.2.1 Transverse Modes

A paraxial wave that is propagating along the z axes can be described by a complex amplitude
[183]:

A(~r) = u(~r)e− jkz (2.9)

For this complex amplitude to satisfy the Helmotz equation

∇2A(~r) + k2A(~r) = 0 (2.10)

the complex envelope u(~r) must satisfy the paraxial Helmotz equation:

∇2
T u(~r) − j2k

∂u(~r)
∂z

= 0 (2.11)

A solution of such equation is the well known Gaussian beam T EM00 (transverse electro-
magnetic) that corresponds to the complex amplitude:

u(x, y) = A0
W0

W(z)
exp

[
−

x2 + y2

W2(z)

]
exp

[
− jkz − jk

x2 + y2

2R(z)
+ jζ(z)

]
(2.12)

where the beam parameters are defined as:

W(z) = W0

[
1 +

(
z
z0

)2
]1/2

(2.13)

R(z) = z
[
1 +

(
z
z0

)2
]

(2.14)

ζ(z) = tan−1
(

z
z0

)
(2.15)

W0 =
(
λz0
π

)1/2
(2.16)

and z0 and λ are respectively the Rayleigh range and the wavelength of the beam. The
intensity distribution of this beam has a Gaussian shape and, for a given z depends only on
the distance r from the propagation axis:

I(r, z) ∝
1

πW2(z)
exp

[
−

2r2

W2(z)

]
. (2.17)

The phase of the beam is instead:

ϕ(r, z) = kz − ζ(z) +
kr2

2R(z)
(2.18)

and, on the beam axis (r = 0) comprises of two components. The first one, kz is the
phase of a plane wave while the second one, ζ(z), is called Gouy phase and represents the
excess of delay of the wavefront in comparison to a planewave. The total Gouy phase shift
accumulated as the wave travels from z = −∞ to z = +∞ is π. Although the Gaussian beam
is the most common laser beam, it is only a particular state of a complete set of solutions of
the paraxial equation 2.11.



2.2 Orbital Angular Momentum 19

Hermite-Gauss modes

A well known family of solution for equation 2.11 are the Hermite-Gauss modes HGmn

whose analytical form for the amplitude umn(x, y, z) of the field is given by:

um,n(x, y, z) = Am,n

[
W0

W(z)

]
Gm

 √2x
W(z)

Gn

 √2y
W(z)


×exp

[
− jkz − jk

x2 + y2

2R(z)
+ j(n + m + 1)ζ(z)

]
(2.19)

where

Gn(t) = Hn(t)exp
(
−

t2

2

)
(2.20)

is the Hermite-Gaussian function of order n, Hn is a Hermite polynomial and Am,n is a
constant. When m = n = 0 we obtain the fundamental Gaussian which can also be called
HG00. The intensity and phase distribution on the plane z = 0 for some HG modes are
reported in fig2.2.

Figure 2.2. Intensity distribution of the lowest HGmn spatial modes

Laguerre-Gauss modes

Another complete set of solution of the paraxial equation is given by the so called Laguerre-
Gauss (LGp,l) modes that can be obtained solving eq 2.11 by variables separation in cylin-
drical coordinates (r, ϕ). The amplitude of LG modes is given by:

upl(r, ϕ) =
Cp,l

(1 + z2/z2
0)1/2

 r
√

2
W(z)

|l| Ll
p

[
2r2

W2(z)

]
exp

[
−

r2

W2(z)

]
exp

− ikr2z
2(z2 + z2

0)

 exp
[
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where Cp,l is a constant and Ll
p(t) is the generalized Laguerre polynomials, the radial index

p is not negative and the azimuthal index l ∈ Z. The intensity profile of LG beams is
characterized by a null intensity in the center when l , 0 due to a phase singularity in
r = 0 given by to the term eilϕ. The parameter p indicates the number of nodes for the
electromagnetic field along the radial direction. For p = 0 the intensity profile is also called
“doughnut” mode (see fig2.3). Since both HG and LG modes are a complete set of solutions

Figure 2.3. Intensity distribution of the lowest LGpl spatial modes

for the Helmotz paraxial equation, an LG mode can always be written as a superposition of
HG modes and vice versa. This property is exploited in the cylindrical lens mode converter
that will be described in the next section.

OAM eigenstates

LG modes have been recognized as eigenstates of orbital angular momentum for the first
time in the paper [5] where is shown that an LGp,l beam carries l~ units of orbital angular
momentum per photon. More in detail Allen and co-workers considered the angular mo-
mentum to energy ratio for a linear polarized LG beam of frequency ω and obtained for
this ratio a value of l/ω while, by performing the same calculation for a circular polarized
LG beam with helicity σ they obtained (l + σ)/ω. Such description is consistent with the
quantum picture in which each photon carries l~ of orbital angular momentum and left and
right handed circular polarization states |L〉π and |R〉π, are eigenstates of the SAM operator
S z
π along the propagation direction of respective eigenvalues sz

π = ~ and sz
π = −~. However

LG modes are only a possible set of OAM eigenstates.
More in general, an OAM eigenstate is any spatial mode with azimuthal phase depen-

dence as:
u(r, ϕ, z) = u0(r, z)eilϕ (2.22)

where u0(r, z) can be an arbitrary function.
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This peculiar phase dependence corresponds to a twisting of the wavefront (see fig 2.4)
of light around the propagation direction (helicoidal wavefront). The handness and the
number of twisting of the wavefront are defined by the integer number l. The amplitude form
2.22 corresponds to a phase singularity on the propagation axis known as optical vortex.
The topological charge of this vortex can be defined as:

Q =
1

2π

∮
dχ (2.23)

where the integral is performed around the singularity and χ is the phase of the field. For an
orbital angular momentum eigenstate we have Q = l.

Figure 2.4. OAM eigenstates are characterized by an helicoidal wavefront and a “doughnut” intensity
profile. Here are represented wavefront, intensity profile and phase profile for OAM eigenstates with
l ∈ {−2,+2}

We can define an OAM eigenstate as |l〉oam and, since 〈li|l〉 j = δi, j, we can exploit this
degree of freedom to encode information in the infinite dimensional OAM Hilbert space
with l ∈ Z. So as well as we have done with path, we can define an OAM qudit as:

|φ〉 =

d∑
l=1

αl|l〉oam (2.24)

where the sum runs from 1 to d only for convenience since l can also be a negative integer.

Hypergeometric Gaussian modes

Before conclude this section let us mention another family of OAM eigenstates, the Hyper-
geometric Gaussian (HyGG) modes [113] for which the complex amplitude is proportional
to a confluent hypergeometric function. These states form an overcomplete set of solution
for the paraxial equation and their complex amplitude in the pupil plane is given by:

up,l(r, ϕ, 0) = Cp,lrp+|l|e−r2+ilϕ (2.25)

There can be defined several families of HyGG modes depending on the relation between p
and l. In particular, for the states with p = |l| we obtain the modified Bessel Beams which
show the nice properties to have, in the pupil plane, the amplitude of a fundamental Gaussian
beam multiplied by the phase factor eilϕ. This means that in principle we can generate an
OAM eigenstate by simply adding a proper phase-shift to a T EM00 beam. Actually this is
the most common way to generate OAM eigenstates as we will see in the next section.
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2.3 OAM manipulation

Although orbital angular momentum is attracting large attention in the last decades, the set
of tools for OAM manipulation is still under development in order to become as efficient
as their counterparts used for polarization. Nevertheless there already exist several devices
which allow to generate, manipulate and detect orbital angular momentum qudits in an
efficient way. The most common devices for OAM manipulation are: spiral phase plates [24],
cylindrical lens mode converters[23], computer generated holograms [105], interferometric
setups [131][188], q-plates[140] and refractive devices for OAM sorting [128]. Among
these we will briefly describe cylindrical lens mode converters and spiral phase plates since
they are the first to have been developed and exploited in the experiments twenty years ago.
Then we will focus on the q-plate and spatial light modulators: the former is a device which
allows to couple OAM with polarization, the latter the most used and versatile tool for OAM
encoding. Both these devices are the core of the experimental setup exploited in this thesis.
The last section reports a novel device developed during this thesis which allows to transfer
information between polarization and OAM of a single photon.

Cylindrical lens mode converter

The first tool that has been designed for OAM eigenstates generation is a cylindrical lens
telescope that transforms HG modes in LG ones [23]. This conversion is based on the fact
that LG modes and HG(45◦) modes (HG modes rotated by 45◦ respect to the HG along the
propagation direction) can both be decomposed into a set of Hermite-Gauss modes.

Let us consider for instance the decomposition on HG basis of the LG02 mode:

LG02 = −
1
2

HG20 +
i
√

2
HG11 +

1
2

HG02 (2.26)

and the same decomposition for an HG02(45◦) (see Fig.2.5):

HG20(45◦) =
1
2

HG20 +
1
√

2
HG11 +

1
2

HG02 (2.27)

The coefficients of the two decomposition differs only by phase factors, hence it is possible
to convert a rotated HG beam in an LG mode by introducing a proper phase shift between
the components.

This phase shift can be obtained with cylindrical lenses because, as each HG mode
is focused by the lenses it undergoes a different Gouy phase shift depending on its mode
indices and orientation with respect to the cylindrical lenses [23]. This mode converter has
two main forms: the π/2 and the π converters which are characterized by different distances
between the two cylindrical lenses. In a π/2 converter a HGmn(45◦) (oriented at 45◦) to the
cylindrical axis of the lens) is converted into an LGpl with l = m − n and p = min(n,m).
The π converter, on the other hand, transforms any mode into its own mirror image and is
optically equivalent to a Dove prism [99].

Spiral phase plates

As we have seen, OAM eigenmodes are characterized by a phase dependence of the complex
amplitude of the field given by eilϕ. One of the simplest way to generate an OAM eigenstate
is by introducing in a Gaussian beam an optical retardation which has exactly this azimuthal
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Figure 2.5. Mode decomposition for a LG02 beam and a rotated HG20 beam. The cylindrical lens
mode converter working principle is based on the fact that the two decompositions differs only by
phase factors.

dependence. This is the working principle of a spiral phase plate (SPP). A spiral phase plate
is a disk of transparent material in which the thickness is a linear function of the azimuthal
angle (in a polar reference frame with the origin in the center of the disk) see fig 2.6. The
phase retardation introduced by a spiral phase plate in the beam is then:

δ =
(n1 − n2)h

λ
ϕ (2.28)

where n1 and n2 are respectively the refractive index inside and outside the device, h is the
difference between maximum and minimum of the thickness, λ is the wavelength of the
beam. In order to obtain an OAM eigenstate |l〉oam, the SPP has to be carefully constructed
such that:

h =
lλ

(n1 − n2)
. (2.29)

It is clear from this condition that a SPP can work only with a fixed wavelength. When we
shine the device with a T EM00 we obtain a modified Bessel beam with a well defined l:

S PP|0〉oam = |l〉oam (2.30)

Let us note that a spiral phase plate can only generate the state |l〉 given an input T EM00
beam which makes this device not suitable for the generation of qudits.

2.3.1 Q-plate

In order to generate hybrid qudits a device is needed which acts as an interface between
two degrees of freedom. When the two degrees of freedom are polarization and OAM, this
interface has to be birefringent and inhomogeneous.

A q-plate [140] is a liquid crystal (LC) cell that acts as a birefringent phase plate whose
optical axis orientation angle is not uniform, but changes from point to point in the transverse
plane. The optical axis orientation at each point is given by:

α(r, ϕ) = qϕ + α0, (2.31)

where α is the angle that the optical axis forms with a reference axis x in the transverse
plane xy, ϕ is the azimuthal angle coordinate in the same plane, q is a parameter called
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Figure 2.6. Graphic representation of a spiral phase plate. A Gaussian beam incident on the device
is converted in a OAM eigenstate.

topological charge and α0 is a constant. Being a liquid crystal device, in a q-plate the optical
axis orientation coincides with the molecular director of liquid crystals and, from the border
condition α(r, 0) = α(r, 2π) follows the condition for q to be an integer or half integer. In
figure 2.7 are shown the molecular directors geometries for q-plates with different q and α0.

Figure 2.7. Some optical axes geometries for the q-plate device.

As a liquid crystals cell the q-plate introduces a birefringent retardation δ which is
uniform across the device and which can be manipulated by acting on an external electric
field [169]. For δ = π, when a circularly polarized photon passes through a q-plate, its
helicity is switched to the opposite one, like in the case of standard half-wave plates.
Such polarization transformation, while having the same initial and final states, occurs in
a different way in different points of the transverse plane, giving rise to a non-uniform
geometrical (or Pancharantam-Berry) phase retardation. More in detail, let us consider the
Jones matrix describing the action of a q-plate with optical retardation δ:

QP(δ) = R[−α]
(
eiδ/2 0

0 eiδ/2

)
R[α] (2.32)

where R is the rotation matrix and α is given by 2.31. A straightforward calculation of the
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action of the q-plate on circular polarized light gives:

QP(δ)|L〉π = cos
(
δ
2

)
|L〉 + iei2α0 sin

(
δ
2

)
|R〉π ei2qϕ (2.33)

QP(δ)|R〉π = cos
(
δ
2

)
|R〉 + ie−i2α0 sin

(
δ
2

)
|L〉π e−i2qϕ (2.34)

where the azimuthal phase dependence of OAM eigenstates is given by the term e±i2qϕ.
Hence, when δ = π (tuning condition) a q-plate gives rise to the following transformations:

QP(π)|L〉π|l〉oam = |R〉π|l + 2q〉oam (2.35)

QP(π)|R〉π|l〉oam = |L〉π|l − 2q〉oam (2.36)

which correspond to a flip in the polarization state and a variation of OAM ∆l = ±2q whose
sign depends on the input polarization handess. For sake of simplicity we will refer now on
to tuned q-plates (δ = π) as QP instead of QP(π).

Figure 2.8. Sketch of a q-plate with q=0.5 generating a polarization-OAM hybrid state.

According to transformation 2.35, the action of the q-plate on a horizontal polarized
photon is:

QP|H〉π|0〉oam =
1
√

2
(|L〉π| − 2q〉oam + |R〉π|2q〉oam) (2.37)

which corresponds to an entangled state between two DOF of the same photon and is defined
in a four dimensional hybrid space spanned by vectors:

{|H, 2q〉, |H,−2q〉, |V, 2q〉, |V,−2q〉} (2.38)

This ququart space has been exploited both for fundamental quantum mechanics investigation
and quantum communication [70, 71, 149, 50, 68] as will be described in the following
chapters (Chapters 3,4 and 5).

Q-plates fabrication

In a q-plate a thin layer of nematic LC is sandwiched between two glass windows, previously
covered with a suitable surface coating for inducing the desired orientational order to the LC
layer. For generating the q-plate pattern is adopted a photoalignment method [59], which
consists in exposing the aligning layer, which contains suitable photosensitive dyes, with
linearly polarized UV light (see Fig.2.9). The polarization direction of the light defines
the local anisotropy direction of the aligning coating (the latter is actually orthogonal or
parallel to the polarization, depending on the choice of materials), which in turn, induces
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the orientation direction of the LC layer. Hence, the q-plate is realized by illuminating the
empty cell with a thin line of light, “writing” sector-by-sector the desired angular structure,
while constantly controlling the polarization direction of the writing beam and rotating the
sample at the same time. The LC is inserted in the cell after writing the alignment pattern.
The cell glasses include also a thin conducting transparent layer of Indium Tin Oxide (ITO),
in order to apply an electric field and fine-tune the q-plate to the desired total retardation of
half-wave.

Fig. 1
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Figure 2.9. Photoalignment setup for q-plates fabrication. The light produced by a UV lamp is
polarized and sent through a mask before shine the sample. Both rotational speed of polarization ωp

and sample ωs can be controlled[189].

The output OAM state quality is defined by the smoothness of the q-plate and the size of
central defect. The first one is defined by the sample rotation step, laser line thickness and
the choice of the aligning surfactant material. The central defect size is also very sensitive to
the alignment of the sample with respect to the writing beam. For low topological charges
q < 10, a step of 1◦ and corresponding laser line thickness provides good quality of the
final structure. With increase of topological charge, finer q-plate structures required smaller
rotation steps (up to 0.1◦ for q ≥ 25) and particular attention to rotation error compensation.
In combination with suitable azodyes selected as high resolution aligning surfactants [59], it
is possible to achieve a high quality of the LC alignment and a low size, with respect to the
total aligned area, of the central defect (see Figure 2.10 for polarization microscope image
of a q-plate). Up to now q-plates with topological charge as high as q = 150 have been
fabricated with a mean transmittance of 84% which can be easily improved by applying an
antireflection coating on the surfaces of the device.

Figure 2.10. Polarization microscope image of a q-plate. The image shows pictures of three
different q-plates between crossed polarizers. For q = 150 an area located approximately 1 mm from
the center is shown and image size is 366 µm in horizontal and 275 µm in vertical.

2.3.2 Spatial light modulators

Another technique for OAM generation is based on holography [91]. A hologram is the
registration of the interference pattern between a target field and a reference field. By
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shining the hologram with the reference beam we are able to reconstruct back the target field.
Although the first holograms were actually produced by impressing the interference pattern
on a photographic film, nowadays they are usually calculated analytically or, eventually,
numerically. There exist two kind of holograms:

• amplitude holograms

• phase holograms

In the first case the hologram consists of a modulation of the amplitude of the field cor-
responding to a real transmission function T (x, y). In the second case T (x, y) represents a
phase modulation. It is clear that, being transparent, in general phase modulation holograms
assure higher efficiencies respect to amplitude ones. Therefore hereafter we will refer only
to phase holograms.

By following the same working principle of a spiral phase plates, the state |l〉oam can be
generated by adding an azimuthal phase term to a Gaussian beam by letting it pass through
a phase hologram with T (r, ϕ) = lϕ. This technique has been first used in [105] and its main
drawback is that, since holograms have low diffraction efficiency, the converted beam is
superimposed to the non-converted Gaussian beam.

To avoid this problem it is possible to add to the azimuthal phase a blazing term that
sends to the first order of diffraction the converted beam. The corresponding transmission
function is T (x, y) = 2πx/Λx + ilTan−1(y/x) where Λx is the blazing parameter along the
direction of x. With this hologram the photons converted to state |l〉oam are spatially separated
from the unconverted ones in the state |0〉oam. Thus hologram couples OAM and path with
the following transformation:

|0〉oam|a〉k →
√
η|l〉oam|b〉k +

√
1 − η|0〉oam|a〉k (2.39)

where η is the diffraction efficiency of the hologram, |b〉k is the first diffraction order direction
and contributions related to other diffraction orders are neglected .

When a hologram is calculated by a computer it is called computer generated hologram
and it is usually displayed on a device called Spatial Light Modulator (SLM). These devices
comprise thin liquid crystal cells, where the application of a voltage across the cell introduces
a phase delay to the transmitted light. Rather than applying the same electric field (and
hence the same phase change) across the whole aperture, a desired phase structure can
be created by varying the strength of the electric field across the aperture of cell. Most
commonly, this spatially varying electric field is created by attaching the liquid crystal
cell to a programmable, pixellated CMOS array and using the whole device in reflection
mode (which also doubles the available phase shift). Typically, in a good quality SLM,
each pixel of the device can create a full 2π phase shift with video resolution and update
rates. These devices are programmed as secondary monitors from the graphics card of a
computer, where an 8-bit greyscale image gives 256 different phase levels. When adopted
in this configuration, the SLM is effectively acting as a complicated diffraction grating
which changes the phase of the reflected light beam such that upon propagation its intensity
and phase cross-section transforms into a specific pattern. The main advantage of an SLM
respect to a photographic film is that it can change dynamically (even automatically) the
holographic pattern without need of further alignment.

A typical setup with an SLM is shown in figure 2.11.
As we have seen, an OAM eigenstate can be easily generated by displaying on a

SLM the transmission function T (x, y) = 2πx/Λx + ilTan−1(y/x). Actually, since SLM
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Figure 2.11. A typical experimental setup for beam modulation via a spatial light modulator.

can create a phase shift of 2π we need to slightly change this transmission function to
T (x, y) = Mod[2πx/Λx + ilTan−1(y/x), 2π] (where Mod is the modulo function that gives
the remainder after division of the first argument by the second) which corresponds to a
typical modulation called fork hologram (see fig 2.12). Although high quality SLMs have
as a maximum phase shift 2π, in cheaper models this can be not true. However it is still
possible to adjust SLM’s contrast function in order to optimize the diffraction efficiency
with a technique described in [38].

Figure 2.12. Fork holograms for generation of states |l〉oam with l ∈ [−2, 2]

The greatest advantage of SLMs respect to all the other devices for OAM manipulation
is that they in principle allow to generate and detect qudits of arbitrary dimensions. Despite
of the semplicity of the holograms for OAM eigenstates generation, the calculation of the
proper hologram for a generic qudit is not straightforward. The fundamental challenge of
computer generated holography is actually how to find the hologram design which, when
displayed on the SLM, generates the light field we want to create. In other terms, assuming
that we illuminate the SLM with a plane wave laser beam of uniform intensity, our scope is
to find the right phase pattern T (x, y) to display on SLM in order to obtain the complex field
distribution in the far-field (in the focal plane of the lens in Fig2.11). The main problem
here is that the SLM is a phase-only optical element, while to obtain arbitrary OAM modes
superpositions we need to be able to tailor both the phase and the amplitude transverse
profiles of the outgoing field. This can be obtained by modulating both the shape and
contrast of the hologram. Although there exist several techniques based on selective losses
controlled through the contrast [12, 38] they are non-optimized for the best state fidelity.
Since we are interested in the generation of qudits we want them to be as pure as possible.
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For this reason, we developed an holographic method that is specifically optimized in the
fidelity and that is described in Chapter 6.

Hence a spatial light modulator allows to transform a T EM00 mode in an arbitrary
superposition of OAM eigenstates:

|0〉oam −→

d∑
l=1

αl|l〉oam (2.40)

and in general to perform an arbitrary rotation of a qudit in its d-dimensional Hilbert
space. Moreover, since they are computer controlled, SLMs are suitable for integration
in automatized setups. For these reasons spatial light modulators are nowadays the most
diffuse resource for OAM manipulation.

2.4 Deterministic Transferrer

A transferrer is a device that transfers information from one DOF to another. In reference
[151] is described the realization of the first transferrer between the polarization space π and
a bidimensional subspace of OAM o|l| = {| − l〉oam, | + l〉oam} based on q-plate technology.
However the reported probability of success for the transfer is only p = 50% since some
elements in the setup discard half of the information encoded in different OAM subspaces
(o|l| → π) or in the polarization (π→ o|l|). Since a useful quantum information processing
requires high efficiencies, one goal for this thesis project has been the realization of a
deterministic transferrer (p = 100%) between π and o|l|. The results have been published
in [V. D’Ambrosio, E. Nagali, C. Monken, S. Slussarenko, L. Marrucci and F. Sciarrino,
Deterministic qubit transfer between orbital and spin angular momentum of single photons.
Optics Letters, 37 (2012), 172.] [69].

2.4.1 Transferrer working principle

Let us consider the o|l| → π transfer process and an incoming photon prepared in an arbitrary
OAM and fixed polarization state, so that all information is encoded in the OAM:

|H〉π|φ〉o|l| = |H〉π (α| + l〉 + β| − l〉)o|l| (2.41)

The transfer process starts with a half waveplate (HWP) whose optical axes is rotated by π/8
respect to horizontal polarization that transforms the polarization state in the antidiagonal
one |A〉π. The states then becomes:

|H〉π (α| + l〉 + β| − l〉)o|l| + |V〉π (α| + l〉 + β| − l〉)o|l| (2.42)

Hereafter the indices π and o|l| are omitted for brevity. The photon is then sent into a
polarizing Sagnac interferometer (PSI) with a polarizing beam-splitter (PBS) input/output
port and a Dove prism (DP) in one of its arms [152, 188]. Defining γ as the angle between
the base of the prism and the plane of the interferometer, the action of the DP on the counter-
propagating H/V linear polarization components with generic OAM l is described by the
following equations:

|H〉|l〉 → e2ilγ|H〉|l〉, (2.43)

|V〉|l〉 → e−2ilγ|V〉|l〉 (2.44)
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where the OAM-inverting effect of the reflections can be ignored, for simplicity, as long as
the total number of reflections in the setup is even. Thus the two components of state 2.42 in
the PSI evolve as:

α|H〉| + l〉 + iβ|H〉| − l〉 → αe2iγl|H〉| + l〉 + iβe−2iγl|H〉| − l〉,

α|V〉| + l〉 − iβ|V〉| − l〉 → αe−2iγl|V〉| + l〉 − iβe2iγl|V〉| − l〉.

Setting γ = π/(8l) and applying these transformations to state 2.42, we obtain (up to a global
phase factor) the output state:

α|R〉| + l〉 + β|L〉| − l〉.

By passing through a q-plate with 2q = l, such state is finally transformed in:

(α|L〉 + β|R〉)|0〉o = |φ〉π|0〉o

that completes the transfer.
Since all the intermediate transformation steps are unitary, they are deterministic and

reversible. The inverse process π→ o|l|, is therefore obtained by simply inverting the light
propagation direction through the same components. It is also interesting to note that the
action of the transferrer is not limited to a +l and −l OAM subspace, but it works with any
pair l1, l2 of OAM values. By repeating the analysis above, one finds that the transfer is
ensured as long as the following general condition on the DP angle is satisfied:

γ =
π

4(l1 − l2)
. (2.45)

2.4.2 Experimental realization

The photon source described in the next subsection has provided the input photon states for
all the experiments realized in this thesis project. The description of the photon source will
be then omitted in all the following chapters.

Entangled photon source

The optical source (see Fig.2.13) for the transferrer experiment is based on a non-linear
effect known as Spontaneous parametric down conversion (SPDC) which allows to generate
couples of entangled photons [125]. More in detail, a Ti:Sa mode-locked laser generates
pulses of ∆t = 120 f s with repetition rate of 76 MHz and wavelength λ = 795 nm which
are doubled in frequency via a second harmonic generation process to obtain a pump beam
of power P = 700 mW and λ = 397.5 nm. The pump beam is then focused onto a beta-
barium-borate crystal (BBO) of length l = 1.5 mm where a type-II SPDC takes place. The
output photons are then filtered in frequency with a ∆λ = 3 nm filter (IF) and coupled in
single-mode fibers which act as a passing filter for the m = 0 OAM mode. As a result we
have two output photons in the Bell singlet state:

|ψ−〉 =
1
√

2
(|H, 0〉A|V, 0〉B − |V, 0〉A|H, 0〉B) (2.46)

which is generated with a mean fidelity of 99% and which is an optimal starting point for
polarization and OAM based experiment. The Bell basis can be completed by generating
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Figure 2.13. Optical source for the generation of coupled photons in the singlet Bell state:
Laser light generated by a Ti:Sa laser is doubled in frequency by a second harmonic generation
process in the non-linear crystal (SH). The second harmonic light is then sent through a beta-barium-
borate (BBO) crystal where spontaneous parametric down conversion takes place. The two resulting
photons are then filtered in frequency by filters (IF) and coupled to single mode fibers. The resulting
state is a two photon Bell state |ψ−〉.

states |ψ+〉, |φ−〉, |φ+〉 which can be obtained by applying to |ψ+〉 a suitable operator that is
easily realized by exploiting the action of birefringent waveplates on one of the photons.

|ψ+〉 = σB
z |ψ
−〉 = HWPB

0 |ψ
−〉 (2.47)

|φ−〉 = σB
x |ψ
−〉 = HWPB

π/4|ψ
−〉 (2.48)

|φ+〉 = σB
y |ψ
−〉 = HWPB

0 HWPB
π/4|ψ

−〉 (2.49)

where HWPB
x indicates a half wave plate acting on photon B and whose optical axis is

rotated of an angle x respect to the direction of horizontal polarization. Although these
states are two photon entangled states, single photon experiment can be easily performed
by exploiting one of the photons as a trigger (heralded photon configuration). Moreover,
since the orbital angular momentum of both photons in initialized to l = 0 by single mode
fibers, such a state is a perfect starting point for OAM generation and manipulation through
devices like q-plates and spatial light modulators.

Transferrer setup

The experimental setup we used for demonstrating the deterministic o2 → π transfer
process can be divided in three sections: (i) encoding of the input OAM qubit, (ii) quantum
transferrer, and (iii) output state analysis (see Fig.2.14).

(i) One of the two entangled photons is sent to a detector and acts as a trigger while
the other one is sent to the setup in Fig.2.14. A polarizing beam-splitter (PBS) projects
the photon onto the state |H〉π. A quarter waveplate (QWP) and a half-waveplate (HWP)
are then used for encoding an arbitrary qubit α|H〉π + β|V〉π in the polarization degree of
freedom of the photon. Finally, this qubit is converted into a OAM-encoded one using
the π → o2 probabilistic transferrer, as described in [151, 152]. For this step we used
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a q-plate with q = 1 combined with a PBS, providing conversion into the photon state
|φ〉o2 = α|+ 2〉+β| −2〉 with a probability p = 0.5. This completes the input state preparation
stage of our apparatus (generation box in Fig.2.14).

Figure 2.14. Experimental setup adopted for the implementation of the deterministic quantum
transferrer o2 → π. The input photon is prepared by a probabilistic transferrer (π → o2) (first
two waveplates, QP1 and PBS) into an arbitrary o2 state with polarization H. After the generation
stage, the deterministic transfer (o2 → π) is obtained through the PSI and the QP2 . The outgoing
polarization state is analyzed in the last part of the setup (waveplates, PBS, detectors D1 and D2). C
is a phase compensation stage to correct all the unwanted phase shifts introduced by the setup.

(ii) The input qubit |φ〉o2 = α| + 2〉 + β| − 2〉 is set by a HWP to polarization state |A〉
and then injected in the PSI. The first PBS of the Sagnac interferometer splits the two
polarizations in two opposite directions within the PSI, both passing through a DP rotated
at angle γ = π

16 . The state is then sent through a q-plate (QP2), which transforms the input
state to α|L〉 + β|R〉 = |ϕ〉π with l = 0. Thus the information initially encoded in the OAM
has been transferred to the polarization degree of freedom.

(iii) At this stage the polarization qubit can be measured by a standard analysis setup
which consists of birefringent waveplates and a polarizing beam splitter, which form the
final section of our apparatus. The transmitted and reflected photons from the PBS are
coupled to single mode fibers and detected by single photon counter modules D1 and D2.
In order to perform a full qubit tomography, the output of the deterministic transferrer has
been analyzed in the three polarization bases {|R〉, |L〉}, {|H〉, |V〉}, {|A〉, |D〉}, recording the
coincidence counts between detectors [D1,DT ] and [D2,DT ] where DT refers to trigger
detector.

The transferrer has been testes for all the states belonging to the three mutually un-
biased bases spanning the bidimensional OAM subspace with |l| = 2 (o2): {| + 2〉, | −
2〉}, {|h〉, |v〉}, {|a〉, |d〉}, where, analogously to the polarization case, we define linear super-
positions of | + 2〉 and | − 2〉 as |h〉 = 1√

2
(| + 2〉 + | − 2〉), |v〉 = 1

i
√

2
(| + 2〉 − | − 2〉) and

|a〉 = 1√
2
(|h〉 + |v〉), |d〉 = 1√

2
(|h〉 − |v〉).

The overlap between the input OAM qubit and the polarization output one after the
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transferrer has been estimated through the fidelity parameter F =
Cψ

Ctot
where Cψ is the

number of photon counts recorderd when the state |ψ〉 is projected over itself and Ctot is the
total number of coincidences in the base {|ψ〉, |ψ⊥〉}. All results are summarized in Table
2.1, showing that very good values of transfer fidelity are obtained. All the errors have been
estimated by considering a Poissonian statistics for the photon counts.
Although ideally the probability of success for the transfer is p = 1, the actual value is

State Fidelity
| + 2〉 (0.994 ± 0.003)
| − 2〉 (0.992 ± 0.003)
|h〉 (0.982 ± 0.005)
|v〉 (0.944 ± 0.008)
|a〉 (0.992 ± 0.003)
|d〉 (0.980 ± 0.005)

Average value (0.980 ± 0.002)

Table 2.1. Experimental fidelity of the qubit transfer.

limited by standard optical losses in the optical components (mainly reflections, plus a little
scattering and absorption) and by the final single-mode fiber coupling step that we used for
experimental convenience and for mode purification, thus leading to an overall efficiency
of 0.324. This value is three times larger than the one achieved with the probabilistic
device [152]. The obtained improvement is attributed to the adoption of the deterministic
scheme based on the Sagnac interferometer, to more efficient q-plates and to a better mode
conversion exemplified by a higher single-mode coupling efficiency (compared to the one
measured with previous q-plates) equal to 0.30. As further improvements the reflection
losses could be reduced by adopting anti-reflection coating (in particular the q-plates are
currently uncoated). Finally we note the single-mode fiber coupling (currently 0.5), although
convenient for further processing of the output photons, is not a strictly required step.

The deterministic transferrer can be exploited in order to encode two qubits in a single
photon. Indeed, if a qubit is encoded for instance in the π space, a second qubit can be added
in the π space, once that the π → o|l| transfer has been completed for the first one. These
two qubits can then be decoded by exploiting another transferrer to perform the

o|l| → π

transfer on the first qubit, once that the second one has been measured with standard
polarization analysis setup. This feature makes the deterministic transferrer a useful resource
for hybrid ququart analysis as we will se in Chapter 5.





Chapter 3

Alignment-free quantum
communication

In this chapter we present a work in which the properties of hybrid qudits are exploited to
realize quantum communication (QC) when the two users are lacking a shared reference
frame. In particular we experimentally show that, by identifying a proper subspace of a
four-dimensional space obtained by combining polarization and OAM, it is possible to
perform quantum communication protocols and violate CHSH inequalities without any
information about the reference frame orientation of the two parties (except the direction
of propagation of the photons). Such feature allows to overcome a main obstacle to long
distance free-space communication and could find application for instance in satellite based
communication schemes.

The obtained results have been published in [V. D’Ambrosio, E. Nagali, S. P. Walborn,
L. Aolita, S. Slussarenko, L. Marrucci, F. Sciarrino, Complete experimental toolbox for
alignment-free quantum communication, Nature Communications 3, 961 (2012)].

3.1 The problem of reference frame

Photonic free-space quantum communication has been demonstrated for distances of hun-
dreds of kilometers [200], a progress that could lead to satellite-based long-distance QC
[176, 14, 203, 36]. However, standard approaches to QC, for example based on encoding
qubits into the polarization of photons, require that all users involved have knowledge of
a shared reference frame (SRF). For instance, in the bipartite scenario, the emitter and
receiver, conventionally called Alice and Bob, must initially align their local horizontal (H)
and vertical (V) transverse axes, and then keep them aligned throughout the transmission
(see Fig. 3.1 a). This in turn requires the exchange of a large (strictly speaking, infinite)
amount of classical information, a technically demanding overhead that can impose very
serious obstacles [167, 20]. Particularly dramatic are the situations where the users are
very far apart from each other, the misalignment between their frames varies in time, or
the number of users is large. In general, the lack of a SRF inhibits faithful QC because it
is equivalent to an unknown relative rotation, therefore introducing noise into the quantum
channel [20].

A possible solution to this problem is to exploit multi-qubit entangled states that are
invariant under single-qubit rotations acting collectively on all the qubits (see [205, 34, 37]
and references therein). These constitute particular instances of decoherence-free subspaces,

35
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originally introduced in the context of fault-tolerant quantum computing [161, 214, 135].
The idea is thus to encode logical qubits into rotationally invariant states of multiple physical
qubits. These can in principle be realized with multiple photons [205, 34, 37]. However,
the efficient production and detection of multi-photon states is a technological challenge,
they are more susceptible to losses, and the requirement that multiple photons are subject to
exactly the same rotation is very seldom perfectly satisfied.

A more efficient way to circumvent misalignments is based on single photon hybrid
ququarts encoded in polarization and the OAM as will be clear in the next section.
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Figure 3.1. Rotational invariant single-photon qubits. a) A faithful free-space quantum commu-
nication between two users (Alice and Bob here depicted as satellites) needs in general a shared
reference frame. When the information is encoded into polarization of single photons, such reference
frame is represented by the relative orientation between horizontal (H) and vertical (V) axes of
the two users. Alice and Bob need to carefully control their mutual orientation in order to avoid
decoherence in the communication channel is induced by misalignment. b) Qubits can be equiv-
alently encoded in both polarization and transverse modes: H/V denote horizontal/vertical linear
polarizations, L/R left/right circular polarizations, h/v horizontal/vertical first-order Hermite-Gauss
modes, and l/r left- and right-handed first-order Laguerre-Gauss modes. The L/R polarizations are
eigenstates with eigenvalues ±~ of the spin angular momentum (SAM), whereas the l/r modes are the
equivalent eigenstates of the orbital angular momentum (OAM). c) By combining SAM and OAM
eigenstates of opposite handedness, two null-eigenvalue eigenstates of the total angular momentum
arise. Both these hybrid states are invariant under rotations around the propagation axis, and can
therefore encode misalignment-immune logical qubit states, called 0L and 1L.

3.2 Hybrid Rotational Invariant Qubits

In order to understand how a subspace of a ququart space can be rotational invariant, let
us consider again Alice and Bob encoding qubits in photon polarization and an arbitrary
misalignment R[θ] between their reference frames given by a physical rotation of an angle θ
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along the propagation axis. Given R[θ] in the basis {|H〉, |V〉} as:

R[θ] =

(
Cos(θ) S in(θ)
−S in(θ) Cos(θ)

)
(3.1)

every polarization qubit will undergo the following transformation (written for simplicity in
the circular polarization basis):

R[θ]|L〉 = eiθ|L〉

R[θ]|R〉 = e−iθ|R〉 (3.2)

which shows how the rotation R[θ] corresponds to noise (in this case a phase shift) in the
communication channel.

Let us now consider the effect of the same rotation R[θ] on OAM eigenstates. These
eigenstates are characterized by an azimuthal phase dependence of eimφ, hence they will
undergo the following transformation:

R[θ]|m〉 = eimθ|m〉 (3.3)

We can exploit such effect to realize rotational invariant qubits by restricting our attention
to the OAM subspace with m = ±1 and properly combine together polarization and OAM.
From now until the end of the chapter we will rename these OAM eigenstates as: | + 1〉 = |l〉
and | − 1〉 = |r〉 in analogy with polarization eigenstates. The rotational invariant logical
basis will be:

|0〉L = |L〉|r〉

|1〉L = |R〉|l〉 (3.4)

Indeed any rotation R[θ] will leave such states unaffected since the phase shift related to the
polarization state will be exactly cancelled out by the phase shift of the OAM eigenstate, no
matter what the angle θ is. This logical basis is a decoherence free subspace of the particular
ququart space obtained from the tensor product of polarization and bidimensional OAM
subspace with m = ±1. Because of linearity, any coherent superposition (or incoherent
mixture) of the two logical states, i.e. the entire logical subspace, is also immune to all
possible reference frame misalignments during the entire QC session.

3.3 Experimental implementation

The experimental setup used to encode and decode arbitrary hybrid qubit states in the logical
basis is shown in Fig. 3.2. Polarization qubits are encoded in single photons generated by
SPDC (see section 2.4.2) which are then sent to a tuned q-plate with topological charge
q = 1/2 to convert polarization qubit into rotational invariant qubit. Indeed such q-plate
gives rise to the following transformations:

|R〉π|0〉oam
q−plate
−→ |L〉π|r〉oam = |0〉L

|L〉π|0〉oam
q−plate
−→ |R〉π|l〉oam = |1〉L, (3.5)

where |0〉oam denotes a zero OAM state, such as the TEM00. Consider then a generic
polarization-encoded qubit |ψ〉π = α|R〉π + β|L〉π prepared in the TEM00 spatial mode. From
transformations (3.5), sending the qubit through the q-plate yields

|ψ〉π|0〉oam
q−plate
−→ α|0〉L + β|1〉L = |ψ〉L. (3.6)
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That is, the qubit is now encoded into the desired rotationally invariant space spanned by
logical basis (3.4). Remarkably, the same q-plate device works also as a universal decoder,
transferring generic rotationally invariant qubits to their polarization-encoded counterparts.
Explicitly, by injecting |ψ〉L into the q-plate, one obtains

|ψ〉L
q−plate
−→ (α|R〉π + β|L〉π)|0〉oam = |ψ〉π|0〉oam, (3.7)

which can then be coupled into a single mode fiber and analyzed in polarization using
standard methods. The measurement device is sketched in Fig. 3.2b. Notice that, again from
the linearity of quantum mechanics, the encoding and decoding transformations (3.6) and
(3.7) hold even if the polarization state is part of some larger entangled state. In addition,
an outstanding feature of the q-plate is that it realizes the polarization-transverse-mode
coupling in a single compact device that requires no interferometric stability, therefore
providing the scheme with a built-in robustness. Finally, to perform arbitrary rotations of the
reference frames of Alice and Bob, we developed an analysis stage which is able to rotate
along light propagation axis. Hence we mounted the q-plate, waveplates, PBS, and optical
fiber couplers in a compact and robust rotating detection stage Fig. 3.2b,c.

Our first step was to experimentally verify that the encoding/decoding apparatus works
properly in the case of stationary aligned reference frames. We prepared the input photon in
one of the polarization states |H〉, |V〉, |R〉, |L〉, or |±〉 = (|H〉 ± |V〉)/

√
2. The qubit was then

mapped by a first QP into the rotationally invariant encoding, transmitted through free space
to the measurement stage, then decoded back to polarization by a second QP, and finally
analyzed in polarization using a set of waveplates and a polarizing beam splitter (PBS).
The average measured fidelity with the input states was F = (98 ± 1)%, indicating that the
devices work near perfectly.

In order to prove that our logical encoding is really invariant under rotations we per-
formed three different experiments: a feasibility-demonstration of BB84-key distribution
protocol, distribution of entanglement, and violation of CHSH inequality.

3.3.1 Alignment-free quantum key distribution.

As a first test we demonstrated the feasibility of quantum key distribution in alignment-free
settings by measuring the communication fidelity for different angles of the rotating analysis
stage both by adopting hybrid encoding and, for comparison, polarization encoding. By
using heralded single photons, and for different angles θ, we encoded, transmitted, and
decoded, the four hybrid-qubit states required for the BB84 QKD protocol [29]: |0〉L, |1〉L,
and |±〉L = (|0〉L± |1〉L)/

√
2. We quantified the potential of our setup for QKD by measuring

the fidelities of the states prepared as well as the qubit error rates (QBERs) [186] ε0L/1L

and ε+L/−L for the logical bases {|0〉L, |1〉L} and {|+〉L, |−〉L}, respectively. The experimental
results are reported in Fig. 3.3a,b.

In particular, Figure 3.3a shows that the average fidelity FQKD over the four states, as a
function of θ is constantly above the value FT = 89% which corresponds to the well-known
Shor-Preskill security proof threshold[187]. Above this, under the usual assumptions that
Alice’s source emits (logical) qubits, Bob’s detectors perform (logical) qubit measurements,
and there is no basis-dependent flaw in Alice’s and Bob’s systems[100], unconditional
security can be guaranteed. In contrast, the fidelity attained using polarization-encoded
qubits falls below the security bound for angles θ > 20◦, even in the ideal noiseless case
(blue dashed line). Fig. 3.3b in turn shows the fidelity for each state, obtained by uniformly
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Figure 3.2. Toolbox for experimental alignment-free quantum communication. a) Experimen-
tal setup, in the configuration used to generate entangled rotationally invariant photon pairs and
perform a misalignment-immune demonstration of non-locality. Reference-frame misalignments
are implemented by physically rotating Alice’s entire measurement station around the optical axis
by an angle θ. For the alignment-free BB84 QKD test, the entangled-photon source together with
Bob’s measurement station is taken as the transmitting party, and Bob’s photon is used to herald
the transmission of the other photon to Alice. b) Schematics of the rotating device for measuring
rotationally invariant qubits in arbitrary reference frames. c) Photo of the actual measurement device.
Legend: QP - q-plate; BBO - β-barium borate crystal; C walk-off compensation crystals; SM -
single-mode fibers; D - single photon detectors; HWP - half-wave plate; QWP - quarter-wave plate;
PBS - polarizing beam-splitter.

mixing the data over all measured angles θ. Again, all the individual-state fidelities are
consistently larger than the security threshold. Indeed, the measured QBERs, estimated as
QBER = 1 − F, were ε0L/1L = (0.65 ± 0.09)% and ε+L/−L = (4.1 ± 0.2)%, from which we
expect a secret-key fraction r = (70 ± 1)% [186].

3.3.2 Alignment-free entanglement distribution

As a second test we checked entanglement distribution between two parties with misaligned
reference frames. We prepared a photon pair in the polarization entangled state

|φ−〉AB
π =

1
√

2
(|R〉Aπ |R〉

B
π − |L〉

A
π |L〉

B
π ) (3.8)

where the superscripts A and B refer to Alice’s and Bob’s photons, respectively. Then,
following the experimental scheme in Fig. 3.2, the photons were coupled into single mode
fibers and sent through a q-plate at the output of each fiber in order to transforms the
polarization-entangled state to the rotationally invariant entangled state:

|φ−〉AB
π

q−plates
−→ 1√

2
(|0〉AL |0〉

B
L − |1〉

A
L |1〉

B
L) = |φ−〉AB

L . (3.9)

We then performed quantum state tomography of the experimental density matrix ρAB
L

measured without misalignment (θ = 0).The real part of the tomographically reconstructed
matrix, in the basis {|0〉AL |0〉

B
L, |0〉

A
L |1〉

B
L, |1〉

A
L |0〉

B
L, |1〉

A
L |1〉

B
L}, is shown in Fig. 3.4a. The

fidelity with the experimental polarization entangled state ρAB
π input to the encoder is

F0(ρAB
L , ρAB

π ) = (93 ± 1)%, while the entanglement of ρAB
L , as given by the concurrence,

is C = (0.85 ± 0.03). In order to verify the rotational invariance of the state produced,
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Figure 3.3. Experimental results of alignment-free quantum communication tests. Measured
fidelity of qubits encoded in the rotationally invariant polarization-OAM space, in a test of the BB84
quantum key distribution protocol, compared to that of standard polarization-encoded qubits. Panel
(a) shows the fidelity FQKD (black square dots) averaged over the four hybrid qubit states used in the
protocol, as a function of the misalignment angle θ between the transmission and detection reference
frames. Panel (b) shows the individual fidelity of each of the four states (green bars) observed over
the whole QC session including all the different rotation angles probed. The latter accounts for the
general situation where the misalignment could vary randomly between transmitted photons. In both
panels, the blue dots/bars and dashed lines give respectively the measured and theoretically-calculated
fidelity for the standard case of polarization encoding. The red line delineates the QKD security
threshold. In all data points, the error bars resulting from Poissonian statistics are smaller than the
symbols.

we repeated the tomographic reconstruction with Alice’s measurement stage rotated by
θ = 45◦. The corresponding reconstruction is shown in Fig. 3.4b. The fidelity with ρAB

π is
F45(ρAB

L , ρAB
π ) = (96 ± 1)%, and the concurrence is C = (0.84 ± 0.03), consistent with the

case θ = 0. This indicates that our entanglement distribution scheme is immune to relative
misalignments of Alice and Bob.

3.3.3 Alignment-free quantum non-locality

Once verified entanglement distribution, the next step has been to perform a non-locality
test with hybrid rotational invariant qubits. Hence we verified a violation of the CHSH
inequality S = |E(a0, b0) + E(a1, b0) + E(a0, b1) − E(a1, b1)| ≤ 2 in an alignment-free
setting. Where ax and by, with possible values 0 or 1, are the outcomes of Alice’s and Bob’s
measurement settings x and y, respectively, with x and y equal to 0 or 1. and correlators
E(ax, by) = 〈(−1)ax+by〉, with 〈〉 the statistical average, quantify the fraction of events where
Alice’s and Bob’s outcomes are observed to coincide. For the rotationally invariant quantum
violation of the inequality we chose the following hybrid measurement bases: {|0〉L, |1〉L}
and {|+〉L, |−〉L}, corresponding to Alice’s settings x = 0 and x = 1, respectively, and
{cos π

8 |0〉L + sin π
8 |1〉L, − sin π

8 |0〉L + cos π
8 |1〉L} and {sin π

8 |0〉L + cos π
8 |1〉L, − cos π

8 |0〉L +

sin π
8 |1〉L}, corresponding to Bob’s settings y = 0 and y = 1, respectively. Fig. 3.4c reports

the measured CHSH parameter S versus the rotation angle θ of Alice’s measurement frame.
The figure shows that the local-hidden-variable bound is violated for all angles, in striking
contrast with the experimental polarization state ρAB

π (blue circles), or even with the ideal
maximally-entangled polarization state |φ−〉AB

π (blue dashed line). For the logically-encoded
states, we mixed the data of all different values of θ to test the violation’s immunity to
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arbitrarily-varying frame orientation, obtaining a value of S = (2.47 ± 0.01) > 2.

Figure 3.4. Experimental results of alignment-free quantum communication tests. a-b) Quan-
tum state tomography of the entangled state of hybrid qubits distributed between Alice and Bob,
for the case of aligned reference frames (a) and for a misalignment of θ = 45◦ (b). In both cases,
only the real part of the density matrices is shown, as the imaginary part is negligible. c) CHSH
parameter S (black squares) in experimental non-locality tests on photon pairs entangled in the
rotationally invariant qubit space, as a function of the relative misalignment θ between Alice’s and
Bob’s frames. The red line is the local-hidden-variable bound. The blue dots represent the measured
values of S for the bare polarization-entangled states without the logical protection. Whereas the
blue dashed line is the theoretically-calculated maximal CHSH parameter that would be obtained
with pure maximally-entangled polarization states. The black dot-dashed line in turn represents the
overall CHSH value S of the entire test taking into account all the experimental runs with different θ.
In all data points, the error bars resulting from Poissonian statistics are smaller than the symbols.

3.4 Robustness of rotational-invariant hybrid qubits.

All the previous results demonstrate a way to overcome the need of a shared reference frame
for quantum communication. However, any realistic long-distance communication scenario
has to take into account also perturbations in the communication channel which can be
introduced by an obstacle along the way or by atmospheric turbulences.

A remarkable feature of our polarization-OAM hybrid-encoding QC scheme is that it
turns out to be robust against the spatial-mode perturbations arising in beam misalignments
around axes other than the optical one and atmospheric turbulence effects. Such robustness
appears at first glance counterintuitive, since the encoding involves the use of orbital angular
momentum, which is quite sensitive to all the above-mentioned spatial perturbations[162, 94]
(although significant progresses in pure OAM-based classical and quantum communication
through the atmosphere have been recently reported[75, 216, 174]). The main reason of
such robustness is that the OAM spread induced by spatial-mode perturbations is neutralized
by the polarization degree of freedom, which is in contrast very robust against those spatial-
mode perturbations. This allows one to filter out, in the receiving unit, most components of
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the state that would otherwise decrease the fidelities. That is, the particular decoding setup
used intrinsically implements an effective quantum error-correction procedure that discards
(but does not correct) all states outside the logical subspace.

Indeed, spatial-mode perturbations will alter a generic hybrid qubit α|R〉π|l〉oam+β|L〉π|r〉oam,
transforming it into the following state:∑

m

[C+1,mα|R〉π|m〉oam + C−1,mβ|L〉π|m〉oam], (3.10)

where |m〉oam is a generic OAM eigenstate and Cm,m′ are the probability amplitudes for
the photon OAM to be shifted from m~ to m′~, due to the perturbation. However, in the
decoding unit, the photon undergoes another q-plate transformation

q−plate
−→

∑
m

[C+1,mα|L〉π|m − 1〉oam + C−1,mβ|R〉π|m + 1〉oam], (3.11)

followed by a projection onto an m = 0 Gaussian spatial mode (e.g., by coupling it into a
single-mode fiber), which leads to the following final state:

[C+1,+1α|L〉π + C−1,−1β|R〉π]|0〉oam. (3.12)

Therefore, if the spatial-mode perturbation satisfies the condition

C+1,+1 = C−1,−1, (3.13)

the final polarization-encoded qubit will be identical to the initial one, except for a global
phase and amplitude, and the communication fidelity will be preserved.

In particular, every beam transformation that is mirror-symmetric with respect to a plane
containing the initial beam axis will be symmetrical in the sign of OAM and hence will
satisfy Eq. (3.13). For example, beam parallel displacements, tilts, elliptical deformations,
or aperturings with a circular iris (even if off center) or a half-plane mask (knife-edge), all
have this symmetry. An axial misalignment, i.e. a misalignment around an axis other than
the optical one, between the transmitting and receiving communication units is equivalent
to a beam translation and/or tilt, with both contained in the same plane, and can be treated
analogously. Only symmetry-breaking combinations of two or more of the above effects
may affect the fidelity. For example, a beam tilt combined with a beam displacement along
a different plane will break the mirror symmetry and hence might introduce some degree of
qubit alteration. Also, the main optical effects arising from atmospheric turbulence, such as
beam wandering and spreading are mirror-symmetric, so that the extent of qubit alteration is
expected to be much less significant in our communication scheme than in the case of pure
OAM communication.

Another important class of transformations which satisfies Eq. (3.13) is that mathemati-
cally defined by pure multiplicative factors acting on the optical field, e.g. the transformations
arising from crossing any arbitrary inhomogeneous medium that is thin as compared with
the Rayleigh length. It is easy to verify that these will be described by coefficients Cm,m′

which depend on the difference m − m′ and on the absolute values |m| and |m′|, so that Eq.
(3.13) is automatically satisfied. Weak turbulence, introducing only pure phase wavefront
distortions, falls within this class of transformations and is therefore predicted to leave the
qubit fidelity intact[162]. If we now consider the fact that light propagation in homogeneous
media leaves the various OAM components constant, we conclude that Eq. (3.13) is satisfied
even if the turbulent medium is followed and/or preceded by a long-distance free-space
propagation, as in the case of earth to satellite (and vice versa) communication through the
atmosphere.
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Figure 3.5. Experimental setup adopted for the tests on the resistance of the rotational invariant
hybrid photonic qubits to spatial-mode perturbations. In the schematics, we reported both the
circular aperture (pinhole) and the half-plane obstruction (a movable knife-edge) that can alter the
transmission of the qubits. Displaced beam is represented by a dashed red arrow.

3.4.1 Experimental tests of rotational-invariant qubit robustness.

As a first test of hybrid qubits robustness, we considered transmission through two types of
transverse apertures: a half-plane movable obstruction (knife) covering a variable fraction
of the transverse mode, and an iris (or pinhole) with variable radius. We have measured
the state transmission fidelity F for different input states, at both aligned and 45◦-rotated
measurement stages, with respect to the transmitting unit, and for an increasing disturbance
due to the obstruction. The experimental setup used for this test is illustrated in Fig. 3.5.

We encoded different polarization qubits using two waveplates and mapped them into
the hybrid encoding using a q-plate. For the purpose of comparison, we also switched to
a pure-OAM encoding by inserting a fixed linear polarizer after the q-plate, so as to erase
the polarization content of the qubit. Then the photon was sent through the obstruction and
to the receiving unit, and the communication fidelity was measured as a function of the
obstuction transmittance, by varying the aperture of the pinhole or the transverse position
of the knife. Thus, the lowest transmittivity corresponds to a tiny aperture of the pinhole
(0.2 times the beam size), or to the almost complete coverage of the beam. All reported
experimental fidelities were obtained by averaging over the six eigenstates of three mutually
unbiased bases, therefore providing a good representative of the average fidelity over any
input qubit state. The experimental results are reported in Fig. 3.6.

It is seen that the average fidelity of hybrid qubits is independent both of the transmittivity
of the aperture and of the rotation angle of the measurement kit, with a global average of
F = (98 ± 1)% for the case of iris and F = (96 ± 1)% for the knife. Moreover, in the former
case the fidelity is not affected by the displacement of the pinhole off the beam axis. For
comparison, we tested the resistance of qubits encoded only in the two-dimensional OAM
subspace o1 = {| + 1〉, | − 1〉}, i.e., the same subspace used for the hybrid encoding. In this
case, the fidelity remains high (F = (97 ± 1)%) only when the cylindrical symmetry of the
modes is not perturbed, as for the centered iris, while for all other cases (non-centered iris or
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Figure 3.6. Experimental data showing the resistance of rotational invariant hybrid qubits to beam
perturbations, compared with the case of pure OAM qubits. Left panel refers to the case of circular
aperture. Average fidelity of pure OAM qubits (black squares), hybrid qubits for a measurement
stage rotated at an angle θ = 0◦ (green triangle) and at an angle θ = 45◦ (red circles) with respect
to the transmitting unit. The blue triangles refer to the pure OAM qubits case, when the circular
aperture is displaced off the beam axis by 5% of the beam waist (the hybrid qubit behavior in the
latter case was essentially indistinguishable from the centered aperture case). The transmission
efficiency is determined by single-mode (SM) fiber-coupling efficiency after a circular aperture of
varying radius, in the case of hybrid qubits only. Right panel refers to half-plane aperture. Average
fidelities for hybrid qubits at θ = 0◦ (green triangle) and θ = 45◦ (red circles). Black squares
are the corresponding results for pure OAM qubits. The transmission efficiency is determined by
single-mode (SM) fiber-coupling efficiency after a movable half-plane aperture.
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Figure 3.7. Experimental data showing the resistance of hybrid qubits to a beam displacement,
compared to the case of pure OAM encoding. The beam waist in our experiment is w0 = (1.0 ±
0.1)mm.

knife) the fidelity drops rapidly with decreasing transmission.
As a second test, we performed a communication run while changing the angle of

the measurement kit without reoptimizing the alignment of the single mode fiber. This
corresponds to introducing small uncontrolled tilt and displacements in the beam during the
measurement. We found that the system preserves a good quantum communication fidelity
(i.e. above the security threshold) for rotations up to 30◦. Above this angle it was necessary
to slightly readjust the single-mode fiber alignment in order to restore a high fidelity.

Finally, we tested the communication fidelity dependence on a controlled beam displace-
ment, for two fixed angles of the measurement stage. Fig. 3.7 shows the behavior of the
average communication fidelity as a function of the beam displacement. The hybrid-qubit
fidelity decreases with the displacement, but much slower than that of pure OAM encoding

Conclusions and Perspectives

In this chapter we have shown how to exploit high dimensional quantum systems to overcome
the lack of a shared reference frame in quantum communication. Indeed uncontrolled
reference-frame misalignments limit quantum communication, as they turn the transmitted
quantum messages into noisy, classical ones. We reported the development of a robust
and compact toolbox for the efficient encoding and decoding of quantum information into
single-photon states that are invariant under arbitrary rotations around the optical axis. Such
states belong to a decoherence free subspace of a four dimensional hybrid system. In order
to prove the feasibility of rotational invariant quantum communication we performed a
cryptographic key distribution protocol, distribution of entanglement and the violation of a
Bell inequality, all in alignment-free settings. Our rotational invariant qubits turns out to be
also robust against misalignments around other directions than propagation axis, atmospheric
turbulences and partial obstructions. This is due to a filtering mechanism intrinsic to our
universal-decoder set-up, which maps errors originating from beam rotations around axes
other than the optical link, as well as other spatial perturbations, into signal losses instead
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of infidelity. Such preliminary result is the first step of a deeper study on resilience to
turbulences for hybrid qubits which could be an interesting near future research topic since
these features make the misalignment-free scheme here presented a possible resource for
long distance satellite quantum communication.



Chapter 4

Photonic polarization gears for
ultra-sensitive angular
measurements

Following the concept underlying the working principle of rotationa invariant qubits, we
investigated the properties of a particular subset of hybrid (polarization-OAM) ququart states
and their application in metrology. In this chapter, we demonstrate NOON-like photonic
states of m quanta of angular momentum, with m as high as 100, in a setup that acts as
a “photonic gear”, converting, for each photon, a mechanical rotation of angle θ into an
amplified rotation of the optical polarization by the angle mθ. When seen through polarizers,
this leads to a “super-resolving” Malus’ law, exhibiting 2m fringes per turn, instead of the
usual two. Exploiting this effect, we demonstrate single-photon angular measurements
with the same precision as that of the polarization-only quantum strategies with m photons,
but robust to photon losses. Indeed, in this regime every photon is disentangled from all
others and hence the loss of a photon does not affect the overall phase coherence, making
the scheme loss-robust. Moreover, the experimental state production and detection are
exponentially more efficient than for N-photon entangled states.

Although quantum-inspired, our approach is essentially classical, because the enhance-
ment does not come from quantum entanglement but results instead from the rotational
sensitivity of large angular momentum eigenmodes. In fact, our photonic gears can operate
also in the fully classical regime, as described by coherent states. However the photonic
gear is compatible with quantum strategies as we show in the last section of the chapter
where we combine the gear rotational enhancement with the quantum correlation effects of
entangled photons, thus exploiting the advantages of both approaches. The high “gear ratio"
m translates into a similarly high sensitivity enhancement of optical non-contact angular
measurements, boosting the current state-of-the-art by almost two orders of magnitude.

These results have been published in [V. D’Ambrosio, N. Spagnolo, L. Del Re, S. Slus-
sarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita and F. Sciarrino, Photonic
polarization gears for ultra-sensitive angular measurements, Nature Communications 4,
2432 (2013)].

47
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4.1 Photonic gear concept

The key element of our photonic gears are hybrid photon qubits obtained as subspace
of the ququart space spanned by vectors {|L, l〉, |L,−l〉, |R, l〉, |R,−l〉}. As we know, for a
linearly polarized input, the photonic states generated by a q-plate are superpositions of
m = 2q ± 1 quanta in opposite total angular momentum eigenmodes. Although previous
achievements were limited to q-plates with low q (up to 3) [189]. The work here presented
acted as a prompt to produce new family of devices with q ranging up to 50, producing
angular momentum values as large as m = 101. These photonic states can be also classically
visualized as space-variant polarization states [56]. When these SAM-OAM superposition
states are passed through a second q-plate, they are converted back into pure polarization
states with zero OAM and a uniform polarization. However, a relative rotation of the
transmitting and reading stages by a given angle θ is converted into a rotation of the light
optical polarization by the angle mθ, which in our case can be as high as 101θ. It is this
“gear ratio” m that gives rise to the angular sensitivity enhancement.

In the following, we will describe the photonic gears concept by adopting a quantum
language, with the purpose of comparing our sensitivity enhancement with the shot-noise
and Heisenberg limits and to allow an easier generalization to the case in which there is both
a classical and a quantum effect. Let us then consider the scenario where a sender Alice
and a receiver Bob wish to measure a relative misalignment angle θ between their reference
frames around the optical axis (see Fig. 4.1).

Figure 4.1. The measurement scenario A sender Alice prepares and sends to a receiver Bob
photonic probes to measure the relative angle θ between their reference frames.

A classical strategy for this task consists of Alice sending N photons (see Fig. 4.2 (a)),
each one in state |ΨC〉 � |1〉H ≡ 1√

2
(|1〉R + |1〉L), where |n〉x denotes a state of n photons

in mode x, with x = H, R, or L, representing, as usual, photon polarization modes and all
modes in the vacuum state are omitted for brevity. Bob fixes a polarizer in the H direction
in his coordinate system, where the misalignment corresponds to a rotation by −θ of the
photons’ state. In turn, the L and R polarization states are eigenstates of rotation, so that
in Bob’s frame |ΨC〉 becomes |ΨC(θ)〉 = 1√

2
(eiθ|1〉R + e−iθ|1〉L). The conditional probability
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that he detects a photon in the H-polarization (of his reference frame) given that the phase is
θ is given by Malus’ law: pC(H|θ) = cos2 θ. By measuring this probability, Alice and Bob
can estimate θ. To strengthen their statistics, they repeat the procedure ν times, consuming a
total of ν × N photons, and average all the outcomes. Their final statistical error is bounded
as

∆θC ≥
[
2
√
νN

]−1
. (4.1)

The right-hand side is the standard quantum limit, and can always be reached in the asymp-
totic limit of large νN [93]. Our error estimators ∆θ are standard root-mean-squared
variances. In general, for phases, a cyclic error cost-function would be more appropriate, as
for instance the Holevo variance [107]. However, both types of variances coincide in the
small-error limit, so for our purposes the standard variance is adequate.

Using quantum resources, the optimal strategy consists of Alice sending ν probes, each
one composed of the N-photon entangled NOON state |ΨQ〉 = 1√

2
(|N〉R + |N〉L). In Bob’s

frame, this state is expressed as |ΨQ(θ)〉 = 1√
2
(eiNθ|N〉R + e−iNθ|N〉L). The conditional

probability that he detects the unrotated state |ΨQ〉 is pQ(ΨQ|θ) � |〈ΨQ||ΨQ(θ)〉|2 = cos2(Nθ),
which resolves values of θ that are N times smaller than pC(H|θ). Their uncertainty is then
bounded as

∆θQ ≥
[
2
√
νN

]−1
. (4.2)

The right-hand side is now the Heisenberg limit, which can always be reached in the
asymptotic limit of large ν [93].

Figure 4.2. Photonic gear concept. Equivalent interferometric scheme to the measurement scenario
of Figure 4.1. The action of the physical rotation can be schematically represented as an interfer-
ometer, where the two arms correspond to the right- and left-circular components of the photon.
(a) Polarization-only states are used. The physical rotation introduces a relative phase between the
right- and left-circular components of the photon, corresponding to a rotation of the final photon
polarization by the same angle θ. The measurement is repeated ν times, and polarization fringes
pC(π|θ) = cos2 θ are recorded (with π = H,V), from which the angle θ is retrieved with a statistical
error ∆θ (represented as a blurred arrow pointing to a goniometer). (b-c) Hybrid SAM-OAM photon
states are generated by exploiting q-plates [(b) q = 1, (c) q = 10] and are used to estimate the
angle θ. The physical rotation introduces a relative phase between the two components which varies
m = 2q + 1 times faster than the polarization-only case, so that the output photon polarization rotates
m times faster (photonic gear effect). The recorded polarization fringes pC

G(π|θ) after decoding with a
second q-plate now present a periodicity ∝ 1/m, leading to an improved angular sensitivity ∆θ/m.
The intensity (squared blue contour plots) and phase patterns (squared contour plots in false colors)
of the linear and circular polarization components of the employed SAM-OAM states are also shown.

In our photonic gear approach, Alice and Bob exchange photons in SAM-OAM super-
position states [see Fig. 4.2 (b-c)]. Alice initially prepares N horizontally-polarized photons,



50 4. Photonic polarization gears for ultra-sensitive angular measurements

as in the classical strategy. However, before sending them to Bob, she first has them pass
through a q-plate of charge q. The q-plate implements the bidirectional (unitary) mode
transformations {a†R,0 ↔ a†L,−2q, a

†

L,0 ↔ a†R,2q}, where the subscripts 0 and ±2q refer to the

OAM values, and a†
π,l denotes the creation operator of a photon with polarization π and

OAM component l [151]. This results in the following transformation of Alice’s photons:

|1〉H,0
q−plate
−→ 1√

2
(|1〉L,−2q + |1〉R,2q). Next, a half-wave plate (HWP) is used to invert the

polarization, to obtain the transmitted states

|ΨC
G〉 =

1
√

2
(|1〉R,−2q + |1〉L,2q). (4.3)

This single-photon state represents a superposition of m = 2q + 1 quanta in opposite total
(spin + orbital) angular momentum eigenmodes. Likewise, if the HWP is removed, the case
m = 2q − 1 is obtained.

In Bob’s frame, the photons arrive as |ΨC
G(θ)〉 = 1√

2
(eimθ|1〉R,−2q + e−imθ|1〉L,2q). To detect

them, he first undoes Alice’s polarization flip with another HWP, and undoes her OAM
encoding with another q-plate of the same charge q, so that

|ΨC
G(θ)〉 −→

1
√

2
(eimθ|1〉R,0 + e−imθ|1〉L,0). (4.4)

This state corresponds to a uniform linear polarization, but with the polarization direction
forming an angle mθ with respect to Bob’s H axis, resulting in the photonic gear effect.
Finally, Bob measures the probability of detecting the H linear polarization conditioned on
θ as in the classical strategy. This is again given by Malus’ law:

pC
G(H|θ) = cos2(mθ), (4.5)

but shows now the m-fold resolution enhancement over the polarization-only strategy.
As usual, Alice and Bob repeat the procedure a total of ν times. Their statistical error is

now bounded as
∆θC

G ≥
[
2m
√
νN

]−1
, (4.6)

and can always saturate the bound in the asymptotic limit of large νN. This represents an
improvement over the standard limit (4.1) for polarization-only strategies by a factor of m.
This enhancement is not quantum but due exclusively to the coherent rotational sensitivity
of high-order angular momentum eigenmodes (for more details see Appendix A).

Remarkably, already for m >
√

N the scaling (4.6) becomes better than the best preci-
sion (4.2) attainable with polarization-only NOON states. Furthermore, the photonic-gear
strategies, both in the single-photon and classical regimes, greatly outperform the latter
in realistic scenarios with large N. First, the production and detection of our SAM-OAM
photon states is exponentially more efficient in N than those of NOON states. Second, since
state (4.3) does not bear any multi-photon coherences, losses reduce the total number of
photons, but leave the remaining ones unaltered. That is, total losses characterized by an
overall transmissivity 0 ≤ η ≤ 1 enter as a constant multiplicative factor, simply rescaling in
(4.6) the total number of photons to νNη, in striking contrast to NOON states [76]. Further-
more, one could also consider to exploit the orbital angular momentum of light to mimic the
behaviour of other quantum states such us spin-squeezed state, requiring the superposition
of many angular-momentum eigenstates.
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The last type of strategy we consider is a hybrid classical-quantum one, which exploits
both entanglement and high angular momenta through the photonic gear. In its simplest
version, each probe may consist of an N-photon entangled NOON state |ΨQ

G〉 = 1√
2
(|N〉R,−2q +

|N〉L,2q). Following the same steps as above, one finds this time that pQ
G(ΨQ

G|θ) � |〈Ψ
Q
G||Ψ

Q
G(θ)〉|2 =

cos2(mNθ) and

∆θQ
G ≥

[
2m
√
νN

]−1
. (4.7)

Thus, ideally, this strategy features the Heisenberg precision scaling for hybrid SAM-OAM
approaches, but it bears in practice the same loss-sensitivity problems as the polarization-
only quantum strategy. However, for small N, these problems can still be efficiently dealt
with and interesting applications can be achieved, as we demonstrate below.

Moreover, multi-photon quantum states other than NOON states can also be combined
with the photonic gears, obtaining other interesting effects. For example, let us consider
two-photon polarization-entangled states, where one photon is sent to Alice and the other
to Bob. Alice and Bob make local H/V-polarization analysis in their own rotating stages,
which can be set at arbitrary angles θA and θB. When θA = θB = θ the system can model two
photons travelling in the same mode, subject to the same rotation, and hence yield results
analogous to the NOON-state case discussed above for N = 2.

When θA , θB one can instead align two distant frames remotely with two-photon
probes produced by an unrelated common source, which sends one photon to each frame,
by exploiting the quantum correlations among the two photons. More in detail, let us
assume that the photons are generated in the maximally entangled polarization Bell state
|ψ−〉 = 1√

2
(|1〉AR,0|1〉

B
L,0 − |1〉

A
L,0|1〉

B
R,0). The photons, before transmission, are sent through two

q-plates with topological charges qA and qB, respectively, and a HWP, as shown in Fig. 4.7.
Thus, the following state is distributed to Alice and Bob:

|ψ−G〉 =
1
√

2
(|1〉AR,−2qA

|1〉BL,2qB
− |1〉AL,2qA

|1〉BR,−2qB
). (4.8)

Alice and Bob, in their rotated frames, apply the same transformations to the photons, thus
converting them back to pure polarization states. The probability that Alice and Bob both
detect H-polarized photons in their local frames is then pψ−G (HH|θAθB) = 1

2 sin2[(2qA +

1)θA − (2qB + 1)θB], showing “amplified” polarization correlations. Choosing qA = qB,
one can for example use these correlations (in combination with classical communication
channels) to precisely estimate the relative misalignment θA − θB and remotely align the
two distant frames. If a HWP with the optical axis parallel to H is now inserted in Bob’s
photon path after generation of the polarization-entangled state (which corresponds to
acting with a σx Pauli operator in the R/L basis), one obtains the entangled state |φ−G〉 =

1√
2
(|1〉AL,2qA

|1〉BL,2qB
− |1〉AR,−2qA

|1〉BR,−2qB
), instead of |ψ−G〉. Alice’s and Bob’s HH-photon

correlations have now probability pφ
−

G (HH|θAθB) = 1
2 sin2[(2qA + 1)θA + (2qB + 1)θB]. So,

in this case, for θA = θB = θ, the system is metrologically equivalent to NOON state
probes |ΨQ

G〉 for N = 2 and m =
mA+mB

2 = qA + qB + 1. In particular, for N = 2 photons,
θ can be estimated from the HH-correlation measurements with just half the efficiency as
from pQ

G(ΨQ
G|θ), which would require two-photon interference detection. Full efficiency

in the estimation process can be recovered by simply registering and considering the four
possible two-photon polarization-correlations (HH,HV,VH,VV), which requires no extra
measurements. The same result can be generalized to N-photon entangled states.
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4.2 Experimental results

Our theoretical predictions were experimentally tested by exploiting a series of q-plates with
increasing charge q. We focus first on the single-photon regime. The experimental setup is
shown in Fig. 4.3.

Figure 4.3. Experimental setup In the single-photon regime, Alice uses photons generated by a
parametric down-conversion heralded source. In the classical regime, Alice uses coherent laser
pulses. The quantum regime, in turn, uses entangled photons and is described in Fig. 4.7. Bob’s
detection apparatus is mounted in a compact and robust stage which can be freely rotated around
the light propagation axis [70]. Legend: QWP - quarter-wave plate, HWP - half-wave plate, PBS -
polarizing beam-splitter, APD - fiber-coupled single-photon detector.

Figures 4.4 shows the polarization fringes obtained for several values of q, corresponding
to the “super-resolving” Malus’ law (4.5). The red curves correspond to the polarization-
only approach (q = 0), shown for comparison. The oscillation frequency ∝ m = (2q ± 1)
highlights the improving angular resolution for increasing q.

Experimental imperfections lead to a non-unitary fringe visibility. As shown in Appendix
A the loss of visibility increases the statistical error as:

∆θm ≥
[
2mVm

√
ηm
√
νN

]−1
= ∆θm

min, (4.9)

where Vm is the visibility of the oscillation pattern and ηm the efficiency of the detection
system. In our case, all curves show a visibility greater than 0.73. As a figure of merit
for the enhancement in precision, we consider the ratio between the statistical error of the
polarization-only strategy and of the photonic gear: ∆θ0/∆θm ∝ mVm

√
ηm/η0. Figures 4.5

(a) and (b) show ∆θ0/∆θm as a function of m obtained from the interference curves. We
obtain a maximum enhancement over the polarization-only strategy by ≈ 55. To obtain
the same precision ∆θ with the polarization-only strategy, one would have to increase the
number of trials by a factor of 552 = 3025, while for the quantum NOON-state strategy,
one would require entangled states of N ≈ 55 photons each. As shown in Figure 4.5 (c)-(d),
our estimation protocol gives an estimate θ which converges to the true value θ in a limited
number of trials ν ∼ 300, where ν is the number of single photons sent through the system. It
is possible to show that a three-step adaptive protocol permits an efficient and unambiguous



4.2 Experimental results 53

(a) (b)

theory theoryexperiment experiment

(e)

theory experiment

(d)

theory experiment

(c)

theory experiment

20 40 60 80 Θ !°"0.2
0.4
0.6
0.8
1.0

20 40 60 80 Θ !°"0.2
0.4
0.6
0.8
1.0

20 40 60 80 Θ !°"0.2
0.4
0.6
0.8
1.0

pC
G(π|θ) pC

G(π|θ) pC
G(π|θ)

20 40 60 80 Θ !°"0.2
0.4
0.6
0.8
1.0

20 40 60 80 Θ !°"0.2
0.4
0.6
0.8
1.0

pC
G(π|θ) pC

G(π|θ)

20 40 60 80 Θ !°"0.2
0.4
0.6
0.8
1.0
pC
G(π|θ)

20 40 60 80 Θ!°"0.2
0.4
0.6
0.8
1.0
pC
G(π|θ)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.50.0

0.2

0.4

0.6

0.8

1.0

Θ !°" 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.50.0

0.2

0.4

0.6

0.8

1.0

Θ !°"

p
C G

(π
|θ

)

p
C G

(π
|θ

)

Figure 4.4. Single-photon experimental fringes. Experimental results for single photons and
q-plate charges (a) q = 1/2 (l = 1), (b) q = 3 (l = 6), (c) q = 5 (l = 10), (d) q = 25 (l = 50), and
(e) q = 50 (l = 100). For each case (a-e), we report: the q-plate axis pattern, corresponding to the
distribution of the liquid crystal molecular director (top row, left panels); the calculated intensity and
phase profiles of the generated OAM fields (top row, middle and right panels); the theoretical and
experimental intensities after projection on the H-polarization state (middle panels); the measured
fringe patterns (blue dots) as a function of the mechanical rotation angle θ, accompanied by sinusoidal
best-fit curves (blue lines) and by the polarization-only case (red dots and lines) (bottom panels).
The fringe patterns reported for cases (a,d-e) correspond to m = 2q + 1 [(a) m = 2, (d) m = 51, (e)
m = 101]. Fringe patterns with m = 2q − 1 (without the HWPs, left plots) and m = 2q − 1 (with the
HWPs, right plots) are shown in (b) (m = 5 and m = 7) and (c) (m = 9 and m = 11). In (d) and (e),
an inset with a zoomed-in region of the fringes is also shown. Error bars in the polarization fringes
are due to the poissonian statistics of the recorded events, while error bars in the set value of the
angle θ are due to the mechanical resolution of the rotation stage.
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estimation of such θ even when it is a completely unknown rotation in the full [0, 2π) interval
(see Appendix A).
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Figure 4.5. Estimation of a rotation angle with photonic gears in the single-photon regime.
Ratio between the statistical errors ∆θ0/∆θm for the polarization-only strategy versus the gears
strategy in the single-photon regime for q < 10 (a) and for all the implemented values of q (b). In
(a) for each point the pattern of the corresponding q-plate is also shown. We obtain a maximum
precision enhancement of ≈ 55 for q = 50, corresponding to the generation of optical states with an
OAM component with l = 100. Red dashed line: theoretical prediction for the ideal case. Blue solid
line: model taking into account experimental imperfections [see Eq. (4.9). Black horizonal dashed
line: experimental maximum enhancement. (c-d) Convergence of the angle estimation procedure as a
function of the number of repeated experiments ν for m = 7 (q = 3). (c) Measured angle θ versus the
number of incident single photons ν (the red area corresponds to the true angle set in the apparatus,
up to mechanical resolution). Error bars correspond to the statistical error in the estimation process.
(d) Ratio ∆θm/∆θm

min showing the convergence to the Cramér-Rao bound (see Appendix A).

In figure 4.6, we show that the rotational sensitivity enhancement due to the photonic
gears effect can also be achieved in the classical regime with an intense laser, making it
immediately applicable to real-world optical measurements, which we will now briefly
discuss. There, the most common problem is to perform precise non-contact and/or remote
optical measurements of roll angles. These are mechanical rotations of an object around
one of its symmetry axes [138, 134]. Polarization-based methods, essentially relying on
the Malus’ law combined with suitable polarization manipulations, are among the most
convenient approaches. Depending on the details of the scheme, this typically leads to a
sensitivity of about 10−2 degrees for a dynamical range of 30 − 360◦, or about 10−4 degrees
when restricting the range to ∼ 1◦. All these polarization-based methods, irrespective of
the details, can be combined with our photonic gear tool without changes. Their sensitivity
is therefore predicted to be improved approximately by the factor m × Vm, which we have
shown can be made larger than 50. For example, the method reported in Ref.[138] combined
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Figure 4.6. Classical regime hybrid photonic gears. The photonic gear concept based on hybrid
polarization-OAM states can be adopted also with intense light in the classical regime. To this end,
we prepared as input a P = 1 mW laser pulse with linear H polarization. The output state is analyzed
by measuring the intensity in the two orthogonal linear H and V polarization directions. Here we
report the measured oscillation patterns for classical intense input light with a value q = 10 and
m = 2q + 1 = 21. We observe that the super-resolution effect due to the hybrid encoding is efficiently
observed also when the input state is a coherent classical beam. Indeed, the experimental visibilities
for the two output intensities IH(θ) and IV (θ) in this case are respectively VH = 0.95 ± 0.02 and
VV = 0.91± 0.02. Points: experimental normalized intensities. Curves: corresponding best-fit curves.
Error bars are due to fluctuations in the measured laser intensity.

with our photonic-gear enhancement is expected to achieve a maximal sensitivity of 10−6

degrees, or about 0.01 arcsec. The dynamical range is also reduced by a similar factor, but
the full dynamical range can be recovered by an adaptive protocol discussed in [71].

We consider at last the quantum regime of entangled photons, using the setup shown in
Fig. 4.7. We demonstrate two-photon entangled states where each photon has a different
total angular momentum, m1 and m2, with a maximum of m1 + m2 = 18. We carried out two
types of experiments. In the first, we generated photon pairs in the “entangled photonic gear
state” |ψ−G〉, given in Eq.(4.8). We then measured the HH correlations for two different sets
of q-plates. The results are reported in Fig. 4.8 and 4.9 as a function of the angles θA and θB
of Alice’s and Bob’s stages. The enhancement in oscillation frequency in both the θA and
the θB directions with respect to the polarization-only case is clearly observed and matches
our theoretical predictions. Next, we generated the entangled state |φ−G〉 and rotated the two
stages by the same angle θA = θB = θ, thus creating a situation analogous to the case of
NOON state probes. The measurement results are shown in Fig. 4.9. The hybrid quantum-
classical sensitivity enhancement by the factor mN = mA + mB = 2qA + 2qB + 2 is clearly
observed, confirming again our predictions. In particular, the experimental comparison
between the 2-photon quantum case with |φ−G〉 and the single-photon case with |ΨC

G〉 shows
that in the former case a quantum enhancement by a factor 2 is superimposed to the classical
photonic gear effect.

Conclusions

In summary, we have reported a photonic scheme to measure rotation angles with greatly
enhanced precision. We tested our photonic gears in three different regimes: (i) classical
intense laser light; (ii) single-photon regime, that we adopted to quantitatively compare
the achieved angular sensitivity with the shot-noise and Heisenberg limits; (iii) quantum
regime of entangled photons, in which we demonstrated that the photonic gears can be
combined with quantum correlations, leading to different kinds of “super-resolving” ro-
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Figure 4.7. Entangled photonic gears. (a) Experimental setup. An entangled photon pair in the
polarization state |ψ−〉 is generated by type-II spontaneous parametric down conversion. The state
can be converted to the |φ−〉 state by inserting a HWP in the path of Bob’s photon. Each photon is
then converted into SAM-OAM hybrid states by the q-plates qA and qB and a HWP, as before, and is
sent to a different rotation stage for the analysis.

Figure 4.8. Entangled photonic gears. Normalized experimental correlations pψ−G (ππ|θA, θB) (blue
points), with ππ = HH, obtained with the |ψ−〉 state by measuring the two-fold coincidences in the
H-polarization bases on both modes for different values of the rotation angles θA and θB. We observe
the gear enhancement with respect to the polarization-only case (red surface, theory) in the oscillation
frequencies in both directions θA (with mA = 2qA − 1 = 2) and θB (with mB = 2qB + 1 = 11). Error
bars in the correlations are due to the poissonian statistics of the recorded events, while error bars in
the set value of the angle θ are due to the mechanical resolution of the rotation stage.



4.2 Experimental results 57

Figure 4.9. Entangled photonic gears. (left) Normalized experimental correlations with |ψ−〉 (blue
points) for mA = 2qA + 1 = 7 and mB = 2qB + 1 = 11. (right) Normalized experimental correlations
obtained with the |ψ−〉 and |φ−〉 states when rotating the two stages by the same angle θA = θB = θ,
for mA = 2qA + 1 = 7 and mB = 2qB + 1 = 11. The polarization correlations (blue points: data for
|ψ−〉, red points: data for |φ−〉) now present an oscillation pattern with a periodicity enhancement of
(mA +mB) for |φ−〉 and mA−mB for |ψ−〉, due to quantum entanglement combined with the gear effect.
The theoretical polarization-only HH correlation (without the gear enhancement) are also shown, for
reference, as a red solid curve in the |φ−〉 state case, oscillating as 2θ, and as a blue solid curve in the
|ψ−〉 state case, which is constant and vanishing. Yellow points: experimental data for single-photon
gear with m = (mA + mB)/2 = 9, oscillating at half the frequency of |φ−G〉. Dashed curves: best fit of
the experimental data. The visibility of the pattern for |φ−〉 state is Vφ−G = 0.826 ± 0.011. Error bars
in the correlations are due to the poissonian statistics of the recorded events, while error bars in the
set value of the angle θ are due to the mechanical resolution of the rotation stage.

tational correlations between the two measurement stages receiving the two photons. In
the regime of single-photon probes, a precision of ∼ 55

√
νN has been demonstrated ex-

perimentally, with νN the total number of photons. Notably, rather than in an asymptotic
limit, this precision was attained already for total photon numbers as small as νN ≈ 102 to
104. To our knowledge, this constitutes the highest precision per-particle reported so far
[133, 153, 112, 106]. We produced a quantum state that is metrologically equivalent to a
NOON state, leading to a hybrid quantum-classical enhancement of the angular sensitivity.
The precision attained in this case scales as mN times the square root of the number of
probes used, the m originating from the gear ratio and the N from quantum entanglement.
We performed a proof-of-principle demonstration with N = 2 and total angular momentum
up to 18.

Rotation sensors based on OAM have been reported before [111, 83, 65, 17, 130], but
our approach is qualitatively different from all other OAM-related proposals in the fact
that we use SAM-OAM combined states that allow us to “read” the rotation by a simple
polarization measurement, thus without introducing the large photon losses arising from
diffraction or transmission in the angular masks usually needed to read the OAM state.
Immediate application of the photonic-gear concept in a classical regime can improve
current polarization-based methods for measuring roll angles to a sensitivity of less than
0.01 arcsec. These values provide substantial progress over the current state of the art.





Chapter 5

Qudits and contextuality

This chapter is devoted to the application of qudits in fundamental quantum mechanics.
High dimensional systems indeed show contexual correlations which are not accessible
by exploiting qubits. Hence qudits are the key element for any quantum contextuality
investigation. As we have seen in Chapter 1, contextual correlations arise only for systems
with d ≥ 3 hence orbital angular momentum (or path) results to be a precious resource for the
realization of contextual experiments. In this chapter we consider two different experiments
related to quantum contextuality. In the first one we report the experimental observation of
an impossible-to-beat quantum advantage on a four dimensional quantum system defined by
the polarization and orbital angular momentum of a single photon. The second experiment
has been made in collaboration with the quantum optics group of Stockholm University and
represents the first experimental realization of a Kochen-Specker set. In both experiments is
exploited a hybrid ququart (OAM-polarization) space spanned by vectors:

{|H,+m〉, |H,−m〉, |V,+m〉, |V,−m〉} (5.1)

The choice of the hybrid encoding for ququarts is due mainly to two factors:

• Since only the OAM subspace {|−m〉, |+m〉} is involved, hybrid qubits are not affected
by decoherence due to different Gouy-phase for free propagation.

• Hybrid ququarts can be generated and detected by exploiting q-plates which are much
more efficient than SLMs. Indeed, although both devices are based on liquid crystals,
q-plates consist of a single liquid crystal cell so they do not induce diffraction losses
due to pixelization.

Hybrid ququarts are also the basic resource of an experiment proposal for quantum
cryptography protected by Kochen-Specker contextuality which is reported in the last section
of this chapter.

The obtained results have been published in:
[E. Nagali, V. D’Ambrosio, F. Sciarrino, A. Cabello, Experimental Observation of Impossible-
to-Beat Quantum Advantage on a Hybrid Photonic System, Phys. Rev. Lett. 108, 090501
(2012)],
[V. D’Ambrosio, I. Herbauts, E. Amselem, E. Nagali, M. Bourennane, F. Sciarrino, A.
Cabello, Experimental implementation of a Kochen-Specker set of quantum tests, Phys. Rev.
X 3, 011012 (2013)] and
[A. Cabello, V. D’Ambrosio, E. Nagali, F. Sciarrino, Hybrid ququart-encoded quantum
cryptography protected by Kochen-Specker contextuality, Phys. Rev. A 84, 030302 (2011)].
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Figure 5.1. Exclusivity graph representing the simplest task of the class with quantum but no
post-quantum advantage. Vertices represent propositions, edges link propositions that cannot be
simultaneously true.

5.1 Impossible to beat quantum advantage

The search for properties singling out quantum mechanics from more general theories has
recently attracted much attention [104, 164, 157, 66, 142, 60, 18, 73]. In this framework, it is
natural to address questions such as which is the simplest task in which quantum mechanics
provides an advantage over classical theories and no hypothetical post-quantum theory can
do it better. Some recent results have seed light on this problem. Let us consider the class of
tasks requiring to maximize a sum Σ of probabilities of propositions tested on a system (this
class includes some communication complexity tasks [41] and all noncontextual [47, 116, 7]
and Bell inequalities). We know that the maximum of Σ is given by α(G), ϑ(G), or α∗(G),
depending on whether classical, quantum, or general resources are used and G indicates the
exclusivity graph for our system. The simplest task of this class in which there is a quantum
advantage but no post-quantum theory outperforms quantum mechanics corresponds to the
simplest graph such that α(G) < ϑ(G) = α∗(G), requiring a quantum system with the lowest
possible dimensionality χ(G).

In order to experimentally implement the simplest task with quantum but no post-
quantum advantage we exploit the properties of the graph of Fig. 5.1, identified in [52]
as the simplest one with these properties. Specifically, for this graph α(G) = 3 while
ϑ(G) = α∗(G) = 3.5 with χ(G) = 4. Experimentally we adopt a photonic hybrid system
of dimension four, encoded in the polarization and a bidimensional subspace of the orbital
angular momentum. The high-fidelity and reliability of the present scheme allow to achieve
a close to theory measured value and a direct test of the exclusivity of the 10 involved
orthogonal projectors.

There is a one-to-one correspondence between α(G), ϑ(G), and α∗(G) and the classical,
quantum, and general bounds for the following task: given an n(G)-vertex graph G, each
player is asked to prepare a physical system and provide a list of n(G) yes-no questions (or
tests) Qi on this system, satisfying that questions corresponding to adjacent vertices in G
cannot both have the answer yes. The player who provides the preparation and questions
with the highest probability of obtaining a yes answer when one question is picked at random
wins.

If the questions refer to preexisting properties,that is, all the answers have a predefine
value, the highest probability of obtaining a yes answer is α(G)/n(G). For the graph in Fig.
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5.1, the sum of the probabilities of obtaining a yes answer is

Σ =

10∑
i=1

P(Qi = 1) ≤ 3 = α(G), (5.2)

since at most 3 of the questions in Fig. 5.1 can be true.
However in quantum mechanics, preparing a four-level system in the state

〈ψ| = (0, 0, 0, 1), (5.3)

and testing the propositions represented by the projectors |vi〉〈vi| over the following 10
(non-normalized) vectors 〈vi|:

〈v1| = (0, 0, 1, 1), (5.4a)

〈v2| = (1,−1, 1,−1), (5.4b)

〈v3| = (1,−1,−1, 1), (5.4c)

〈v4| = (1, 0, 0,−1), (5.4d)

〈v5| = (1, 1, 1, 1), (5.4e)

〈v6| = (0, 1, 0,−1), (5.4f)

〈v7| = (−1, 1, 1, 1), (5.4g)

〈v8| = (1, 0, 0, 1), (5.4h)

〈v9| = (1, 1, 1,−1), (5.4i)

〈v10| = (1, 1,−1, 1), (5.4j)

the probability of obtaining a yes answer is 7
20 = 0.35, which is the maximum using quantum

resources [namely, Q(G)/n(G)], since for the graph in Fig. 5.1,

Q(G) =
7
2
. (5.5)

which does not only go beyond the classical limit, but actually saturates the bound for any
post-quantum theory. The simplest way to grasp the previous bound is to notice that any
other assignment of probabilities to the vertices of the graph in Fig. 5.1 either does not beat
the 7/2 benchmark or is inconsistent with the requirement that the sum of probabilities of
mutually adjacent vertices (i.e. those representing mutually exclusive propositions) cannot
be larger than 1. As explained in Chapter 1, there is a one-to-one correspondence between
the maximum of the sum of the probabilities and the fractional packing number of the graph
in which vertices represent propositions and edges exclusiveness. The fractional packing
number of the graph in Fig. 5.1 is 7/2. The remarkable property of the graph in Fig. 5.1
is that ϑ(G) = α∗(G), so no post-quantum theory can improve this performance. Unlike
standard Bell tests where hypothetical post-quantum theories can outperform quantum
mechanics [9], here quantum mechanics reaches the maximum performance allowed by the
laws of probability, as in this case there is no way to assign probabilities outperforming the
quantum ones without violating that the sum of the probabilities of exclusive propositions
cannot be higher than 1. Indeed, what makes this experiment special is that it aims the
simplest scenario where the quantum probabilities exhibit this curious property.
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Experimental implementation

To experimentally verify the quantum predictions we require a four dimensional system and
the ability to project ququart states over all the states in Eqs. (5.4) with high fidelity and high
reliability. These states are found to belong to all the five different mutually unbiased basis
of a ququart [118, 171]. We encoded such high dimensional quantum states by exploiting
polarization and orbital angular momentum of the same photon. Here we considered the
bidimensional subset of OAM space with |l| = 2 (o2). According to the nomenclature
|ϕ, φ〉 = |ϕ〉π|φ〉o2 , the logic ququart basis can be written as

{|H,+2〉, |H,−2〉, |V,+2〉, |V,−2〉}, (5.6)

where H (V) refers as usual to horizontal (vertical) polarization. According to these defini-
tions, a generic ququart state expressed as (a1, a2, a3, a4), as in (5.4), can be experimentally
implemented as

a1|H,+2〉 + a2|H,−2〉 + a3|V,+2〉 + a4|V,−2〉. (5.7)

Figure 5.2. Experimental setup for the measurement of the probabilities P(Πi = 1) on different
polarization-orbital angular momentum states. In the upper left corner is represented the single
photon source. The four schemes we used for the experiment are presented in the right part of the
figure. Each state is prepared by one of the two setups of the Generation column: Setup a) for
separable states (quantum probabilistic transferrer π→ o2 [152]) and setup b) for entangled ones (an
“entangler” based on a QP and waveplates). The Analysis column shows the setups for the projection
onto the desired states. Setup c) for separable states, a deterministic transferrer o2 → π, and setup d)
for entangled states, where a QP is needed to have a deterministic detection.

In Table 5.1 we report the projections over the ten ququart states of the input state
(0, 0, 0, 1) = |V,−2〉 needed to obtain the maximum possible violation in quantum mechanics.

The experimental setup adopted for such measurements is shown in Fig. 5.2. The SPDC
source described in section 2.4.2 generates heralded single photon states, sent through single
mode fiber to setup a) in order to encode the input state (0, 0, 0, 1), generated adopting a
quantum transferrer π→ o2. This tool allows to transfer the information initially encoded
in the polarization degree of freedom to the OAM, by exploiting the features of the q-plate
device combined to a polarizing beam splitter (PBS) [151]. In particular, the input state has
been generated by adopting the experimental setup in Fig. 5.2 for separable states, where the
first two waveplates were oriented to generate right circular polarization, and the second two
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State projection Code Type Probabilities
Theory Experiment

(0, 0, 1, 1) 1 S 1/2 0.69 ± 0.02
(1,−1, 1,−1) 2 S 1/4 0.160 ± 0.007
(1,−1,−1, 1) 3 S 1/4 0.145 ± 0.006
(1, 0, 0,−1) 4 E 1/2 0.44 ± 0.01
(1, 1, 1, 1) 5 S 1/4 0.33 ± 0.01

(0, 1, 0,−1) 6 S 1/2 0.49 ± 0.01
(−1, 1, 1, 1) 7 E 1/4 0.160 ± 0.007
(1, 0, 0, 1) 8 E 1/2 0.51 ± 0.01

(1, 1, 1,−1) 9 E 1/4 0.34 ± 0.01
(1, 1,−1, 1) 10 E 1/4 0.218 ± 0.008

SUM 7/2 3.49 ± 0.03

Table 5.1. Theoretical predictions and experimental results for the probabilities of the different
outcomes from measurements on state (0, 0, 0, 1) = |V,−2〉. We associate to each projection a number
used later to identify the state. In column Type we specify if the state is separable (S) or entangled
(E).

waveplates for vertical polarization. Then, measurements have been carried out adopting the
measurement setups in Fig. 5.2, depending on whether the state on which the projection had
to be carried out was separable or entangled. For the projection on separable states (denoted
by S in Table 5.1), we adopted the deterministic transferrer o2 → π based on a Sagnac
interferometer 2.4. Thanks to this setup, any qubit encoded in a bidimensional subspace of
OAM |ϕ〉o2 is transferred to the polarization with probability p = 1. When the analysis on
entangled states has to be carried out, it is possible to exploit the capability of the q-plate to
disentangle the polarization from the OAM of a single photon. Indeed, for such projections
we adopted a q-plate and a standard polarization analysis setup. The experimental results
are reported in Table 5.1 and compared to the theoretical value of Q(G) = 7/2. We observed
a good agreement with the theoretical expectations, thus demonstrating the advantage of
adopting quantum resources over classical ones.

As a second step, we provide the experimental verification of exclusiveness relations
between the different states in (5.4), that is, the fact that states connected by and edge cannot
be simultaneously both true. We denote by a number from 1 to 10 the states involved in the
experiment, and measured the probabilities p(i, j) and p( j, i), where i, j = 1, . . . , 10. For the
generation of ququart states belonging to entangled bases, we adopted the scheme reported
in Fig. 5.2.

In Fig. 5.3 a) we report the experimental values of probabilities p(i, i), measured in order
to ensure a high fidelity in the generation and reliability of all ququart states involved in the
experiment. In particular, we observed an average fidelity of F = (0.9492±0.0001). To verify
that experimentally we implement orthogonal projectors, we measured the probabilities
p(i, j) and p( j, i) where i and j represent two connected vertices in the graph of Fig. 5.1. In
Fig. 5.3 b) we report the histogram of the occurrence of different values of probabilities,
that quantify the non-orthogonality component of the experimental projectors. We observe a
good agreement with the null value expected for orthogonal states. Error bars have been
evaluated by considering the poissonian statistics of photon events.
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Figure 5.3. a) Experimental fidelities of generation and analysis for the ten states of the graph in
Fig. 5.1. b) Experimental results of the exclusiveness test: occurrences of the non orthogonality
component of the experimental projectors adopted for the measurements.

Discussion

The classical inequality (5.2) is valid under the assumption that the measured propositions
satisfy the exclusiveness relations given by the graph in Fig. 5.1. The results in Fig. 5.3
show a very good agreement with the assumption. Even if the agreement between the
experimental sum of probabilities is high, for some probabilities the deviations from the
theoretical results are larger than the error bars. We attribute such discrepancy to the
experimental implementation of the projectors, whose orientation respect to the input state
is slightly different from the expected one. Assuming that inequality (5.2) is only valid with
probability 1 − ε and assuming that the worst case scenario, in which there are no links
in the graph so the bound of the inequality is 10, occurs with probability ε, to certify the
quantum advantage it is enough that 3(1 − ε) + 10ε < 3.49. That is, that ε < 0.071. The fact
that all our 42 experimental probabilities satisfy this condition and that the average value of
ε = 0.016± 0.001 certify the impossible-to-beat quantum advantage. To our knowledge, this
is the first time an experiment aiming a task with quantum but no post-quantum advantage
[9, 215, 123] has show results which demonstrate the quantum advantage and are compatible
with the impossibility of a better performance.

5.2 Experimental implementation of a Kochen-Specker set of
quantum tests

Although the violation of the NC inequality demonstrated in the previuos section certifies
the quantum advantage respect to classical resources, it doesn’t hold for any system. Indeed
the maximum value of Σ is reached only when we project the state |V,−2〉 over the states
reported in table 5.1 corresponding to the 10 vertices of the graph in fig 5.1. Other states
will give lower values for Σ.

The conflict between classical and quantum physics can be identified through a series of
yes-no tests on quantum systems, without it being necessary that these systems be in special
quantum states. Kochen-Specker (KS) sets of yes-no tests have this property and provide a
quantum vs classical advantage, free of the initialization problem affecting some quantum
computers.

In this section we report the results of a collaboration between quantum optics groups
of “Sapienza” University and Stockholm University consisting of two separate experiments
based on the same exclusivity graph. In the first experiment, (performed in Rome) we
use the polarization and orbital angular momentum of single photons to show how a KS
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set can be applied to obtain a state-independent impossible-to-beat quantum vs classical
advantage in a specific task. This demonstrate the unique power of this KS set for solving
a task avoiding the problem of state initialization. In the second experiment (performed
in Stockholm), they produce correlations violating a NC inequality constructed in one-
to-one correspondence with the eigenstates of the same KS set, by performing sequential
measurements of compatible observables encoded in the path and polarization degrees of
freedom of single photons. This shows how KS sets can be used to obtain state-independent
maximally contextual quantum correlations.
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Figure 5.4. a) The 18-test KS set. Each vertex represents a yes-no test (associated in QM to a
projector Πi = |vi〉〈vi|, where 〈vi| are the unit vectors displayed in the figure; normalization factors are
omitted to simplify the notation), and adjacent vertices correspond to exclusive tests (i.e., they cannot
both have the answer yes on the same system; in QM they are associated to orthogonal projectors).
This vector representation is the one adopted in our experiments. b) Optimal strategy for the task
described in the text using classical resources. The system is a ball which can be placed in one out
of 18 boxes, and “1, 2, 11, 16” denotes the following yes-no test: “Is the ball in box 1 or in box 2 or in
box 11 or in box 16?”. The set of classical tests in b) results in the maximum probability of obtaining
yes using classical resources. c) Propositions tested in the non-contextuality inequality (5.12)
used to obtain state-independent maximally contextual quantum correlations. Each vertex
represents a proposition abc|xyz, denoting “The result of measuring x is a, the result of measuring y
is b, and the result of measuring z is c”. When the measurements are those in (5.11), then each of
these sequences of measurements and results projects any initial state onto the corresponding state in
a).

Experimental observation of state-independent impossible-to-beat KS-based quan-
tum advantage using polarization and orbital angular momentum of photons

Consider again the task of the previous section [149]: Given an n-vertex graph G, provide
n yes-no tests about a physical system, such that each test is associated to a vertex of G,
exclusive tests correspond to adjacent vertices, and such that these tests result in the highest
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probability of obtaining a yes answer when one of them is chosen at random. As we know,
this highest probability may be different depending on whether the physical system and the
tests are classical, quantum, or post-quantum. Moreover, for arbitrary graphs, the highest
probability may also depend on the state in which the system is prepared. However, two
distinguishing features of the graph of Fig. 5.4 a) are that the highest probability in QM
can be reached regardless of the state of the system, and cannot be outperformed by any
post-quantum theory.

If the available resources are classical, i.e., physical systems with preassigned results
and tests thereof, then an optimal strategy is illustrated in Fig. 5.4 b). There, the classical
system is assumed to be a ball that can be placed in one out of 18 boxes numbered from
1 to 18. For instance, a yes-no test is: “Is the ball in box 1 or in box 2 or in box 11 or
in box 16?”, denoted as “1, 2, 11, 16”. The other tests are shown in Fig. 5.4 b). The 18
tests satisfy the graph’s relations of exclusivity. In addition, no matter which box the ball
is placed in, the probability of getting a yes answer when one of the 18 tests is chosen at
random is 4/18 ≈ 0.22, since the answer is always “yes” for 4 of the tests and “no” for the
others. Alternatively, the performance can be measured by the sum Σ of the probabilities of
obtaining a yes answer. For this graph the independence number α(G) = 4. Therefore, using
classical resources,

Σ =
∑

i∈V(G)

P(Πi = 1) ≤ 4. (5.8)

where V(G) is the set of vertices of the graph in Fig. 5.4 a) and P(Πi = 1) is the probability
of obtaining the result 1 (yes) for the yes-no test Πi.

However, it can be easily checked that, if we use the 18 quantum yes-no tests Πi = |vi〉〈vi|

in Fig. 5.4 a), then the probability of a yes answer is 1/4 = 0.25 and

ΣQM = 4.5. (5.9)

Since this advantage is independent of the initial quantum state of the system, this is an
example of a task with quantum advantage for which the initialization problem affecting
nuclear magnetic resonance quantum computers [92, 64] is not an obstacle. Moreover, as
for the graph in Fig. 5.1, the Lovátz number is equal to the fractional packing number
for this task (ϑ(G) = α∗(G) = 4.5), hence even hypothetical post-quantum theories cannot
outperform QM.

Experimental state independent quantum advantage

In order to test this state-independent impossible-to-beat quantum advantage in an exper-
iment, we used again the hybrid polarization-OAM encoding described in the previous
section. Again the space we exploit is spanned by vectors:

{|H,+2〉, |H,−2〉, |V,+2〉, |V,−2〉}, (5.10)

and the experimental setup is the one shown in Fig.5.2.
Since now the advantage is state independent, we measured for 28 different input states

the projections over the 18 states which consitute the KS set and whose components in our
four dimensional space are reported in Fig.5.4a. The experimental results for Σ, as measured
on 15 different states, are reported in Table 5.2. The experimental data are in good agreement
with the theoretical prediction, with a mean value of Σexp = 4.512 ± 0.005 to be compared
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Code State Implementation Σ

v1 (1,0,0,0) |H,+2〉 4.60 ± 0.02
v2 (0,1,0,0) |H,−2〉 4.45 ± 0.02
v7 (1,1,1,1) |A, h〉 4.50 ± 0.02
v11 (1,0,1,0) |A,+2〉 4.51 ± 0.02
v15 (1,0,0,1) |ψ1〉 = 1

√
2
(|H,+2〉 + |V,−2〉) 4.59 ± 0.02

v16 (0,1,-1,0) |ψ3〉 = 1
√

2
(|H,−2〉 − |V,+2〉) 4.47 ± 0.01

v17 (0,1,1,0) |ψ4〉 = 1
√

2
(|H,−2〉 + |V,+2〉) 4.41 ± 0.02

v18 (0,0,0,1) |V,−2〉 4.50 ± 0.02
v19 (0,0,1,0) |V,+2〉 4.45 ± 0.03
v20 (1,1,0,0) |H, h〉 4.57 ± 0.02
v24 (1,0,0,-1) |ψ2〉 = 1

√
2
(|H,+2〉 − |V,−2〉) 4.58 ± 0.02

ρ25
13
16 |ψ1〉〈ψ1| +

1
16

∑4
j=2 |ψ j〉〈ψ j| 4.57 ± 0.02

ρ26
5
8 |ψ1〉〈ψ1| +

1
8
∑4

j=2 |ψ j〉〈ψ j| 4.55 ± 0.02
ρ27

7
16 |ψ1〉〈ψ1| +

3
16

∑4
j=2 |ψ j〉〈ψ j| 4.53 ± 0.02

ρ28
1
4
∑4

j=1 |ψ j〉〈ψ j| 4.50 ± 0.02

Average value 4.512 ± 0.005

Table 5.2. Experimental results for Σ for 15 quantum states. Each input state was projected onto
each of the 18 states in Fig. 5.4 a). Notation: |A〉 =

|H〉+|V〉
√

2
, |h〉 =

|+2〉+|−2〉
√

2
. Error bars were evaluated

by considering the Poissonian statistics of coincidence counts. All reported values lie in the range
[Σmin,Σmax] (see Fig. 5.5).

to Σ = 4.5, and shows the clear advantage of the quantum settings with KS projectors over
any classical strategy.

In addition, the exclusivity between the tests in Fig. 5.4 a) was experimentally verified,
confirming that tests corresponding to adjacent vertices cannot be both simultaneously true.
Experimentally, the probabilities P|v j〉(Πi = 1), obtained by projecting the state |vi〉 onto the
state |v j〉 for orthogonal states (adjacent vertices), are close to 0, as expected. Specifically,
we obtained that the mean value of P|v j〉(Πi = 1) is ε = (0.014 ± 0.001).

The theoretical classical and quantum bounds for the task should be properly corrected
to take into account that ε , 0. As in the previous section, assuming that inequality (5.8) is
only valid with probability 1− ε and that the worst case scenario, in which there are no edges
so the upper bound of the inequality is 18, occurs with probability ε, to certify the quantum
advantage it is enough that 4(1 − ε) + 18ε < Σ, which, using Σ = 4.5, implies ε < 0.035, a
condition which is fulfilled in our experiment. Moreover, we expect to observe a quantum
advantage lying in a range [Σmin,Σmax], where Σmin = 4.5(1− ε) and Σmax = 4.5(1− ε) + 18ε.
Here Σmax (Σmin) corresponds to the situation of having all 18 propositions true (false) with
probability ε. In Fig. 5.5 we report the experimental values of Σ, not only for the 15 states in
Table 5.2, but also for other 13 states. The quantum advantage is observed for all 28 states,
in good agreement with the state-independent value predicted by the theory.

Experimental state-independent maximally contextual quantum correlations by se-
quential measurements on polarization and path of photons

KS sets can also be used to generate non-classical contextual correlations by performing
sequential compatible measurements on individual systems. The signature of non-classicality
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Figure 5.5. Experimental results for Σ for 28 quantum states. The solid (dashed) blue line refers
to the (corrected) classical upper bound for Σ. The red area represents the range [Σmin,Σmax] in which
we theoretically expect to find all experimental values of Σ. The first 18 states correspond to the ones
in Fig. 5.4 a). States 19–28 are defined in Table 5.2.

is the violation of a NC inequality, which is an inequality involving linear combinations of
joint probabilities of sequential compatible measurements, satisfied by any NCHV theory.

For most of the experimental demonstrations of contextual correlations reported before
this experiment [145, 21, 127, 6], the system had to be prepared in a special state. There are
also theoretical [47] and experimental works [117, 7, 148] on state-independent contextuality.
However, none of the previous experiments implement a KS set of yes-no tests.

In the Stockholm experiment they use the KS set of Fig. 5.4 a) to obtain a non-
contextuality inequality violated by any quantum state. This inequality follows from
identifying sequential compatible measurements such that any initial state is projected
onto one of the eigenstates of the yes-no tests of the KS set of Fig. 5.4 a). This guarantees
that the propositions abc|xyz denoting “the result of measuring x (first measurement of the
sequence) is a, the result of measuring y (second) is b, and the result of measuring z (third)
is c” keep all the relations of exclusivity existing in Fig. 5.4 a).

It can be easily seen that, by using the following measurements:

0 := σz ⊗ I, 1 := I ⊗ σz, 2 := σz ⊗ σz,

3 := I ⊗ σx, 4 := σx ⊗ I, 5 := σx ⊗ σx,

6 := σz ⊗ σx, 7 := σx ⊗ σz, 8 := σy ⊗ σy,

(5.11)

where σx, σy, and σz are the Pauli matrices along the x, y, and z directions, ⊗ denotes tensor
product, and assigning the results 0 and 1 to the degenerate eigenvalues −1 and 1 of the
operators, the 18 propositions in Fig. 5.4 c) are in one-to-one correspondence with the 18
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states in Fig. 5.4 a). Therefore, the corresponding non-contextuality inequality reads

ξ =P(001|012) + P(111|012) + P(100|012)

+ P(010|036) + P(001|036) + P(100|036)

+ P(100|345) + P(111|345) + P(010|345)

+ P(100|147) + P(001|147) + P(111|147)

+ P(100|678) + P(001|678) + P(111|678)

+ P(110|258) + P(000|258) + P(011|258)
NCHV
≤ 4,

(5.12)

where the upper bound for NCHV theories follows from the classical bound of inequality
(5.8). For any initial state, these sequences of quantum measurements lead to

ξQM = 4.5, (5.13)

in correspondence with the quantum advantage (5.9). Again, the contextuality revealed by
this violation cannot be outperformed by any post-quantum theory.

  

0 1

4

2

53

6 7 8

Figure 5.6. Stockholm experimental setups for the observables in (5.11). For the measurement
of observable 0, it is only necessary to distinguish between the paths r and t. To measure observable
4, a polarization-independent beam splitter is used to distinguish the eigenstates through interference.
The measurements of observables 1 and 3 are standard polarization measurements using PBSs and
HWPs. Observables 2, 5, and 8 are Bell-state measurements, and so are the measurements of 6 and 7,
but in the latter group the Bell measurement is preceded by a rotation of the polarization to guarantee
compatibility with observable 8. To measure the probabilities appearing in inequality (5.12), these
measurement devices are arranged in a cascaded way [6, 7].
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Inequality (5.12) has been tested in a separate experiment performed in Stockholm
university using hybrid ququarts encoded in the spatial path and polarization of the photon.
For this experiment, the logical basis is

{|t,H〉, |t,V〉, |r,H〉, |r,V〉}, (5.14)

where t and r denote the transmitted and reflected paths of the photon, respectively, and H
and V denote horizontal and vertical polarization, respectively.

The experiment involves testing a sequence of three compatible measurements, corre-
sponding to rows or columns in (5.11). To do so, the experimental setup is designed as
a cascade of measurement boxes representing the compatible observables, preceded by a
preparation device, and followed by detectors [6, 7]. The preparation device consists of a
source of H-polarized single photons, implemented using a narrow bandwidth cw diode
laser at 780 nm of long coherence length, attenuated to a mean photon number of 0.06
photons per coincidence gate. Combinations of HWPs, PBSs, and a wedge placed after the
single-photon source create any desired state in the logical basis 5.14. The detection stage
uses calibrated silicon avalanche photodiodes, with a 8-channel coincidence logic, and a
coincidence window of 1.7 ns.

Crucial for the experimental test of the non-contextuality inequality (5.12) is the proper
design of the devices for measuring the observables in (5.11). These devices should satisfy
two conditions: compatibility [the three measurements corresponding to rows and columns
in (5.11) should be compatible, so that any subsequent measurement of any of them would
give the same result] and non-contextuality [every observable in (5.11) has to be measured
using the same device in any of the sequences]. These conditions were achieved with the
design of the 9 measuring devices shown in Fig. 5.6.

To construct the cascade setup, displaced Sagnac interferometers have been used due
to their high stability. The obtained visibilities were in the 90%–99% range, depending on
the implemented sequence. The experimental value of ξ for 15 different quantum states is
reported in Table 5.2. Under the assumption that the detected photons were an unbiased
subset of the emitted photons (fair sampling assumption), the results in Table 5.2 are in
good agreement with a state-independent violation of inequality (5.12). The deviations
from the quantum prediction for an ideal experiment with perfect compatibility are due to
the systematic errors arising from the interferometers, the light-mode overlapping, and the
imperfection of the polarization components.

5.3 Hybrid ququart-encoded quantum cryptography protected
by Kochen-Specker contextuality

In the last chapter we have seen how hybrid ququarts can be used to violate non-contextual
inequality by realizing Kochen-Specker sets of quantum tests. Here we show how Kochen-
Specker contextuality can offer an extra protection in quantum key distribution protocols.

QKD protocols allow two distant parties to share a secret key by exploiting the fundamen-
tal laws of quantum mechanics (see Chapter 1). However, standard quantum cryptographic
protocols based on quantum complementarity, like BB84 [29], are nonsecure against at-
tacks in which the adversary imitates complementarity with classical resources in which
the outcomes of measurements in each basis are preassigned (see [195] and next section
for details on this kind of attack). Interestingly, BB84-like protocols can be improved to
assure “the best possible protection quantum theory can afford” [195], by exploiting the
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Code State Implementation ξ

v1 (1,0,0,0) |t,H〉 4.195 ± 0.001
v2 (0,1,0,0) |t,V〉 4.269 ± 0.002
v7 (1,1,1,1) |p,D〉 4.379 ± 0.001
v11 (1,0,1,0) |p,H〉 4.440 ± 0.002
v15 (1,0,0,1) |ψ1〉 = 1

√
2
(|t,H〉 + |r,V〉) 4.260 ± 0.001

v16 (0,1,-1,0) |ψ3〉 = 1
√

2
(|r,H〉 − |t,V〉) 4.255 ± 0.002

v17 (0,1,1,0) |ψ4〉 = 1
√

2
(|r,H〉 + |t,V〉) 4.199 ± 0.002

v18 (0,0,0,1) |r,V〉 4.300 ± 0.002
v19 (0,0,1,0) |r,H〉 4.334 ± 0.003
v20 (1,1,0,0) |t,D〉 4.411 ± 0.001
v24 (1,0,0,-1) |ψ2〉 = 1

√
2
(|t,H〉 − |r,V〉) 4.246 ± 0.001

ρ25
13
16 |ψ1〉〈ψ1| +

1
16

∑4
j=2 |ψ j〉〈ψ j| 4.31 ± 0.08

ρ26
5
8 |ψ1〉〈ψ1| +

1
8
∑4

j=2 |ψ j〉〈ψ j| 4.34 ± 0.09
ρ27

7
16 |ψ1〉〈ψ1| +

3
16

∑4
j=2 |ψ j〉〈ψ j| 4.3 ± 0.1

ρ28
1
4
∑4

j=1 |ψ j〉〈ψ j| 4.3 ± 0.1

Table 5.3. Experimental results for ξ for 15 quantum states. Notation: |p〉 =
|t〉+|r〉
√

2
, |D〉 =

|H〉+|V〉
√

2
.

The errors in the results of ξ were deduced from the standard deviation of 50 samples in the 10-second
time period.

fact that the Bell [25] and Kochen-Specker (KS) [122] theorems show that the outcomes of
quantum measurements do not admit local and noncontextual descriptions, respectively. The
extra security provided by the Bell theorem has been extensively investigated [80, 19, 2].
However, this extra security is based on the assumption that the legitimate parties can
perform a loophole-free Bell test, something which is beyond the present technological
capabilities and is not expected to be an easy task in the future [180]. A similar problem
affects recent proposals combining the KS theorem with entanglement [48, 108]. Therefore,
it is worth to explore the extra security offered by the KS theorem in situations which do
not require entanglement nor composite systems, but only single systems with three or
more distinguishable states. For cryptographic purposes, the difference between qubits and
systems of higher dimensionality is that, whereas in qubits different basis are always disjoint,
from qutrits onwards different basis may share common elements. Here we investigate the
experimental requirements for obtaining the extra security offered by a KS-protected QKD
protocol introduced by Svozil [196], based on the properties of the simplest KS set of states
[53]. Hence we propose to implement such a protocol by adopting hybrid ququart states
encoded in polarization and orbital angular momentum of single photon.

Svozil’s protocol

The cryptographic protocol introduced by Svozil in [196] is a variation of BB84 and works
as follows: (i) Alice randomly picks a basis from the 9 available in Fig. 5.7, and sends Bob
a randomly chosen state of that basis. (ii) Bob, independently from Alice, picks a basis
at random from the 9 available, and measures the system received from Alice. (iii) Bob
announces his bases over a public channel, and Alice announces those events in which the
state sent belongs to the measured basis. Therefore, the probability of adopting the same
basis is 1/9. (iv) Alice and Bob exchange some of the remaining matching outcomes over a
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(0,1,0,0)(0,0,0,1)
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Figure 5.7. The protocol is based on a KS set of 18 states which can be grouped in 9 bases represented
by 9 colors. Every state belongs to two different bases. No set of 18 balls can have all the properties
required to imitate the KS set; at least two balls must have different symbols. Therefore, the imitation
can be detected.

public channel to ensure that nobody has spied their quantum channel. (v) Alice and Bob
encode the four outcomes by using four different symbols. As a result, for each successful
exchange Bob and Alice share a common random key.

The advantage of this protocol over BB84 is that it is protected by the KS theorem
against attacks in which the adversary replaces the quantum system with a classical one.
These attacks can be described using a classical toy model [195, 196] in which, in step
(i), Alice is actually picking one of 9 differently colored eyeglasses (instead of a basis),
and picking a ball with two color symbols in it (instead of a state) from an urn. Each
one of the 9 differently colored eyeglasses only allows her to see one of the 9 different
colors. To reproduce the quantum predictions: (a) each of the balls must have one symbol
S i ∈ {1, 2, 3, 4} written in two different colors chosen among the 18 possible pairs of colors.
Her choice of eyeglass decides which symbols Alice can see. (b) All colors are equally
probable and, for a given color, the four symbols are equally probable. In step (ii), Bob
is actually picking one of 9 differently colored eyeglasses and reading the corresponding
symbol. A classical strategy like this one can successfully imitate the quantum part of
BB84 (see [195] for details), but not the protocol described above. The reason is that the
requirements (a) and (b) cannot be satisfied simultaneously. Fig. 5.7 shows how to prepare
18 balls with the minimum number of balls not having the same symbol.

Experimental requirements

As shown in Fig. 5.7, the minimum number of balls not having the same symbol is 2 out of
18. A ball attack can be detected only in those runs in which Alice and Bob pick differently
colored eyeglasses. Therefore, for the set in Fig. 5.7, the trace of such an attack will be a 2

18
probability of Alice picking a symbol such that the corresponding interlinked symbol (seen
only with differently colored eyeglasses) is different. As a consequence, to demonstrate that
the experimental results cannot actually be imitated with balls, and experimentally certify
the extra security of this KS-based QKD protocol, we need an experimental probability w of
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wrong state identification, defined as the probability that Bob makes a wrong identification
of the state sent by Alice when Bob has successfully measured in a correct basis, of
w < 1

9 ≈ 0.111.

Set Logic E Setup b
PSI QWP MC

I 1000 | 0100
π/40011 | 001-1

III 1111 | 1-11-1
π/410-10 | 010-1

IV -1111 | 11-11
√

√
π/4 01010 | 010-1

IX 01-10 | 0110
√

√
π/4 01000 | 0001

Set Logic E Setup c
PSI1 PSI2 MC Waveplate

II 1111 | 11-1-1
π/4 HWP π/81-100 | 001-1

V 1001 | 01-10
√

√ √
π/4 HWP π/8111-1 | -1111

√

VI 1001 | 0110
√

√
0 QWP π/411-1-1 | 1-11-1

VII 111-1 | 11-11
√

√
0 QWP π/40011 | 1-100

VIII 0001 | 1010 HWP π/810-10 | 0100

Table 5.4. The ququart states that compose the KS set are divided in 9 basis and encoded in
polarization and orbital angular momentum degrees of freedom. For each basis are reported the
experimental settings of the analysis stage. The column E identifies the entangled states of the two
degrees of freedom.

Implementation using polarization-OAM encoded ququarts

Here we propose a scheme for the experimental implementation of the KS-protected QKD
protocol. To test its feasibility, we need to prepare the 18 states, measure each of them in
two different bases, and obtain an average value of w over the 18 × 2 possibilities. The
condition which must be fulfilled is w < 0.111, which corresponds to a mean fidelity value
of the transmission of the state of F = 0.889. In addition, to check that any intercept and
resend strategy causes a disturbance, one should be able to measure what happens when
the states are measured in the wrong basis. While in the correct basis the probabilities for
the four possible outcomes are (in the ideal case) 0, 0, 0, and 1, in the wrong basis they are
either 0, 0, 1

2 , and 1
2 , or 0, 1

4 , 1
4 , and 1

2 .
Svozil’s protocol uses 9 sets of four-dimensional states defining a 18-state KS set.

We propose encoding four-dimensional quantum states by exploiting hybrid qudits in
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polarization and OAM subspace, denoted as o1, spanned by states with OAM eigenvalue
l = ±1. The logic ququart basis can be re-written as:

{|1〉, |2〉, |3〉, |4〉} → {|H,+1〉, |H,−1〉, |V,+1〉, |V,−1〉}, (5.15)

The OAM equivalent of the basis |H〉 and |V〉 is defined as |h〉 = 1√
2
(| + 1〉 + | − 1〉) and

|v〉 = i√
2
(| + 1〉 − | − 1〉). Finally, the ±45◦ angle “anti-diagonal” and “diagonal” linear

polarizations OAM equivalent will be |a〉 = (|h〉 + |v〉)/
√

2 and |d〉 = (|h〉 − |v〉)/
√

2. It is
convenient to work with Laguerre-Gauss laser modes (LG0,±1) as OAM eigenstates since, in
this case, the states (|h〉,|v〉,|a〉,|d〉) will result as the Hermite-Gauss modes (HG1,0,HG0,1)
along the axes and rotated by 45◦ (see Chapter 2). This feature allows us to easily transform
the states by an astigmatic laser mode converter [23]. By choosing a bidimensional subspace
of OAM we avoid detrimental effects on the state due to the radial contribution in the free
propagation and Gouy-phases associated to different OAM values. According to the previous
definitions, a state (a1, a2, a3, a4) of the KS set is implemented as

a1|H,+1〉 + a2|H,−1〉 + a3|V,+1〉 + a4|V,−1〉. (5.16)

The coefficients ai for each state are shown in Table I, along with the settings needed to
analyze each basis.

Generation.—Fig. 5.8 shows the optical schemes for the generation and detection of
any ququart state of the KS set. The generation of the states can be achieved by adopting a
SPDC source of pair of photons, as in Fig. (5.8-a), where we consider a collinear generation
of couples |H〉|V〉, where one of the two photons acts as a trigger for the heralded generation
of a single photon to be sent to the experimental setup. The manipulation of the OAM
degree of freedom can be achieved by adopting a q-plate with topological charge q = 1/2.
In order to generate all the states of the KS set, it is sufficient to exploit a technique based
on the probabilistic quantum transferrer π→ o1 described in [150]. The OAM eigenmodes
produced in this way are not exactly LG modes but HyGG ones [113]. Since some of the
detection schemes are based on the properties of Laguerre-Gaussian modes, this fact will
lead, in some cases, to a detection efficiency of around 80%. Thus in order to avoid noise
due to different OAM order contributions, is sufficient to insert in the detection stage (see
Fig.5.8) a q-plate and a single mode fiber connected to the detector.

Measurement of the KS bases.—The bases involved in the KS set have different struc-
tures as shown in Table I. They can be classified in three groups, depending on whether they
are composed of separable, entangled (between polarization and OAM) or both separable
and entangled states.

The detection setup consists of schemes (b) and (c). Their components are a Polarizing
Sagnac Interferometer with a Dove prism (PSI) [188], an cylindrical lens Mode Converter
(MC) [23] (see Chapter 2), and a Laguerre-Gauss mode Sorter (LGS) [206]. The PSI
consists of a Sagnac interferometer with a polarising beam splitter as input-output gate and a
Dove prism that intercepts the two counterpropagating beams and can be rotated around the
optical axes. This scheme allows, under appropriate conditions, to transform an entangled
state into a separable one. In this case, the prism must be rotated in order to add a phase
shift of ∆φ = π/2 between |H〉 and |V〉 (α = π/8 in Fig. 6.2). For example, the states of basis
IV are transformed into (|L, a〉, |L, d〉, |R,+1〉, |R,−1〉). The MC consists of two cylindrical
lenses (with the same focal length f ) at distance f /

√
2. It allows us to convert the HG

states (|a〉,|d〉) into (| + 1〉,| − 1〉) and, if rotated by 45◦ along the optical axes, to convert (|h〉,
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|v〉) into (| + 1〉, | − 1〉) [23]. The LGS consists of a Mach-Zehnder interferometer with a
Dove Prism in each arm. The two prisms are rotated by β = π/4 one respect to the other. A
phase plate (ψ = π/2) in one of the two arms allows us to send | + 1〉 and | − 1〉 in the two
different output ports of the Mach-Zehnder. States belonging to sets I − III − IV − IX can
be analyzed by adopting the scheme reported in Fig. 6.2-b with some slight modifications
related to the specific basis to be measured. The scheme in Fig. 6.2-c leads to the analysis of
bases II − V − VI − VII − VIII. All the details on the settings of the different measurement
devices are in Table I.

Conclusions

In this chapter we described two experiments on fundamental quantum mechanics focused
on the study of contextual correlations in four dimensional systems. Both experiments have
been based on the photonic implementation of exclusivity graphs. The graph of the first
experiment represented a task in which quantum mechanics gives an advantage respect
to classical mechanics and there exist no post quantum theory which can do it better. By
exploiting hybrid ququarts we reported the violation of a non-contextual inequality which
certify the quantum advantage. The second experiment has been realized in collaboration
with Stockholm University and reports the first experimental implementation of a KS
set of quantum tests. We first demonstrated the unique power of this KS set for solving
a task avoiding the problem of state initialization (Rome experiment). This is done by
showing that, for 28 different quantum states encoded in the orbital angular momentum and
polarization degrees of freedom of single photons, the KS set provide an impossible-to-beat
solution. Then (Stockholm experiment) maximally contextual quantum correlations have
been generated by performing compatible sequential measurements of the polarization
and path of single photons. In the last section of the chapter we reported an experimental
proposal for a quantum cryptographic protocol protected by KS contextuality and based
again on hybrid ququarts.

Our results pave the way for further developments that may include implementing higher
dimensionality KS sets [115] and portable KS sets in integrated photonic circuits [173, 168,
184, 185]. Other developments that could be pursued in future work are device-independent
security based on contextuality [48, 108] and state-independent quantum correlations with
computational power [8].
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Figure 5.8. a) Setup for the generation of ququart states: one of the two photons emitted by SPDC
acts as a trigger, while the other one is sent to a polarizing beam splitter (PBS), wave plates and a
quantum transferrer based on the q-plate in order to generate the desired ququart. b) Setup for the
analysis of bases (I-III-IV-IX): the setup in the dotted rectangle analyzes the four states of basis I;
basis III can be measured by inserting a half wave plate (HWP) at π/8 before the PBS. A polarizing
Sagnac interferometer (PSI) and a quarter wave plate are needed to analyze bases IV and IX (adding
an HWP before the PSI). c) Setup for the analysis of bases (II-V-VI-VII-VIII): The part in the dotted
rectangle is suitable to sort the four states of all the bases (the grey wave plate can be a HWP or
a QWP depending on the particular basis as shown in Table I); this part is sufficient to analyze
basis VIII. Basis II can be analyzed by adding a mode converter (MC). Using a PSI before the MC
makes it possible to analyze bases VI (adding a HWP) and VII. Finally, the states of basis V can
be sorted by an additional PSI and QWP. The pictures in the three boxes on the right represent the
Sagnac interferometer, the LG mode sorter, and the cylindrical lens mode converter, respectively.
The detection stage consists of a q-plate, a single mode fiber and a detector.



Chapter 6

Mutually unbiased bases for
six-dimensional photonic quantum
systems

The “complementarity” of different observables of a same physical system is one of the
basic features of the quantum world [33]. Mathematically, complementary observables are
described by noncommuting Hermitian operators whose sets of eigenstates form different
bases in the Hilbert space that are said to be “mutually unbiased” (MUBs). This expression
refers to the fact that the overlap (or inner product) of any pair of states belonging to different
bases is the same [77].

In quantum cryptography, complementary observables and the associated MUBs are
the core of all protocols proposed for secure quantum key distribution, starting from BB84
protocol and its extension to three qubit bases [22]. As we have seen in Chapter 1 the “no
cloning theorem” implies that Alice and Bob can always recognize a possible eavesdropper
attack by detecting the associated disturbance introduced in the system. In particular, the
adoption of MUBs for encoding the information is known to maximize this disturbance
allowing one to recognize the attack most effectively [97]. In quantum state tomography,
MUBs play a crucial role because they correspond to the optimal choice of the measurements
to be performed in order to obtain a full reconstruction of the density matrix.

Given a Hilbert space of dimension d, an important problem is to find the maximum
number of MUBs that can be defined simultaneously. Although for spaces of prime-power
dimensions there exist several methods to find a maximal set of d + 1 MUBs [172], this
problem remains in general hitherto unsolved [15, 27]. Dimension six, in particular, has
been widely investigated in the last few years [28, 39, 40, 177] because it is the lowest one
for which the problem is still open.

Different experimental approaches have been recently adopted to implement complete
sets of MUBs for state reconstruction in photonic systems in Hilbert spaces of dimensions
d = 2, 3, 4, 5, 7, 8[95][136]. However, since in d = 6 no complete set of MUBs is known,
this case has never been experimentally investigated hitherto.

In this chapter we demonstrate the generation of MUBs in dimension d = 6 by exploiting
two different approaches. In the first case we prepare and analyze all states of three MUBs
in a hybrid space obtained by combining the polarization and a given three dimensional
subspace of the OAM. In our second experiment, we prepare and test the same set of MUBs
in a by exploiting only the OAM of the photon. The needing of high fidelity in the MUBs

77
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generation led us to develop a novel holographic method for OAM qudits generation. Indeed,
MUBs are very sensitive to the generation fidelity and relatively small imperfections are
immediately visible in the MUBs cross overlaps. A high fidelity is also crucial to exploit
MUBs for quantum cryptography.

The results here presented are published in [V. D’Ambrosio, F. Cardano, E. Karimi,
E. Nagali, E. Santamato, L. Marrucci, F. Sciarrino, Test of mutually unbiased bases for
six-dimensional photonic quantum systems, Sci. Rep. 3, 2726 (2013)].

6.1 Mutually unbiased bases.

Let A and B be two operators in a d-dimensional Hilbert space, with orthonormal eigenbases
{|ai〉} and {|bi〉} respectively. Eigenstates of these observables are said to be mutually
unbiased [211, 77] if

|〈ai|b j〉|
2 =

1
d
, ∀ i, j ∈ {1, ..., d}. (6.1)

Such operators are also called mutually complementary, or maximally noncommutative,
since given any eigenstate of one, the outcome resulting from a measurement of the other is
completely undetermined. In a d-dimensional Hilbert space a pair of MUBs can always be
found. Indeed, let {|ai〉} be the computational basis,

{|ai〉} = {|0〉, |1〉, ..., |d − 1〉} . (6.2)

A discrete Fourier transform can be then used to define the following dual basis, which is
mutually unbiased to the previous one:

|bi〉 =
1
√

d

d−1∑
j=0

ω
i j
d |a j〉 (6.3)

where ωd = exp (i2π/d), and the non-italic i denotes the imaginary unit (not to be confused
with the index i). The pair of operators associated to these bases, often named Ẑ and X̂
reminiscent of the Pauli operators, provides an algebraic complete set of observables that
fully parametrizes the physical degree of freedom described by the Hilbert space: all other
operators acting on this space are product of powers of Ẑ and X̂ [77].

An open issue concerns the maximal number of MUBs that can be found in a d-
dimensional space; in the specific case when d is equal to a prime number or to a prime
power, a maximal set of d + 1 MUBs does exist [77]. This set is also “complete”, in the
sense that by projective measurements over its states (d − 1)(d + 1) = d2 − 1 independent
real parameters can be obtained, which are exactly the number of parameters needed for full
density matrix reconstruction [211]. A complete set of MUBs can be found using several
methods, i.e., the Galois Field, the Heisenberg-Weyl group, Hadamard matrices, etc. (for a
review see [77, 172]). However, in the general case of composite dimensions that are not
prime powers such as d = 6, 10, 12, ..., all these methods fail [10]. On the base of extensive
numerical simulations, it has been conjectured that complete sets of MUBs do not exist in
this case [45, 101], although such conjecture hitherto has not been rigorously proven. A
minimum number of MUBs that is known to exist in such cases is given by pk + 1, where pk

is the lowest factor in the prime decomposition of the number d [119]. For instance, in the
d = 6 case, three MUBs can be easily constructed, but no evidence for the existence of a
fourth basis that is unbiased with the first three has ever been found.
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The Hilbert spaceH6 of a 6D system can be always factorized in the direct product of a
2D and a 3D space, i.e.,

H6 = H2 ⊗H3. (6.4)

Both these Hilbert subspaces possess complete sets of MUBs,
{
|mα

i 〉
}

and
{
|nβj〉

}
, containing

respectively three and four bases. Although the states of these bases can be combined to
form twelve different separable bases for the spaceH6, which can be used for a complete
tomography of the qusix state, only sets with three MUBs can be constructed. A possible
choice is given by the following three bases:

I = {|m1
i 〉 ⊗ |n

1
j〉}

II = {|m2
i 〉 ⊗ |n

2
j〉} (6.5)

III = {|m3
i 〉 ⊗ |n

3
j〉}

where i ∈ {1, 2} and j ∈ {1, 2, 3}; an explicit matricial expression of states that we consider
is reported in the Appendix B. It can be immediately seen that any other basis obtained
introducing the fourth one

{
|n4

j〉
}

of the spaceH3 would not be mutually unbiased with the
others, since it is missing a different basis in H2. This set of 18 product states cannot be
extended by any other vector inH6, even if entangled states are considered [144]; moreover
if a complete MUB set in d = 6 existed, then only one among the seven bases therein could
be composed of product states, while all others must be entangled [143].

6.2 OAM encoding and the holographic technique.

We now define a 3D subspace O in OAM as that spanned by the three eigenvectors {| +
1〉, |0〉, | − 1〉} where we are omitting the subscript “oam”. These states can be taken to
define the logical basis O1 of a photonic qutrit in the Hilbert space O. A second basis in
O that is mutually unbiased with the logical one can be obtained as the Fourier-transform
one O2 = {|α1〉, |α2〉, |α3〉} defined as in Eq. (6.3). Explicitly, we have |α1〉 = (| − 1〉 +

|0〉 + |1〉)/
√

3, |α2〉 = (| − 1〉 + ω|0〉 + ω2| + 1〉)/
√

3, |α3〉 = (| − 1〉 + ω2|0〉 + ω| + 1〉)/
√

3,
where ω = ω3 = exp (i2π/3) and we have used the identity ω4 = ω. The other two bases
of a maximal set of MUBs in O are then defined as follows: O3 = {|β1〉, |β2〉, |β3〉} with
|β1〉 = (|−1〉+ω|0〉+ω|1〉)/

√
3, |β2〉 = (|−1〉+ω2|0〉+|+1〉)/

√
3, |β3〉 = (|−1〉+|0〉+ω2|+1〉)/

√
3

and O4 = {|γ1〉, |γ2〉, |γ3〉} with |γ1〉 = (| − 1〉 + ω2|0〉 + ω2|1〉)/
√

3, |γ2〉 = (| − 1〉 + ω|0〉 + | +

1〉)/
√

3, |γ3〉 = (| − 1〉 + |0〉 + ω| + 1〉)/
√

3.
As shown in Eq. (6.5), in order to construct three MUBs in the 6D hybrid space, we will

only need the first three bases O1,O2,O3. The intensity and phase profiles of the nine OAM
qudits belonging to these three MUBs are shown in Fig. 6.1.

Let us now discuss the experimental method we adopted for the generation (and detec-
tion) of these nine states, and of all other OAM qudits in this work. As we have seen in
Chapter 2, arbitrary optical field transverse modes can be obtained by diffraction of an input
Gaussian TEM00 mode on a SLM programmed for displaying a prescribed hologram (also
known as “kinoform”), that is the pattern determining the phase retardation experienced
by the input wave in diffraction. The main problem is that the SLM is a phase-only optical
element, while to obtain arbitrary OAM modes we need to be able to tailor both the phase and
the amplitude transverse profiles of the outgoing field. This can be obtained by modulating
both the shape and contrast of the kinoform fringes. To determine the kinoform, we initially
tried some of the most commonly used methods [12], but found that they often give rise to a
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Figure 6.1. MUBs for hybrid photonic qusix encoding: Representation of quantum states with
dimension d = 6 obtained from the direct product of a three-dimensional subspace O of OAM and the
two-dimensional space π of polarization. The three main boxes correspond to the three MUBs. On
the left side, the intensity and phase distributions of each OAM spatial mode and the corresponding
generating kinoform are shown. On the right side the polarization states are illustrated graphically by
showing the optical electric field orientation in space at a given time.
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non-negligible “cross-talk”, i.e., nonzero overlaps between different states of the same basis,
and to significant unbalances in the overlaps of each state of a given basis with the states of
other bases. In other words, the generation fidelity of these methods was not good enough
for our purposes. For this reason, we developed an holographic method that is specifically
optimized in the fidelity.

Holographic technique

Let us first assume that the input field is a plane wave. Our goal is to obtain in the first order
of diffraction a prescribed optical fieldAeiΦ, A and Φ being the optical field normalized
amplitude and phase, respectively. A straightforward calculation [35] shows that such
optical field is obtained in the far field if the kinoform phase modulation has the following
expression:

M = Mod
[(

Φ − πI +
2πx
Λ

)
, 2π

]
I (6.6)

where Λ is the grating period that fixes the diffraction angle, I =
(
1 + sinc−1(A)/π

)
, in

which sinc−1 stands for inverse of sinc(x) = sin(x)/x function in the domain [−π, 0], and
Mod is the modulo function that gives the remainder after division of the first argument by
the second. The inverse of sinc function was evaluated numerically by the Newton method,
with an accuracy of seven digits.

By this method we calculated the kinoforms needed to generate the nine OAM states of
the first three MUBs of the OAM qutrit. The resulting hologram patterns are shown in Fig.
6.1. It can be seen that these kinoforms include only an azimuthal dependence, since the
OAM state definition ignores the radial coordinate. This implies that the same kinoforms
can also be used with a Gaussian input beam instead of a plane wave and only the radial
profile of the diffracted wave will be affected, while the OAM state will remain the same.
Moreover, we do not need to finely adjust the input beam waist of the Gaussian beam.

We note that the holograms defined by Eq. (6.6) generate ideally exact modes in the
far field, so that the expected overlap between states belonging to the same basis vanishes
identically and that between states belonging to different MUBs is 1/3 in the qutrit space (and
hence it will be 1/6 in the qusix space, after combining with polarization). As mentioned,
this is not the case for other commonly used holographic methods. For example, numerical
simulations based on the method reported in Ref. [129] yielded mean state fidelities of
100%, 88.5% and 84.5% for the three OAM qutrit bases. This corresponds to 6% and 7.7%
of mean cross-talk between states belonging to the last two bases. Moreover, the overlap
between states of different MUBs is found to vary between 21% and 48%, depending on
the state pair. These fidelity problems are absent in our method. More details about the
performances of the holographic method used in this work are reported in [35].

6.3 Hybrid qusix encoding and characterization.

Our first experimental implementation of qusix photonic states has been achieved by com-
bining the bi-dimensional space π of polarization and the 3D subspace O of OAM in single
photons. The logical basis I of quantum states in dimension six has been hence implemented
as follows(see Fig. 6.1):

I = {|H,−1〉, |H, 0〉, |H,+1〉, |V,−1〉, |V, 0〉, |V,+1〉} (6.7)
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Figure 6.2. Sketch of experimental setup for generating and testing photonic MUBs in dimen-
sion six. The polarization state is controlled by suitable sequences of wave plates, while the OAM
mode is controlled by SLMs and single-mode fibers. Legend: SM - single-mode fiber; C - polariza-
tion compensation waveplates; HWP - half-wave plate; QWP - quarter-wave plate; MA - radial mode
adjustment lens set; SLM - spatial light modulator; SPCM - single-photon counter module.

Following Eq. (6.5), a second basis II, unbiased with the first, is obtained by combining
the diagonal |D〉 and antidiagonal |A〉 polarization states with the OAM qudits of basis
O2. The third basis of the set of MUBs was finally obtained by combining the circular
polarization states with the OAM third basis O3.

In order to experimentally generate these hybrid qusix states we employed the setup
shown in Fig. 6.2. Single photons generated by the setup described in section 2.4.2 are
sent through a polarizing beam splitter (PBS) (polarization qubit initialization) and, after
adjusting the radial-mode size by a pair of lenses (MA), to a first reflecting spatial light
modulator (SLM1) which generates the desired OAM qutrit state. The hologram kinoform
displayed on the SLM1 for each OAM state to be generated, in the first-order diffraction, is
shown in Fig. 6.1. After SLM1, a half wave-plate (HWP) and a quarter wave-plate (QWP)
are used to write the polarization qubit in the photon. Hence we are able to generate any
hybrid qusix that is a product of a qutrit and a qubit.

The qusix-carrying photon is then sent to the detection stage. This stage is composed of
a polarization analysis set (HWP, QWP and a PBS) and a second spatial light modulator
(SLM2) for converting in diffraction the OAM state to be detected back into a Gaussian
mode. The photon is finally coupled to a single mode fiber, to filter only this Gaussian mode,
connected to a single-photon counter module (SPCM). To eliminate the Gouy phase-shift
effects between different OAM eigenstates occurring in free propagation, an imaging system
(not shown in the figure) has been included to image the screen of SLM1 onto the SLM2.
All waveplates and SLMs were computer-controlled so as to allow for a fully automatic
generation and measurement procedure. With this setup, it is possible to perform a projective
measurement upon every possible separable state of polarization and OAM.

As a first test, we verified the MUBs properties by generating each qusix |ψi〉 among the
18 states of the MUBs and then projecting it onto all the 18 states |ψ j〉. Figure 6.3 shows
the resulting measured probability distribution Pi j = |〈ψ j|ψi〉|

2, compared to the theoretical
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Figure 6.3. Experimental analysis of hybrid qusix photonic states: Probability distribution
resulting from all 18 × 18 projections of each state within the three MUBs over all the others,
comparing theoretical and experimental values. According to theoretical predictions, we expect that
the 18 × 18 matrix can be divided into nine 6 × 6 blocks Am

n , where the two indices m, n ∈ {I,II,III}
label generation and detection bases, respectively. Blocks that correspond to projection of one basis
over itself (m = n) should be diagonal, i.e., (Am

m)i, j = δi j. Other blocks, whose values represent the
overlap between states belonging to two different bases, should be flat, i.e., (Am

n )i, j = 1/6, for m , n.

Figure 6.4. Quantum tomography of hybrid qusix photonic states: Density matrices associated
to states of each of the three MUBs have been fully reconstructed by projections over all the 72 states
obtained by direct product of the three MUBs of the 2D polarization space π and the four ones of the
3D OAM subspace O. Here we show one state for each MUB. Experimental and theoretical matrices
are reported for comparison.
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one P′i j. For a quantitative comparison, we used the similarity parameter S =

(∑
i, j
√

Pi jP′i j

)2∑
i, j Pi j

∑
i, j P′i j

,
which is a natural generalization of the fidelity used to compare two wavefunctions, finding
S = (99.19 ± 0.04)%. As a second check of the quality of our hybrid qusix states, we
reconstructed the density matrix of all the 18 states by quantum state tomography. Since
we lack a complete set of MUBs in dimension six, we performed measurements in all
possible product states obtained combining the three MUBs of the polarization space π
and the four MUBs in the OAM space O, for a total of 72 projections. In Table 6.1, the
resulting experimental fidelities of the 18 MUBs states are reported. The overall mean
fidelity was F̄ = (98.51 ± 0.04)%. Moreover, Figure 6.4 shows the reconstructed density
matrices compared to the theoretical ones for three representative qusix states, one for each
MUB considered here.

6.4 Pure-OAM qusix encoding and characterization.

Our second experimental implementation of qusix photonic states has been based on the
OAM space only. Although the hybrid approach offer some advantages (as we have seen in
the previous chapters), an encoding in OAM is in principle suitable of extension to arbitrary
dimensionality and enables the generation of any kind of state, including the entangled ones
which, for hybrid encoding, would need a more complex experimental setup. To define a 6D
Hilbert space, we adopted the following OAM eigenstates as logical basis:

I = {| − 3〉, | − 2〉, | − 1〉, |1〉, |2〉, |3〉}. (6.8)

The three MUBs were still defined starting from the tensor products of a 2D and a 3D spaces,
as given in Eq. (6.5). More details about the resulting states of the three bases I, II, III are
given in Appendix B.

The experimental setup used for generating and testing the states of the MUBs is the
same as in the hybrid qusix case (see Fig. 6.2), but with the polarization optics set so as to
keep a fixed polarization everywhere. Figure 6.5 shows the intensity and phase profile of the
18 OAM modes which form the three MUBs. In Figure 6.6, the theoretical and experimental
probability distributions for all combinations of state preparation and detection are reported.
The similarity between the two distributions is S = (99.06 ± 0.04)% while the mean fidelity
over the 18 states is F = (98.78 ± 0.08)%. Comparing this result with the hybrid case, in
which only OAM states in dimension 3 were generated, we find that the fidelity of the OAM
generation does not decrease rapidly with the dimensions. Hence, the holograhic method
used in this work promises to be suitable for the high-fidelity generation of OAM photonic
qudits with very large dimension d.

Discussion

In summary, we have reported the experimental implementation of a non-extendable set of
three MUBs for a photonic quantum system of dimension six by two different approaches. In
the first, the qusix states have been implemented via a hybrid scheme based on polarization-
orbital angular momentum encoding. All the 18 states belonging to the MUBs are in this case
separable states of two different degrees of freedom. The demonstration of MUBs with high
fidelity and unbiasedness has required the development of a new method for determining
the hologram to be visualized in the spatial light modulator. The second demonstrated
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Figure 6.5. Graphical representation of all 18 states of the three selected MUBs, in the case of pure
OAM 6D encoding. For each state, both the intensity and phase patterns are shown.

Figure 6.6. Theoretical and experimental probability distributions for an experiment based on pure
OAM 6D encoding in which all the 18 × 18 combinations of generated/detected states belonging to
the three MUBs are tested.
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Basis State Fidelity

I

|H〉| + 1〉 0.986 ± 0.002
|H〉|0〉 0.982 ± 0.002
|H〉| − 1〉 0.986 ± 0.002
|V〉| + 1〉 0.988 ± 0.002
|V〉|0〉 0.980 ± 0.002
|V〉| − 1〉 0.983 ± 0.002

II

|A〉|α1〉 0.989 ± 0.001
|A〉|α2〉 0.981 ± 0.002
|A〉|α3〉 0.986 ± 0.002
|D〉|α1〉 0.989 ± 0.001
|D〉|α2〉 0.982 ± 0.002
|D〉|α3〉 0.980 ± 0.002

III

|L〉|β1〉 0.981 ± 0.002
|L〉|β2〉 0.981 ± 0.002
|L〉|β3〉 0.979 ± 0.002
|R〉|β1〉 0.977 ± 0.002
|R〉|β2〉 0.972 ± 0.002
|R〉|β3〉 0.970 ± 0.002

Average Fidelity 0.9851 ± 0.0004

Table 6.1. Experimental fidelities measured for all 18 qusix hybrid states that characterize the three
chosen MUBs.

approach was based on a quantum encoding in the photon OAM space only, at a fixed
polarization. The generation of a set of MUBs with high fidelity was again verified and this
method is suitable for a convenient extension to higher dimensionality. The techniques we
have demonstrated here can find application in fundamental tests of quantum mechanics,
quantitative wave-particle duality, detection of entanglement [194], quantum key distribution
[58], tests of quantum complementarity, logical indeterminacy and the so called “mean
king’s problem” [201][81].



Chapter 7

Conclusions and perspectives

In the past years, qubits have been the fundamental resource for both theoretical and
experimental investigation in quantum information and fundamental quantum mechanics.
Being a simple two dimensional quantum system they provided an optimal tool for the study
of fundamental properties of nature like entanglement or the realization of protocols like
quantum teleportation. Despite this succes, qubits present some limitations which have
become clear when, in the last decades, much attention has been spent in the investigation
of their multidimensional extension, a quantum d-dimensional systems known as “qudit”.
High dimensional quantum sistems indeed opened new perspective in many fields and in
particular in fundamental quantum mechanics [114, 202, 120] where they allow to study
quantum contextual correlations and in quantum information [58, 86, 126] where high
dimensionality assures for instance larger alphabets for information encoding and higher
security in quantum key distribution protocols.

Although qubits are often implemented by exploiting the polarization state of single
photons, this degree of freedom is not suitable for qubits implementation. The experimental
realization of higher dimensional systems requires multiphoton states, or, as alternative
resource, different degrees of freedom of a single photon like frequency, path or orbital
angular momentum (OAM). This last degree of freedom is related to the spatial profile of
a paraxial light beam and is defined in an infinite dimensional Hilbert space. Therefore a
qudit can be encoded in a OAM subspace of single photons or, as alternative, in the product
Hilbert space of polarization and orbital angular momentum spaces (hybrid encoding).

This thesis is the result of three years of research activity performed in the quantum
optics group of “Sapienza” University focused on the study of single photon qudits and
their applications in several fields like quantum communication, quantum cryptography,
fundamental quantum mechanics and metrology.

A first part of this research have been devoted to the development of new tools for the
manipulation of optical orbital angular momentum. As a first result we developed an optical
device which is able to transfer information between the polarization and a bi-dimensional
subspace of OAM in a deterministic way (transferrer)[69]. This device allows to easily
encode (and decode) two qubits stored in a single photon. Moreover we investigated the
optimization conditions for one of the most widely used devices for OAM manipulation,
the spatial light modulator, a liquid crystal device which allows to add a phase profile to an
optical beam [38].

A second part of the research has been devoted to the study of the properties of hybrid
qudits encoded in polarization and OAM. The fundamental experimental tool for hybrid
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qubits generation has been the so called q-plate, a liquid crystal cell which allows to couple
polarization and orbital angular momentum. In particular we individuated a bi-dimensional
subspace of a hybrid ququart space whose vectors are invariant under physical rotations
around the photon’s propagation direction. These states have been then exploited as qubits
in order to realize an alignment-free quantum communication between two distant users
[70]. We also demonstrated that these rotational invariant qubits are robust against beam
perturbations hence they could provide a useful resource for realistic long distance quantum
communication scenario. As well as rotational invariant qubits are insensitive to rotations
along the propagation axis, it is also possible to exploit other hybrid ququart subspaces
in order to enhance such rotations. Hence we focused on this class of hybrid qubits and
developed the concept of “photonic gear”. This device allow to enhance the precision of a
polarization based roll angle measurement thanks to a super resolved Malus law and could
be exploited as a new resource both in metrology and quantum metrology.

The third part of this thesis project have been focused on fundamental quantum me-
chanics experiments based on high dimensional systems. By exploiting q-plates and the
transferrer just developed we designed two experiments in order to study contextual corre-
lations. In the first experiment we realized a task that has been proven to be the simplest
task in which quantum mechanics gives an advantage, based on contextual correlations,
respect to classical mechanics and no post-quantum theories can do it better [149]. In the
second experiment, realized in collaboration with Stockholm University, we reported the
first experimental realization of a Kochen-Specker set of quantum tests [68].

Finally, as application of qudits to quantum cryptography, we proposed an experiment
based on hybrid ququarts in which quantum contextuality offers an extra protection against
attacks in which complementarity is imitated with classical resources [50]. Moreover we
experimentally realized a non-extendable set of three mutually unbiased bases (MUBs)
in dimension six with two different physical systems by exploiting both hybrid encoding
and pure orbital angular momentum states superporitions. In order to exploit MUBs for
cryptographic purposes or quantum state tomography, the correponding qudits have to
be experimentally implemented with high fidelity. This goal led us to develop a novel
holographic technique that allows to generate, in principle, qudits of arbitrary dimension.

The results here presented open several perspectives that can be investigated in the near
future.

Alignment-free quantum communication for instance has been demonstrated only on
distances of several meters in the laboratory. In order to make rotational invariant qubits a
fundamental resource for real world satellite based quantum communication, further tests
are needed. In particular align-free quantum communication over long distances and an
experimental test on resilience to atmospheric turbulences are two challenges that can be
addressed in the next future.

A possible perspective in metrology is the enhancement of the current best technologies
for roll angle measurements by exploiting the photonic gear based on hybrid qubits.

The holographic technique developed for the generation of MUBs in dimension six
can be exploited for instance in the experimental implementation of quantum information
protocols based on qudits or as a tool for high dimensional state reconstruction via quantum
state tomography.

Finally, in fundamental quantum mechanics qudits are the keystone for several further
investigations. Indeed, here we have shown that it is possible to exploit ququarts to violate
non-contextual inequalities which holds for classical systems. Moreover we experimentally
realized the simplest task in which this quantum advantage is impossible to beat by any
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post-quantum theory. However, for a generic experiment, post-quantum correlations can
outperform the results of quantum mechanics. The fact that this post-quantum advantage
has never been experimentally observed leads to a natural question on what is the principle
that limits quantum correlations to be as they are. Although this is still an open question,
qudits will surely be the fundamental tool for further investigations.





Appendix A

Photonic Gears: Technical details

Photonic gears and their precision

In this note, we describe the theoretical details behind the bound given in Eq. (6) of the main
article for the precision of the hybrid SAM-OAM photonic gear concept.

Quantum Fisher information including photon-losses and non-unitary conver-
sion efficiency

The maximum amount of information which can be extracted about a parameter θ from
an N-photon state %N(θ) is quantified by the quantum Fisher information FN = FN

(
%N(θ)

)
.

In particular, the minimal uncertainty in the estimation of θ from measurements on %N(θ),
optimized over all possible measurements, satisfies the so-called quantum Cramér-Rao
(QCR) bound:

∆θmin ≥
(
νFN

)−1/2, (A.1)

where ν is the number of measurement runs with copies of %N(θ). In addition, the bound can
always be saturated in the asymptotic limit of large ν, for a suitable estimation function.

When %N(θ) is obtained from a unitary evolutionUθ = e−ıGθ of a pure state |ψN(θ)〉 =

Uθ|ψ
0
N〉, the quantum Fisher information takes the simple θ-independent form: FN

(
%N(θ)

)
=

FN(ψ0
N) = 4〈ψ0

N |(∆G)2|ψ0
N〉, where ∆G = G − 〈ψ0

N |G|ψ
0
N〉. For the hybrid SAM-OAM

strategy with single photons, each photon is prepared in the state |ΨC
G〉. Then, in the absence

of losses, the state |ψ0
N〉 is given by the N-photon state |ΨC

G〉
⊗N . The generator of the rotations

around the z axis is G = (S z
p +S z

o)/~, where S z
p and S z

o are are the corresponding polarization
and orbital angular momentum operators, respectively. The quantum Fisher information is
additive, hence FN(|ΨC

G〉
⊗N) = NF, where we have introduced the notation F = F1(|ΨC

G〉).
By evaluating the variance of G over the unperturbed single-photon state |ΨC

G〉, we obtain
the explicit expression F = 4m2 for the Fisher information per photon. This, together with
the QCR bound above, gives us precisely bound (4.6) of Chapter 4:

∆θC
G ≥

1

2m
√
νN

. (A.2)

Let us now consider the presence of photon losses. The total losses (including those
at the detection stage) are quantified by a single transmittivity parameter 0 ≤ η ≤ 1, and
transform the ideal single-photon state |ΨC

G(θ)〉 arriving at Bob’s station into:

%C
G(θ) = η|ΨC

G(θ)〉〈ΨC
G(θ)| + (1 − η)|0〉〈0|, (A.3)
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where |0〉 is the vacuum state. Since %C
G(θ) is the sum of two terms which correspond to

orthogonal subspaces, the quantum Fisher information per photon is

F
(
%C

G(θ)
)

= ηF(|ΨC
G(θ)〉) + (1 − η)F(|0〉) = ηF. (A.4)

Here we have used the fact that F(|0〉) = 0, since no information can be acquired from the
vacuum state. Using the additivity property of the Fisher information, the QCR bound (A.1),
the precision in presence of losses is

∆θC
G ≥

1
2m
√
ηνN

. (A.5)

That is, the overall effect of photon losses is simply to rescale the total number of photons
from νN to ηνN.

We conclude by discussing the effect of a non-unitary conversion efficiency of the
q-plates. In this case, the action of these devices are described by the following map:

Q(%) = εUq%U
†
q + (1 − ε)1π,q%1π,q, (A.6)

where Uq is the unitary evolution operator representing a perfect q-plate, and 1π,q is the
identity operator on the joint polarization-OAM space, and ε is the conversion efficiency. The
output state of a photon after the encoding, rotation and decoding stages is measured with
multimode fibers. The multimode fiber accepts all OAM states, and thus no measurement of
the final OAM is performed, corresponding mathematically to the partial trace on the OAM
subspace. The output density matrix then reads:

%C
G(θ) = ε1ε2|Ψ

C
G(θ)〉〈ΨC

G(θ)|+ [ε1(1− ε2) + (1− ε1)ε2]
1π

2
+ (1− ε1)(1− ε2)|ΨC(−θ)〉〈ΨC(−θ)|,

(A.7)
where 1π = |1〉R R〈1|+ |1〉L L〈1|, and ε1 and ε2 refer respectively to the conversion efficiencies
of Alice’s and Bob’s q-plates. Finally, we observe that the latter term in (1 − ε1)(1 − ε2) is
small for typical efficiencies of the q-plates (εi > 0.9), and can be neglected. The output
state before detection can be then written as:

%C
G(θ) ' V |ΨC

G(θ)〉〈ΨC
G(θ)| + (1 − V)

1π

2
, (A.8)

where V = ε1ε2/[(1 − ε1)(1 − ε2)] is the fringe pattern visibility achieved with polarization
detection. Evaluating the quantum Fisher information for state (A.8) again in the presence
of photon losses, gives the bound for the precision ∆θm:

∆θm ≥
1

2mV
√
ηνN

. (A.9)

In principle, η and ε display no dependence on q and therefore enter in the precision
as just constant factors. In practice, a number of experimental imperfections can cause the
two parameters to slightly depend on q. We considered this effect with an heuristic model,
which includes a dependence on q in Eq. (A.9) of the form: V

√
η→ V0

√
η0[1 − γmδ]. The

parameters γ and δ are retrieved by fitting the experimental data, while V0 and η0 are the
visibility and the efficiency for q = 0. For the data shown in Figure 4.5 of Chapter 4, we
obtained γ = 0.026 ± 0.008 and δ = 0.62 ± 0.07, showing that the dependence on q is very
weak.
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Classical Fisher information of the outcomes of polarization measurements

Let us next show that the measurement strategy described in Chapter 4 is indeed the optimal
one, reaching the QCR (A.1). We do this first for the ideal case η = 1 and V = 1, and
then, below, briefly present the case with experimental imperfections. In the H/V linear
polarization basis, the state of each photon arriving at Bob’s station reads

|ΨC
G(θ)〉 = cos(mθ)|1〉H,0 + sin(mθ)|1〉V,0. (A.10)

Bob measures each photon in the fixed H/V linear-polarization basis, and obtains a classical
outcome x with possible values H or V , distributed according to the conditional probability
distribution pC

G(x|θ) = |〈ΨC
G(θ)||1〉x,0|2. From this, the minimum uncertainty he can get is

again dictated by the Cramér-Rao (CR) bound ∆θC
G ≥ (νN f )−1/2, where f is the classical

Fisher information per particle associated to the particular measurement strategy1, defined
as

f = f
(
pC

G(x|θ)
)

=
∑

x=H,V

1
pC

G(x|θ)

∂pC
G(x|θ)

∂θ

2

. (A.11)

Substituting pC
G(H|θ) = cos2(mθ) and pC

G(V |θ) = sin2(mθ) into (A.11), one obtains f = (2m)2.
This, in turn, with the CR bound above, directly leads to optimal quantum bound (A.2). In
addition, for a suitable estimation function, the bound is always saturated in the limit of
ν→ ∞. Hence, the adopted measurement strategy allows Bob and Alice to reveal as much
information about θ as allowed by quantum mechanics.

In the presence of experimental imperfections, including photon losses and non-unitary
efficiencies for the q-plates [see Eq. (A.8)], the CR bound with polarization measurements
is straightforwardly calculated to be:

∆θm ≥
1

2mV
√
η
√
νN
√

C(θ)
, (A.12)

where C(θ) is the following function:

C(θ) =
sin(2mθ)2

1 − V2 cos(2mθ)2 . (A.13)

Hence, the minimum statistical error exhibits a dependence on the actual value of the angle,
and the QCR bound can only be saturated for θ̃ = π/(4m)+kπ/(2m), with integer k. However,
in the next section, we discuss an adaptive protocol that succeeds in saturating the QCR
bound for all values of θ.

Coherent states

Here, we show that the estimation protocol works equally well for coherent pulses of
average photon number N as for N single photons. That is, for the same measurement
strategy, the resulting precision bound is given by (A.2). We discuss explicitly only the
ideal case, the case with experimental imperfections follows straightforwardly and gives
(A.12). Consider a coherent state |coh(α)〉H,0 of generic complex amplitude α as input to
Alice’s q-plate. The mean photon number is |α|2, and the state has H linear polarization
and is prepared in the zero-OAM mode. We can write |coh(α)〉H,0 = DH,0(α)|0〉, where

DH,0(α) = eαa†H,0−α
∗aH,0 is the displacement operator with amplitude α, a†H,0 and aH,0 are the
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creation and annihilation operators of a photon in the corresponding mode, respectively, and
|0〉 represents the vacuum state. Alice’s q-plate and HWP transform the mode operators as
a†H,0 = 1√

2
(a†R,0 + a†L,0)→ 1√

2
(a†R,−2q + a†L,2q), where a†R,−2q (a†L,2q) is the creation operator of

a photon in the total angular momentum eigenmode of R (L) circular polarization and OAM
−2q (2q). The operator aH,0 undergoes an analogous transformation. Then, using linearity
and some simple algebra, one obtains that Alice’s station induces the state transformation:

|coh(α)〉H,0 = DH,0(α)|0〉 → DR,−2q
(
α/
√

2
)
DL,2q

(
α/
√

2
)
|0〉 = (A.14)

|coh
(
α/
√

2
)
〉R,−2q|coh

(
α/
√

2
)
〉L,2q = |Ψcoh

G 〉,

where the last equality defines our coherent-state hybrid SAM+OAM states.
Under rotation, |Ψcoh

G 〉 evolves into |Ψcoh
G (θ)〉 = Uθ|Ψ

coh
G 〉, with Uθ = e−ıGθ, and G the

generator of state rotations defined above. Using that Uθa
†

L/V,±2qU
†

θ = e∓imθa†L/V,±2q, and
analogously for aL/V,±2q, we have

|Ψcoh
G (θ)〉 = |coh

(
eimθα/

√
2
)
〉R,−2q|coh

(
e−imθα/

√
2
)
〉L,2q, (A.15)

where as before m = 2q + 1. The quantum Fisher information FN
(
|ΨG

coh(θ)〉
)

calculated
from the probe state |Ψcoh

G (θ)〉 is FN
(
|Ψcoh

G (θ)〉
)

= 4〈Ψcoh
G (θ)|(∆G)2|ΨG

coh(θ)〉, leading to the
precision

∆θcoh
G ≥

1

2m
√
ν|α|2

. (A.16)

For the particular case when the mean photon number |α|2 is N, bound (A.16) is equal to
(A.2).

Next, we show that Bob’s polarization measurements are optimal, even for the case of
coherent states. To the coherent-pulse, he applies the same decoding transformations as in
the single photon strategy: a HWP followed by q-plate of charge q. The output state is

|ΨG
coh(θ)〉 → |coh

(
eimθα/

√
2
)
〉R,0|coh

(
e−imθα/

√
2
)
〉L,0 = |coh

(
cos(mθ)α

)
〉H,0|coh

(
sin(mθ)α

)
〉V,0,

(A.17)
As in the single-photon case, he sends output state through a H/V polarizing beam splitter,
and detects the conditional probability distribution p(nH , nV |θ) of obtaining nH horizontally
polarized photons and nV vertically polarized ones with an intensity measurement. The
associated classical Fisher information is

f
(
p(nH , nV |θ)

)
=

∞∑
nH ,nV =0

1
p(nH , nV |θ)

(
∂p(nH , nV |θ)

∂θ

)2

, with (A.18)

p(nH , nV |θ) = e−|α|
2
(

cos2(mθ)|α|2
)nH ( sin2(mθ)|α|2

)nV

nH!nV !
, (A.19)

where the explicit form (A.19) of distribution p(nH , nV |θ) is obtained by expanding the
right-hand side of (A.17) in the Fock-state basis. A straightforward calculation shows
that the CR bound applied to Fisher information (A.18) coincides exactly with the optimal
quantum scaling (A.16). Also, as usual, with a suitable estimator, the bound is saturated in
the limit ν→ ∞. Hence, the polarization analysis adopted for single-photon probes is also
the optimal measurement strategy for coherent-pulses.
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The estimation procedure

Here we describe the technical details of our phase estimation procedure.

A. Bayesian estimator

With the measurement strategy established, an estimator must be used to process the experi-
mental data obtained. The experimental outcomes of M = ν×N independent photons can be
represented by the string X = (x1, . . . , xM), with xi = H or V , for 1 ≤ i ≤ M. An estimator
is a function that maps X into an estimate θ of the actual value θ∗. A suitable choice is given
by the Bayesian estimator39, which is based on Bayes’ rule:

P(θ|X)P(X) = P(X|θ)P(θ). (A.20)

P(θ|X) is the conditional probability of θ∗ being equal to θ given that the observed outcome
string is X. This is the desired distribution, as from it both the estimate and its uncertainty
can be directly obtained. P(X|θ) gives the conditional probability of getting X given that the
phase is θ. Since the photons are independent, it can be decomposed as

P(X|θ) =

M∏
k=1

p(xk|θ). (A.21)

In addition, since the experimental setup is well-characterized, the distributions p(xk|θ) with
which one can explicitly evaluate (A.21) are known. For instance, for the SAM+OAM states,
these are given by

p(xk|θ) = pC
G(xk|θ) =

{
cos2(mθ) if xk = H,
sin2(mθ) if xk = V ,

(A.22)

for all 1 ≤ k ≤ M. In turn, P(X) is the probability of getting X regardless of the value of θ.
This can also be explicitly evaluated, as it is defined in terms of P(X|θ): P(X) =

∫
Ω

dθP(X|θ),
where Ω is the interval of bijectivity of P(X|θ) as a function of θ, of length 0 < T ≤ 2π, in
which θ∗ is known to lie. Finally, P(θ) is the probability of the phase being θ regardless of
the detected outcomes, which is of course unknown. In Bayesian estimation, one simply
guesses θ∗ based on whatever apriori knowledge. That is, one substitute P(θ) by Pprior(θ),
which describes this knowledge. When no prior knowledge about θ∗ is available, except that
it belongs to Ω, one has Pprior(θ) = 1/T . This, together with rule (A.20) and decomposition
(A.21), gives the desired a-posteriori distribution:

P(θ|X) =
1

TP(X)

M∏
k=1

p(xk|θ). (A.23)

With this, the estimate and its associated mean square statistical error are obtained as

θ =

∫
Ω

dθ θP(θ|X), (A.24)

and ∆θ2 =

∫
Ω

dθ (θ − θ)2P(θ|X), (A.25)

respectively. This estimation displays the following two convenient properties40: (i) It is
locally unbiased. This means that, in the asymptotic limit of large M, θ converges to the
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true value θ∗, for arbitrary θ∗ in Ω. (ii) The Bayesian estimator displays phase-independent
sensitivity. That is, in the same asymptotic limit, it saturates the Cramér-Rao inequality, for
any θ∗ ∈ Ω. Furthermore, it has been shown39,41 that the output phase distribution obtained
with Bayesian analysis reaches a Gaussian function faster than other approaches, such as
Maximum-likelihood estimators, leading to a faster convergence when the sample size is
small.

B. Concatenated adaptative estimation strategy

As q increases, the oscillation frequency of distributions (A.22) grows, so that the length of
their longest intervals of bijectivity, as functions of θ, decreases with q. Therefore, if the
Bayes estimator is directly applied to estimate a phase θ∗ ∈ [0, 2π), the resulting estimate
(A.24) will only be defined up to a degeneracy that increases with q. To circumvent this,
we adopt an estimation strategy with adaptive concatenated steps. We show here that the
maximal number of concatenated steps needed to fully remove any ambiguity in the estimate
is only 3. For simplicity, we describe the strategy in the single-photon regime, its extension
to the coherent-pulse regime being trivially analogous.

We split the measurements on all M = νN of photons into 3 different kinds, each one
constituting a step of the strategy. Each step j, for 1 ≤ j ≤ 3, consumes M j photons prepared
with m = m j, in such a way that m3 > m2 > m1, where m j = 2q j ± 1. This guarantees that
every consecutive step features a higher sensitivity. Each step j renders an estimate θ j and
an uncertainty ∆θ j, calculated respectively through (A.24) and (A.25). Each estimate θ j

is unambiguously defined only over an interval Ω j of length T j equal to half a period of
oscillation of distributions (A.22) for q = q j:

T j =
π

2m j
. (A.26)

In addition, the photons in each j-th step are prepared in the state |ΨG(ξ j)〉 = 1√
2
(eiξ j |1〉R,−2q +

e−iξ j |1〉L,2q). The relative phase ξ j is such that the estimate θ j−1 of the previous ( j − 1)-step
sits exactly at one of the points of maximal sensitivity of |ΨC

G(ξ j)〉. That is, for example:

ξ j =
π

4
− m jθ j−1. (A.27)

This condition is always possible to satisfy for j > 1, where an estimate θ j−1 is available.
However, for the first step, unless one has some a-priori knowledge bout θ∗, θ1 is not defined.
In this case we simply choose ξ1 = 0. The aim of adapting the phase at each step is two-fold.
On the one hand, since this allows us to achieve the maximal angular resolution of each step,
it speeds up the asymptotic saturation of the QCR bound. On the other hand, as we discuss
below, it breaks the symmetry in distributions (A.22) between m j and m j−1. This allows
us to reduce the potential ambiguities in the estimate by a factor of two per step. For this
reason, as we explain next, only three concatenated steps suffice for arbitrary θ∗ ∈ [0, 2π).

For the strategy with phase adaptation, the outcomes of the j-th step are governed by the
distributions p j(xk|θ) = cos2[m jθ + ξ j], if xk = H, or p j(xk|θ) = sin2[m jθ + ξ j], if xk = V .
In the first step we always set m1 = 1 (q-plate detuned, corresponding to polarization-only
strategy), ξ1 = 0, and Ω1 = [0, π/2). Since p1(xk|θ) repeat their values four times over [0, 2π),
the estimate θ1 ∈ Ω1 of this step is four-fold degenerate. The actual value of θ∗ ∈ [0, 2π) may
be either θ1, π − θ1, θ1 + π, or 2π − θ1. For the second step, apart from taking m2 > m1 = 0,
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Figure A.1. Experimentally adapting the oscillation phase. In order to optimize the sensitivity
for any angle it is necessary to adapt the relative phase ξ in the state |ΨC

G(ξ)〉. This can be efficiently
implemented by rotating the polarization of the input state of an angle ξ by means of a half waveplate.
Indeed, a rotation of the input state from |1〉H to |1〉V corresponds to an inversion in the maxima
and the minima of the pattern. Here we report the oscillation patterns [(a) pC

G(H|θ) and (b) pC
G(V |θ)]

obtained with the single-photon photonic gear (q = 10 and m = 2q + 1 = 21) for different values of
initial state phase ξi: {ξ0 = 0, ξ1 = π/8, ξ2 = π/4, ξ3 = 3π/8, ξ4 = π/2}. Points: experimental data.
Curves: corresponding best-fit curves. Error bars in the experimental data are due to the Poissonian
statistics of the measured single-photon counts.

with the exact charge determined below, we set ξ2 in terms of the estimated θ1, as determined
by Eq. (A.27), and Ω2 = [θ1 − T2/2, θ1 + T2/2), with T2 = π

2m2
as given by (A.26). Unless

θ1 happens to be equal to T2/2, so that ξ2 = ξ1 = 0, this phase choice causes two out of the
four possible θ’s to be consistent with one value of p2(xk|θ) and the other two with another
value. This leads to a second estimate θ2 ∈ Ω2 with only a two-fold ambiguity. On the
other hand, if θ1 = T2/2, the symmetry between p1(xk|θ) and p2(xk|θ) is not broken by this
choice. However, one can simply choose ξ2 = ξ1 + ϕ2 = ϕ2, for some suitable ϕ2 that is not
a multiple of T2/2. This decreases the angular resolution per probe, but allows one in return
to break the symmetry. The third step is analogous to the second one: Apart from m3 > m2,
we set ξ3 as given by (A.27) and Ω3 = [θ2 − T3/2, θ2 + T3/2), with T3 = π

4m3
. Unless θ2

happens to be equal to T3/2, this leads to a third estimate θ3 ∈ Ω3, without any ambiguity.
Thus, arbitrary θ∗ ∈ [0, 2π) are unequivocally estimated by the final estimate θ3.

We next discuss the exact charge values m j = 2q j ± 1 used in each step. It is not possible
to increase the angular resolution arbitrarily much from step to step. In particular, one must
require that

T j ≥ ∆θ j−1, (A.28)

for all j, so that the regions of bijectivity of p j(xk|θ) are not shorter than the precision of
the ( j − 1)-th estimation. Also, we take M1 . M1/2

2 . M1/4
3 . This choice is convenient

because, in the asymptotic limit of large M = M1 + M2 + M3, it makes M1 negligible with
respect to M2, and the latter in turn negligible with respect to M3. So, M3 tends to M,
and the QCR bound is still asymptotically saturated42,43. The first uncertainty ∆θ1 is such
that ∆θ1 ≥

[
2m1
√

M1
]−1

=
[
2
√

M1
]−1. The uncertainty ∆θ2 in the second step is such that

∆θ2 ≥
[
2
√

m2
1M1 + m2

2M2
]−1, which is approximately equal to

[
2m2
√

M2
]−1 in the limit of

large M2. The latter conditions for ∆θ1 and ∆θ2, together with (A.28) and (A.26), lead to

2q j + 1 ≤ (2q j−1 + 1)π
√

M j−1, (A.29)

for all j. This relationship tells us that the more we want to increase the angular resolution
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(the charge) from step j − 1 to step j, the higher the precision of step j − 1 must be, by
increasing the number of probes M j−1. Or, equivalently, given fixed numbers of probes M1,
M2, and M3, the relationship sets a limit to the maximal jumps in resolution we can take per
step. We take the optimal choice

2q j + 1 = b(2q j−1 + 1)π
√

M j−1c, (A.30)

where b(2q j−1 + 1)π
√

M j−1c stands for the largest integer smaller than (2q j−1 + 1)π
√

M j−1.
In the asymptotic limit of large M, the overall final uncertainty ∆θ3 tends to the minimal
uncertainty [

2
√

m2
1M1 + m2

2M2 + m2
3M3

]−1
∼

[
2m3
√

M
]−1, (A.31)

and saturates the QCR bound42,43.
Also, even though minimal uncertainty (A.31) is in principle independent of θ, ex-

perimental imperfections make it divergent for some values of θ∗. The phase-adaptive
strategy described above allows one to avoid these divergencies, so that an approximate
phase-independent sensitivity is recovered. Furthermore, this adaptive approach does not
introduce any modification of the setup, since it requires inserting q-plates with different
values, to be switched on and off by electrical tuning, and different linear-polarization states
input.



Appendix B

Mutually unbiased bases sets

In dimension d = 2, the eigenstates of the three Pauli operators provide a complete set of
MUBs, which can be represented by the columns of the following three matrices:

π1 =

(
1 0
0 1

)
, π2 =

1
√

2

(
1 1
1 −1

)
, π3 =

1
√

2

(
1 1
i −i

)
. (B.1)

In d = 3, there exist four MUBs. We represent them here as the columns of the following
four matrices:

O1 =

 1 0 0
0 1 0
0 0 1

 , O2 =
1
√

3

 1 1 1
1 ω ω2

1 ω2 ω


O3 =

1
√

3

 1 1 1
ω ω2 1
ω 1 ω2

 ,O4 =
1
√

3

 1 1 1
ω2 ω 1
ω2 1 ω

 , (B.2)

where ω = exp (i2π/3).

In d = 6, we may construct three MUBs by a direct product of the π1, π2, π3 bases and
the corresponding first three bases O1, O2, O3:

I = π1 ⊗ O1, II = π2 ⊗ O2, III = π3 ⊗ O3. (B.3)
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These three 6D bases have the following matrix representation:

I =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(B.4)

II =
1
√

6



1 1 1 1 1 1
1 ω ω2 1 ω ω2

1 ω2 ω 1 ω2 ω

1 1 1 −1 −1 −1
1 ω ω2 −1 −ω −ω2

1 ω2 ω −1 −ω2 −ω


(B.5)

III =
1
√

6



1 1 1 1 1 1
ω ω2 1 ω ω2 1
ω 1 ω2 ω 1 ω2

i i i −i −i −i
iω iω2 i −iω −iω2 −i
iω i iω2 −iω −i −iω2


(B.6)

The 18 columns of these three matrices give the coefficients of the logical basis superposi-
tions defining the 18 OAM states shown in Fig. 6.5.
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• V. D’Ambrosio, E. Nagali, C. Monken, S. Slussarenko, L. Marrucci and F. Sciarrino,
Deterministic qubit transfer between orbital and spin angular momentum of single
photons. Optics Letters, 37 (2012)

• V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, F.
Sciarrino, Complete experimental toolbox for alignment-free quantum communication,
Nature Communications 3, 961 (2012)

• V. D’Ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L.
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ultra-sensitive angular measurements, Nature Communications 4, 2432 (2013)

• E. Nagali, V. D’Ambrosio, F. Sciarrino, A. Cabello, Experimental Observation of
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Review Leters. 108, 090501 (2012)
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• A. Cabello, V. D’Ambrosio, E. Nagali, F. Sciarrino, Hybrid ququart-encoded quantum
cryptography protected by Kochen-Specker contextuality, Physical Review A 84,
030302 (2011)
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Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression
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[103] Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G., and Zeilinger, A. Experimental
quantum cryptography with qutrits. New Journal of Physics, 8 (2006), 75.

[104] Hardy, L. Quantum theory from five reasonable axioms. quant-ph/0101012, (2001).

[105] Heckenberg, N., McDuff, R., Smith, C., andWhite, A. Generation of optical phase
singularities by computer-generated holograms. Optics Letters, 17 (1992), 221.

[106] Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M., and Pryde, G. J.
Entanglement-free heisenberg-limited phase estimation. Nature, 450 (2007), 393.

[107] Holevo, A. S. Lect. Notes Math., 1055 (1984), 153.

[108] Horodecki, K., Horodecki, M., Horodecki, P., Horodecki, R., Pawlowski, M., and
Bourennane, M. Contextuality offers device-independent security. arXiv:1006.0468,
(2010).

[109] Horodecki, M., Horodecki, P., and Horodecki, R. Separability of mixed states:
necessary and sufficient conditions. Physics Letters A, 223 (1996), 1.

[110] Horodecki, R., Horodecki, P., Horodecki, M., and Horodecki, K. Quantum entangle-
ment. Reviews of Modern Physics, 81 (2009), 865.

[111] Jha, A. K., Agarwal, G. S., and Boyd, R. W. Supersensitive measurement of angular
displacements using entangled photons. Physical Review A, 83 (2011), 053829.

[112] Jones, J. A., Karlen, S. D., Fitzsimons, J., Ardavan, A., Benjamin, S. C., Briggs, G.
A. D., andMorton, J. J. L. Magnetic Field Sensing Beyond the Standard Quantum
Limit Using 10-Spin NOON States. Science, 324 (2009), 1166.



110 Bibliography

[113] Karimi, E., Zito, G., Piccirillo, B., Marrucci, L., and Santamato, E. Hypergeometric-
gaussian modes. Optics Letters, 32 (2007), 3053.
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