448 research outputs found

    Near-Infrared Spectroscopy Combined with Multivariate Tools for Analysis of Trace Metals in Environmental Matrices

    Get PDF
    Environmental contamination by trace elements is becoming increasingly important problem worldwide. Trace metals such as cadmium, copper, lead, chromium, and mercury are major environmental pollutants that are predominantly found in areas with high anthropogenic activities. Therefore, there is a need for rapid and reliable tools to assess and monitor the concentration of heavy metal in environmental matrices. A nondestructive, cost-effective, and environmentally friendly procedure based on near-infrared reflectance spectroscopy (NIRS) and chemometric tools has been used as alternative technique for the simultaneous estimation of various heavy metal concentrations in environmental sample. The metal content is estimated by assigning the absorption features of metals associated with molecular vibrations of organic and inorganic functional groups in organic matter, silicates, carbonates, and water at 780–2500 nm in the near-infrared region. This chapter, reviewed the application of NIRS combined with chemometric tools such as multiple linear regression (MLR), principal component regression (PCR), and partial least squares (PLS) regression. The disadvantages and advantages of each chemometric tool are discussed briefly

    Towards enhancing sustainable reuse of pre-treated drill cuttings for construction purposes by near-infrared analysis : a review

    Get PDF
    Sustainable reuse of pre-treated drill cuttings (a hazardous waste) as part substitute for fine aggregate in concrete for construction purposes is becoming increasingly attractive; however, issues remain. With recent studies focusing on the use of near-infrared spectroscopic technique for non-invasive determination of chloride concentration in concrete structures, this review examines the applicability of this new technique in the rapid determination of other equally important physicochemical characteristics of concrete produced with this hazardous waste. The nature, source, composition, ecological effects of, and management options for drill cuttings are reviewed. Furthermore, the principles of near-infrared diffuse reflectance spectroscopy are highlighted and lessons from its practical applications in soil science and petrochemical, environmental, and civil engineering are discussed. A framework for a rapid near-infrared analysis of concrete produced with pre-treated drill cuttings for enhanced sustainability as a construction material is also proposed

    Diagnostic strategy and risk assessment framework for complex chemical mixtures

    Get PDF
    Environmental contamination comprises a complex mixture of both organic and inorganic contaminants. Understanding their distribution, behaviour and chemical interactions provides the evidence necessary to make informed decision and implement robust remediation strategies. However most of the current risk assessment frameworks, used to manage land contamination, are based on the total contaminant concentration rather than the concentration likely to pose significant risk, the bioavailable concentration. Further to this, the exposure assessments embedded within the frameworks do not explicitly address the partitioning and bioavailability of chemical mixtures. This inability may contribute to an overestimation of both the eco-toxicological effects of the fractions and their mobility in air and water; leading to an overestimation of health and environmental effects. In turn, this may limit the efficacy of the risk assessment frameworks to inform targeted and proportionate remediation strategies. The aim of this PhD study was to address this gap by delivering an integrated risk assessment framework for sites contaminated with complex chemical mixtures. Specifically, this PhD study investigated the fate and behaviour of complex mixtures of petroleum hydrocarbons, metals and metalloids in soils and its implication for partitioning, bioavailability and risk assessment through a 12 month mesocosms study. Further to this, an integrated approach, where contaminants bioavailability and distribution changes along with a range of microbiological indicators and ecotoxicological bioassays, was used to provide multiple lines of evidence to support the risk characterisation and assess the remediation end-point over a 6 month study. From the empirical data obtained from the two mesocosm studies, two Machine Leaning (ML) approaches have been developed to provide a quick and reliable tool to assess multi-contaminated sites with Visible and Near-Infrared Spectroscopy (Vis-NIRS), and to predict bioavailability and toxicity changes occurring during bioremediation. Overall this PhD study shed light on the behaviour of bioavailability, and toxicity of complex chemical mixtures in soils genuinely contaminated. This was supported through a comprehensive and integrated analytical framework providing the necessary lines of evidence to evaluate the implications for risk assessment and identify the end point remediation. The developed framework can significantly help to identify optimal remediation strategies and contribute to change the over-conservative nature of the current risk assessments

    Novel approaches to modelling and monitoring of heavy metal - contaminated sites

    Get PDF
    Soil contamination is becoming more prevalent, and with increasing global population, more people are being affected. Contaminated site assessment informs management of contaminant sources, affected soil and groundwater. Inaccuracy of assessment can lead to misclassification of sites, resulting in unnecessary remediation, or failing to remediate where it is required. The research presented in this thesis sought to reduce the risk of misclassification by addressing four key aspects of assessment; sampling, detection, mapping and monitoring. The study sought to refine sample size requirements by estimating the number of samples required to determine if the mean at a site exceeded Australian contamination thresholds. A large number of samples were required, yet this may be unrealistic due to time and cost. Portable X-ray Fluorescence spectroscopy (PXRF) provides real-time analysis of soil heavy metal concentrations, enabling more samples to be collected. There is room for improvement in the accuracy of PXRF measurements, so the study explored the potential of integrating these with spectra obtained from visible-near infrared spectroscopy (vis-NIR). Integration of the two spectral methods provided a measure of precision, yet only a marginal increase in accuracy. To improve mapping methods this study obtained measurements from within the Sydney estuary catchment and integrated these, alongside freely available covariates, into linear mixed models to predict lead and zinc concentrations in soil across the catchment. The final chapter of the thesis combined linear mixed models from two time points to predict change in heavy metal concentrations over time at a remediated Sydney parkland. The models provided a detailed snapshot of heavy metal distributions and factors influencing these distributions over time. It is evident in this thesis that much can be done to improve contaminated site assessment and help ensure land is safe and secured for future generations

    Irrigation Systems and Practices in Challenging Environments

    Get PDF
    The book Irrigation Systems and Practices in Challenging Environments is divided into two interesting sections, with the first section titled Agricultural Water Productivity in Stressed Environments, which consists of nine chapters technically crafted by experts in their own right in their fields of expertise. Topics range from effects of irrigation on the physiology of plants, deficit irrigation practices and the genetic manipulation, to creating drought tolerant variety and a host of interesting topics to cater for the those interested in the plant water soil atmosphere relationships and agronomic practices relevant in many challenging environments, more so with the onslaught of global warming, climate change and the accompanying agro-meteorological impacts. The second section, with eight chapters, deals with systems of irrigation practices around the world, covering different climate zones apart from showing casing practices for sustainable irrigation practices and more efficient ways of conveying irrigation waters - the life blood of agriculture, undoubtedly the most important sector in the world

    Sustainable Agriculture and Soil Conservation

    Get PDF
    Soil degradation is one of the most topical environmental threats. A number of processes causing soil degradation, specifically erosion, compaction, salinization, pollution, and loss of both organic matter and soil biodiversity, are also strictly connected to agricultural activity and its intensification. The development and adoption of sustainable agronomic practices able to preserve and enhance the physical, chemical, and biological properties of soils and improve agroecosystem functions is a challenge for both scientists and farmers. The Special Issue entitled “Sustainable Agriculture and Soil Conservation” collects 12 original contributions addressing the state of the art of sustainable agriculture and soil conservation. The papers cover a wide range of topics, including organic agriculture, soil amendment and soil organic carbon (SOC) management, the impact of SOC on soil water repellency, the effects of soil tillage on the quantity of SOC associated with several fractions of soil particles and depth, and SOC prediction, using visible and near-infrared spectra and multivariate modeling. Moreover, the effects of some soil contaminants (e.g., crude oil, tungsten, copper, and polycyclic aromatic hydrocarbons) are discussed or reviewed in light of the recent literature. The collection of the manuscripts presented in this Special Issue provides a relevant knowledge contribution for improving our understanding on sustainable agriculture and soil conservation, thus stimulating new views on this main topic

    APPLICATION OF GEOPHYSICAL AND GEOCHEMICAL METHODS FOR SOIL CHARACTERISATION IN SUSTAINABLE PRECISION AGRICULTURE IN SELECTED FARMS

    Get PDF
    All soils have potential for high yield for specific crops. Nigerian soils have potential for medium to high yield, but poor farming practices including the misuse of chemical fertilizers result in a number of constraints such as soil salinity, degradation and declining fertility, which militate against high crop yields. Nigeria, currently battling with food insecurity because population growth is not commensurate with agricultural production. Thus, there is need for urgent intervention in the agricultural sector. The aim of this study was to integrate geophysical and geochemical methods for sustainable precision agriculture in two farm sites of Covenant University and Landmark University, Nigeria. In this study, electrical resistivity, geochemical and satellite imagery methods were used for soil characterisation in farm sites at Covenant University, Ota, Southwest and Landmark University, Omu-Aran, North-central Nigeria between June, 2018 and January, 2019. The electrical resistivity data were processed using RES2DINV and Win-Resist software. Geochemical analysis of soil samples from the sites was conducted using ICP-MS in ACME laboratory, Canada. Monthly MERRA satellite data was used to determine the soil temperature and soil moisture content while soil salinity was estimated from Landsat-8 satellite imagery. The study showed that electrical resistivity of the topsoil in Covenant University farm ranged from 120 -500 Ωm, while that of Landmark University farm ranged from 345-527 Ωm. The soil types delineated at the Covenant University farm were clayey sand and lateritic clay; sand/lateritic gravelly sand was delineated at Landmark University farm. Potentially toxic elements were detected in the soil samples of both sites; arsenic (As), chromium (Cr), lead (Pb) and copper (Cu) exceeded FAO/WHO recommended standard limits in Covenant University farm. The pollution indices of Co, Cr, Ni, Pb and Mn in the Covenant University farm were within low to high contamination, while As was within medium to high contamination. In Landmark University farm, the pollution indices of Pb, Cu, Zn, Co and Cd ranged from low to medium, while As has pollution index within low to high contamination. Results showed elevated concentrations of As in all samples. Ca-Mg, P-Mg, Fe-Al, Ca-K, Mg-K and Na-K paired nutrients were positively correlated at 5% level of significance in both farmlands, indicating similar increase in both farmlands. Also, the geospatial maps revealed zones of high and low accumulation of essential macro nutrients within the farmlands. Landmark University farmland indicated higher soil salinity than Covenant University farm land. Soil temperature (ST) data at Covenant University farm ranged from 296 - 314 K, while ST at Landmark University farm ranged from 289 - 317 K. Soil moisture content data for both farms ranged from 23 – 113 3 3 mmand 10 - 110 3 3 mmin Covenant and Landmark University farms, respectively. The sandy gravelly soil of Landmark University farm is suitable for the planting of root and tuber crops such as carrot, yam, potatoes, turmeric and beets. Cabbage, leafy vegetables and lemon grass can be grown successfully in Covenant University farm. The ecological risk assessment of toxic metals, showed that arsenic may present a moderate to very high biological risk to both plants and animals that feed on the soil of both farm lands. The site-specific information of the farm sites has been provided. This study provides database that can serve as useful guide in soil management decision making for better yiel

    Factors affecting phosphorus requirements for the soils of South African Sugar Industry.

    Get PDF
    Master of Agriculture in Soil Science. University of KwaZulu-Natal, Pietermaritzburg 2016.Abstract available in PDF file

    Technological Eco-Innovations for the Quality Control and the Decontamination of Polluted Waters and Soils

    Get PDF
    The Special Issue “Technological Eco-Innovations for the Quality Control and the Decontamination of Polluted Waters and Soils” deals with the most recent research activities carried out at lab and field scale on eco-sustainable tools for the remediation of contaminated environmental substrates. It is particularly devoted to highlight the relevance of biological organisms (plants, microbes, algae) to assess the chemical contamination in water and soil and to remediate such matrices from the pollution caused by the human activities. Therefore, bioremediation is a primary focus of most of the articles published within the present Special Issue. Bioremediation is a promising environmentally friendly technology to deal with the chemical pollution in different ecosystem compartments and its integration with the traditional approaches might represent
    • …
    corecore