349 research outputs found

    Improving the performance of free-text keystroke dynamics authentication by fusion

    Get PDF
    Free-text keystroke dynamics is invariably hampered by the huge amount of data needed to train the system. This problem has been addressed in this paper by suggesting a system that combines two methods, both of which provide a reduced training requirement for user authentication using free-text keystrokes. The two methods were fused to achieve error rates lower than those produced by each method separately. Two fusion schemes, namely: decision-level fusion and feature-level fusion, were applied. Feature-level fusion was done by concatenating two sets of features before the learning stage. The two sets of features were: a timing feature set and a non-conventional feature set. Moreover, decision-level fusion was used to merge the output of two methods using majority voting. One is Support Vector Machines (SVMs) together with Ant Colony Optimization (ACO) feature selection and the other is decision trees (DTs). Even though the classifiers using the parameters merged at feature level produced low error rates, its results were outperformed by the results achieved by the decision-level fusion scheme. Decision-level fusion was employed to achieve the best performance of 0.00% False Accept Rate (FAR) and 0.00% False Reject Rate (FRR)

    An investigation of the predictability of the Brazilian three-modal hand-based behavioural biometric: a feature selection and feature-fusion approach

    Get PDF
    Abstract: New security systems, methods or techniques need to have their performance evaluated in conditions that closely resemble a real-life situation. The effectiveness with which individual identity can be predicted in different scenarios can benefit from seeking a broad base of identity evidence. Many approaches to the implementation of biometric-based identification systems are possible, and different configurations are likely to generate significantly different operational characteristics. The choice of implementational structure is, therefore, very dependent on the performance criteria, which is most important in any particular task scenario. The issue of improving performance can be addressed in many ways, but system configurations based on integrating different information sources are widely adopted in order to achieve this. Thus, understanding how each data information can influence performance is very important. The use of similar modalities may imply that we can use the same features. However, there is no indication that very similar (such as keyboard and touch keystroke dynamics, for example) basic biometrics will perform well using the same set of features. In this paper, we will evaluate the merits of using a three-modal hand-based biometric database for user prediction focusing on feature selection as the main investigation point. To the best of our knowledge, this is the first thought-out analysis of a database with three modalities that were collected from the same users, containing keyboard keystroke, touch keystroke and handwritten signature. First, we will investigate how the keystroke modalities perform, and then, we will add the signature in order to understand if there is any improvement in the results. We have used a wide range of techniques for feature selection that includes filters and wrappers (genetic algorithms), and we have validated our findings using a clustering technique

    Free-text keystroke dynamics authentication with a reduced need for training and language independency

    Get PDF
    This research aims to overcome the drawback of the large amount of training data required for free-text keystroke dynamics authentication. A new key-pairing method, which is based on the keyboard’s key-layout, has been suggested to achieve that. The method extracts several timing features from specific key-pairs. The level of similarity between a user’s profile data and his or her test data is then used to decide whether the test data was provided by the genuine user. The key-pairing technique was developed to use the smallest amount of training data in the best way possible which reduces the requirement for typing long text in the training stage. In addition, non-conventional features were also defined and extracted from the input stream typed by the user in order to understand more of the users typing behaviours. This helps the system to assemble a better idea about the user’s identity from the smallest amount of training data. Non-conventional features compute the average of users performing certain actions when typing a whole piece of text. Results were obtained from the tests conducted on each of the key-pair timing features and the non-conventional features, separately. An FAR of 0.013, 0.0104 and an FRR of 0.384, 0.25 were produced by the timing features and non-conventional features, respectively. Moreover, the fusion of these two feature sets was utilized to enhance the error rates. The feature-level fusion thrived to reduce the error rates to an FAR of 0.00896 and an FRR of 0.215 whilst decision-level fusion succeeded in achieving zero FAR and FRR. In addition, keystroke dynamics research suffers from the fact that almost all text included in the studies is typed in English. Nevertheless, the key-pairing method has the advantage of being language-independent. This allows for it to be applied on text typed in other languages. In this research, the key-pairing method was applied to text in Arabic. The results produced from the test conducted on Arabic text were similar to those produced from English text. This proves the applicability of the key-pairing method on a language other than English even if that language has a completely different alphabet and characteristics. Moreover, experimenting with texts in English and Arabic produced results showing a direct relation between the users’ familiarity with the language and the performance of the authentication system

    Credential hardening by using touchstroke dynamics

    Get PDF
    Today, reliance on digital devices for daily routines has been shifted towards portable mobile devices. Therefore, the need for security enhancements within this platform is imminent. Numerous research works have been performed on strengthening password authentication by using keystroke dynamics biometrics, which involve computer keyboards and cellular phones as input devices. Nevertheless, experiments performed specifically on touch screen devices are relatively lacking. This paper describes a novel technique to strengthen security authentication systems on touch screen devices via a new sub variant behavioural biometrics called touchstroke dynamics. We capitalize on the high resolution timing latency and the pressure information on touch screen panel as feature data. Following this a light weight algorithm is introduced to calculate the similarity between feature vectors. In addition, a fusion approach is proposed to enhance the overall performance of the system to an equal error rate of 7.71% (short input) and 6.27% (long input)
    • …
    corecore