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Abstract 

 

This research aims to overcome the drawback of the large amount of training data required 

for free-text keystroke dynamics authentication. A new key-pairing method, which is based 

on the keyboard’s key-layout, has been suggested to achieve that. The method extracts 

several timing features from specific key-pairs. The level of similarity between a user’s 

profile data and his or her test data is then used to decide whether the test data was provided 

by the genuine user. The key-pairing technique was developed to use the smallest amount of 

training data in the best way possible which reduces the requirement for typing long text in 

the training stage. In addition, non-conventional features were also defined and extracted 

from the input stream typed by the user in order to understand more of the users typing 

behaviours. This helps the system to assemble a better idea about the user’s identity from the 

smallest amount of training data. Non-conventional features compute the average of users 

performing certain actions when typing a whole piece of text. Results were obtained from the 

tests conducted on each of the key-pair timing features and the non-conventional features, 

separately. An FAR of 0.013, 0.0104 and an FRR of 0.384, 0.25 were produced by the timing 

features and non-conventional features, respectively. Moreover, the fusion of these two 

feature sets was utilized to enhance the error rates. The feature-level fusion thrived to reduce 

the error rates to an FAR of 0.00896 and an FRR of 0.215 whilst decision-level fusion 

succeeded in achieving zero FAR and FRR.  In addition, keystroke dynamics research suffers 

from the fact that almost all text included in the studies is typed in English. Nevertheless, the 

key-pairing method has the advantage of being language-independent. This allows for it to be 

applied on text typed in other languages. In this research, the key-pairing method was applied 

to text in Arabic. The results produced from the test conducted on Arabic text were similar to 

those produced from English text. This proves the applicability of the key-pairing method on 

a language other than English even if that language has a completely different alphabet and 

characteristics. Moreover, experimenting with texts in English and Arabic produced results 

showing a direct relation between the users’ familiarity with the language and the 

performance of the authentication system. 
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Chapter 1 

 

Introduction  

1.1 Introduction 

Over the past few decades, online services have become an essential tool for performing 

many tasks on a daily basis. Such services usually require a username and password in order 

to verify users’ identities. Unfortunately, the security of passwords is at risk because of social 

engineering, and they can be easy to crack using various methods, such as the dictionary 

attack and even a brute force attack [1]. Therefore, users are obliged to take extreme 

measures to safeguard their passwords, through procedures that include remembering long 

and complex passwords in addition to being required to change their passwords periodically. 

This causes users to become frustrated and apprehensive, especially when a single user is 

responsible for more than just a handful of ID/password pairs spread over multiple systems 

[2].  

Therefore, it has become necessary to find a more user-friendly method for authentication. 

One alternative to ID/passwords is behavioural biometrics, such as signature recognition, 

handwriting recognition, gait analysis etc., all of which rely on the user’s behavioural 

patterns, making the process intuitive for the user and difficult for others to imitate [3]. 

Unfortunately, all of these methods need highly reliable external hardware in order to take the 

measurements [1]. This is considered to be a critical drawback by the users, who are 

concerned mainly with the practicality of the system. The cost of these devices also makes 

them less desirable [1]. 

Monitoring keystroke dynamics, on the other hand, is considered to be an effortless 

behaviour-based method for authenticating users by employing their typing patterns to 

validate their identities [4]. A standard keyboard is all that is needed for measuring this 

biometric; no additional hardware is involved. More specifically, the use of free-text 

keystroke systems can be applied in many different settings to assist in real-life situations 
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because it uses arbitrary text, therefore provides a balance between security and usability [5]. 

In addition, free-text keystroke dynamics can enhance security through continuous and non-

intrusive authentication.   

An issue that free-test keystroke dynamics suffers from is that it incorporates extensive 

amounts of input from the user in order to learn the user’s keystroke habits. Whilst such 

experimentation can be tolerable in laboratory settings, this substantial input can in real-life 

situations be very irritating for the user. Therefore, this research focuses on developing 

techniques and capturing features that make use of the least amount of input to extrapolate 

the user’s identity which will allow for more practicality in real-world situation.  

This research considers a new method, based on the keyboard’s key-layout, to compare the 

timing features of free-text typing samples. The method classifies the text into different key-

pairs, depending on the position of the two keys on the keyboard. Timing features, such as 

the hold, down-down, up-up and up-down times, are extracted from the key-pairs and stored 

in the timing features’ vector. The timing features’ vectors are used to find the level of 

similarity among the training and testing samples.  

The study follows this structured method for extracting features, in order to increase the 

number of the key-pairs that can be found and compared in both the training and the testing 

samples. This will then enhance the stability of their means, which are the main components 

of the user’s timing vector. This will aid the key-pairing scheme to reduce the training input 

to the smallest possible amount. The main goal for that is to provide comfort and ease of use 

and, as a result, achieve a system that is both effective and practical. It is not enough to 

relieve users from the need to remember long passwords if they still have to type huge 

amounts of text when they are logging into the system. Therefore, the key-pairing scheme 

makes enrolment a simple, relatively rapid process.  

More features are investigated in order to pursue the same aim of reducing training input. 

This is done to increase the amount of information extracted from a user’s input and therefore 

build a better understanding about his or her typing behaviour. Therefore, a number of non-

conventional typing features were examined. These features can be extracted collectively 

during the typing of a piece of text in which the user’s typing habits are inspected. Features 

such as words-per-minute, error rate, and shift key usage are employed to find typing patterns 

that can be used to differentiate between individuals.  
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Fusion between the key-pairing features and non-conventional features is also conducted. 

Both decision-level and feature-level fusion are applied to achieve the best system 

performance. This allows the system to make use of both types of features to combine the 

timing characteristics and other input and editing patterns in the process of inferring the 

identity of the user.    

Moreover, the key-pairing method is developed to be language-independent as it can be 

applied to any language. Therefore, an additional test was done in order to investigate the 

method’s applicability in scenarios where the training samples are in a language different 

from English. Arabic was chosen due to its distinctive attributes that make it utterly different 

than English.  

1.2 Overview of User Authentication  

The number of information systems that people are using on a daily basis to perform regular 

but highly sensitive actions, such as logging-into bank accounts, online shopping, or even 

sending an e-mail is rapidly increasing. As simple as that may seem, such activities have to 

be carried-out in a completely reliable and secure manner. This emphasises the necessity of 

adapting a dependable authentication technique which is used as an assurance measure of the 

user’s identity with the intention of protecting the system from fraud and impersonation. 

Nevertheless, the fact that these activities are performed regularly enforces the need for it to 

be also useable and practical. 

Authentication, also called identity verification, is often confused with identification. They 

are, in fact, completely different concepts [6]. Identification is only concerned with 

determining who the user is; it does not acquire any extra information to verify the claimed 

identity [7]. An example of the most common technique for identification is using the login-

ID in computer systems, which is normally employed by making sure that this particular ID 

actually exists in the database. On the other hand, authentication is focused on testing the 

identity of a particular user to make sure that he or she is not impersonating another person’s 

identity and by doing so, getting access to that person’s private resources [1]. This is done by 

asking the user to provide a special kind of information, or item, that is only known, or 

possessed, by him or her. The most widely used method for authentication is passwords. That 

is normally done by comparing the provided password with the one associated with that user 

in the database. It is worth noting here that identification is often not enough in the majority 
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of computer systems; some sort of authentication has to be implemented, especially in highly 

secured systems, such as on-line banking [1]. This is similar to the process in which a bank 

employee doesn’t rely on the customer’s name when conducting bank operations, but asks for 

actual proof such as his or her driving licence or passport before handing any important 

information or carrying out any operation. 

Another scheme that is similar to user authentication and identification is user classification 

[8]. In user authentication, the system must determine if the sample is produced by the user 

whose identity has been provided to the system, whilst in user identification, the system must 

decide if the sample comes from any one of the users known to the system or someone un-

known to the system. In user classification, on the other hand, the system must find the 

identity of the user supplying the sample provided that the sample comes from one of the 

users known to the system [8]. 

In this research, user classification is applied yet the term user authentication is used. The 

decision to use user authentication was to reduce the confusion on the readers’ behalf. As 

most research in the area of information security is concerned with merely authentication and 

identification [9], it was seen to be more appropriate to use the term user authentication. 

Moreover, the study implemented here is considered closer to authentication than to 

identification. This is because some information is known beforehand about the user; that he 

or she is from the list of users known to the system. Furthermore, as the user classification is 

harder [8] and its results are conservative compared with authentication, the use of the term, 

user authentication will produce results that are considered understated. This is because user 

classification is a 1-to-M process whilst user authentication is a 1-to-1 process [9]. Moreover, 

in the classification process, it is possible to achieve authentication if needed. Therefore, from 

the readers’ point of view, using the term user authentication is more apt for this study. 

There are different critical issues that have to be accounted for when considering the 

application of any authentication system [10]. These issues include: accuracy, speed, 

resistance to counterfeiting, reliability, data storage requirements, enrolment time and user 

acceptance. Not all systems provide satisfactory levels of each of these issues, therefore 

selecting the best one for the application in-hand is crucial.  

A large amount of research has been done to develop various authentication methods over 

more than half a century. The main classes into which user authentication is categorised are 

three [11]: knowledge-based, possession-based, and biometric-based. In addition, other less-



5 
 

dominant methods are in-use in some applications.  Moreover, it is quite common to use two 

or more of these classes to provide safer, multi-factor authentication. The next sections 

explain, in some detail, each of these authentication classes and how they are used. 

1.2.1 Knowledge-based Authentication 

This authentication method uses a piece of information which is only known by the user [1]. 

The simplest information that a user might provide to confirm his identity is personal and 

historical information such as date of birth, address and national insurance number [12]. 

Although, this is still used in some circumstances, it does not provide adequate proof of the 

person’s identity since some of this information can be known by his or her friends or family 

members.  

The most used knowledge-based authentication method in electronic systems is the 

ID/password system. Although, it is the most common method for authentication, it is 

considered the weakest [13]. Passwords can be guessed easily by using the user’s personal 

details, as it is common for users to use their date of birth or children names as their 

passwords. Social engineering is a way of tricking a user to reveal his or her password 

through deceptive phone calls or phishing e-mails[1]. Passwords are also easy to crack using 

various methods, such as the dictionary attack and brute force attack, where an automated 

tool tries to discover the user’s password by trying every word in the dictionary or all 

possible combinations of characters, respectively [1]. Spyware and adware can also be used 

to capture the user’s password using programs such as key-loggers that operate transparently 

to the user to capture all his keyboard strokes and pass it to a harm-intending individual [14].  

All these are reasons for the user to use great measures to protect his or her password. Using 

passwords more than 8 characters long and containing upper case letters, lower case letters, 

numbers and special characters will significantly reduce the chance of an attacker succeeding 

in cracking the password [1]. Nevertheless, memorizing such hard passwords causes 

aggravation and frustration for users, especially when a single user is almost certainly 

responsible for more than one pair of ID/password, extended over various systems ranging 

from online-bank accounts to e-mail and social media accounts. In fact, the study conducted 

in [2] provided evidence that a user owns on average around 25 separate electronic accounts, 

each of which requires a password. Moreover, a user is forced to use 8 passwords on average 

every day. Consequently, passwords suffer from insufficiencies caused by the problematic 
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compromise between security and the ability to remember them i.e. “security-usability 

dilemma” or “password problem” [15]. 

1.2.2 Possession-based Authentication 

This authentication method is used to verify the user’s identity using an object of which only 

that user has possession [1]. It is also sometimes referred to as the ownership-based 

authentication. It is the oldest type of authentication; as early as using door keys to have 

access into rooms or buildings and using a driving licence to prove a person’s identity.  

Tokens are the most well-known objects used for possession-based authentication. Tokens 

can be one of three types [16]: proximity cards, smartcards, and password generating tokens. 

First of all, proximity cards are used primarily for accessing doors and work by releasing 

radio signals which are received by the door’s sensor. This kind of token is frequently left at 

home which causes the users to ask their managers or co-workers to allow them access, 

which, of course, defeats the purpose of the proximity cards. Second, smartcards are plastic 

cards embedded with a small memory chip which is used for accessing machines such as 

laptops that are equipped with smartcard readers. The problem that most smartcard users face 

is that they often keep the smart cards in the same place that they use to store their laptops, 

therefore, whenever the laptop is stolen, the smartcard would also be stolen. This means that 

whoever got them both can have access to the laptop’s content. Lastly, password generating 

tokens are small gadgets that generate a random sequence of numbers every minute to be 

used by the user as a password to log-in to the protected system. This kind of token is 

unfortunately expensive to administer and manage [17].  

All three kinds of tokens are at risk of being lost because of their small size. In addition, 

although the price of one token is fairly cheap, supplying all users in an organization with 

tokens and token readers is cumulatively costly [16].  

1.2.3 Biometric-based Authentication 

This authentication method uses something inherent only to the user as a means of identifying 

him or her [1]. Biometrics is categorised into three types: physiological, behavioural and 

cognitive traits. First, physiological biometrics is related to the user’s body, and thus, it varies 

from person to person [18]. Examples of such biometrics are: fingerprints, face recognition, 

hand geometry, and iris recognition. Although physiological biometrics are considered one of 
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the most secure authentication methods, it still can deny legitimate users from accessing the 

system when a change happens in their appearance like injuring their fingers [14].  

Secondly, behavioural biometrics depends on the user’s behavioural patterns, which make it 

instinctive for the user and hard to mimic by others [3]. These include: keystroke dynamics, 

signature recognition, handwriting recognition, hand gesture recognition, and gait analysis. 

Unfortunately most of the previous mentioned methods, except keystroke systems, need 

additional hardware to collect data, which is an un-desired extra cost [19].   

Lastly, Cognitive biometrics is related to perception, thought process, and understanding of 

the user. Cognitive biometrics is based on the user’s experiences; therefore, it is considered to 

be much easier for the user to remember [3]. Examples of this kind include question-based 

passwords, click-based graphical passwords and Passface graphical passwords. Question-

based passwords [20] use either fact based or opinion based questions to test whether the user 

is providing the same answers at the enrolment and the log-in phases. Click-based graphical 

passwords [21] allow users to enter their passwords using mouse clicks on specific pixels of 

an image. Passface graphical passwords [22] oblige the user to identify specific photographs 

of faces which were presented to him or her during the enrolment phase. According to the 

study conducted in [3], cognitive biometrics cannot work as a standalone method for identity 

verification, as it is easy for a skilled attacker to imitate. 

1.2.4 Other Authentication Methods 

There are some schemes which are considered less secure than the three main methods listed 

above, yet they are still used as a part of the authentication system in appropriate 

applications. These methods were included in fewer studies compared to the three major 

types. Two of these less-dominant methods will be discussed here. They are: mutual 

acquaintance and location.  

Firstly, the mutual acquaintance method [23] works by incorporating human relationships in 

the authentication process. A peer-level authentication is undertaken, in which a user seeks 

help from a third party, i.e. someone known and trusted by both parties, to aid in the process 

of validating his or her identity to a second user. Yet, it only makes sense to use such 

techniques in a social network environment where users actually know each other. 
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Secondly, the location of the user can be used for assessing his or her identity [24] especially 

in ubiquitous computing environments. In other words, if the location of the user corresponds 

to a place where he or she frequently visits, there is more chance of him being genuine as 

opposed to another place where he or she has never been. Moreover, if a user just logged-in 

from a certain location and, then, he or she logs-in again from a different continent within a 

couple of hours, there is a high chance that those two system accesses weren’t performed by 

the same person.  

Apparently, these two methods are normally not enough to be used on their own as an 

authentication scheme for highly secured systems [25]. Instead, they are normally used in 

combination with other methods in a multi-factor authentication scheme, which will be 

discussed next.  

1.2.5 Multi-factor Authentication  

Using merely one authentication method may not yield the preferable results. Therefore, a 

simple solution to enhance the security level of the system is to combine two or more 

methods to work as a multi-factor mechanism, also referred to as multi-modal authentication, 

for authenticating users. This will aid in supporting the weaknesses of using a single method, 

which will result in collectively strengthening the overall authentication system. It is often 

used in highly secured systems, such as the use of the PIN number and the ATM card to 

access one’s bank account [26]. Another example is found in the study conducted to 

determine the probability that the user is legitimate or not using short-text keystroke 

dynamics and his or her location [27]. 

Similarly, any two or more methods can be used to achieve a multi-factor authentication 

system. Most of these systems utilize authentication methods from the different 

authentication classes, listed above, in order to create an effective system. Figure 1.1 shows 

the relation between the three main authentication classes and some examples of how to 

combine them to create practical multi-factor authentication systems.     
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Figure 1.1: Multi-factor authentication system. 

1.3 Problem Statement  

The mechanism that is most commonly used for authentication in current computer systems 

is the ID/password method, even though it causes a number of problems with the 

security/usability aspect of these systems, as described in Section 1.2. There is an obvious 

trade-off between the security and the memorability of a password. This is known as “the 

password problem” and can be described briefly as follows: the password becomes harder for 

the user to remember as its strength against guessing and other malicious attacks increases 

[28]. The strengthening process includes using a greater number of characters that vary in 

type between letters, digits and special characters. The process also includes avoiding both 

well-known words and actual facts about the user. This problem is one of the main reasons 

why users become irritated with such schemes.      

The password problem provided computer researchers with a new challenge of balancing the 

password’s strength and its memorability level through the use of a number of methods, such 

as password phrases and automated password managers. In spite of the continual attempts to 

improve passwords, no technique has been found to be an adequate solution for the password 

problem. Using passphrases does not eliminate the need to memorise a phrase and might even 

make memorising tasks more difficult for users than single passwords. Also, automated 

password managers still require the use of a strong password to act as the key password in 

order to gain access to the password repository [16].    
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The next logical step, then, was to find an alternative authentication method that could 

provide the same level of authentication as the password method but without the drawback of 

the memorability issue and other vulnerabilities. Several methods were tested, including the 

use of a number of biometric traits that varied from the obvious fingerprint [29] and face 

recognition [30] to measuring brainwaves [31] and heartbeat sequences [32]. However, all of 

these techniques suffer from high deployment costs, including those for the additional 

hardware that must be used, as well as for maintenance and sustenance [1].  

Nevertheless, the deployment of the user’s keystroke patterns as a method for identity 

verification provides a less expensive mechanism and, more particularly, the use of free-text 

keystrokes is considered to be very easy for users. Using free-text keystrokes does not require 

memorising any text because the text used for enrolment does not have to be the same as the 

text used for log-in, which fits directly with the objectives of this study. 

Over the last four decades, a large amount of research has focused on enhancing the 

performance of the free-text keystroke dynamics approach. Unfortunately, a crucial 

drawback, and one from which it still suffers, is the large amount of input that is necessary 

for the enrolment phase. As a result, these systems are hampered by their reduced usability 

because enrolment is overly time consuming. Although most researchers overlook training 

time, it is an important factor in real-life applications. 

Therefore, this research aims to explore methods for comparing typing patterns using the 

smallest amount of training possible. Using only little training data reduces the amount of 

time the user spends enrolling, which enhances the degree of user-friendliness while 

maintaining the desired level of security.  

Moreover, the vast majority of the research done in keystroke dynamics was conducted on 

text typed in English language. However, the approach developed in this research is designed 

to be language-independent. This means that it can be applied to different scenarios and 

different input languages which should appeal to more users. This is tested using text typed in 

Arabic language, which has very different characteristics compared to that of the English 

language. 
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1.4 Aims and Objectives 

This research seeks to achieve the following main goal: 

To investigate and ideally produce a reliable free-text keystroke authentication 

mechanism that solves the problem of the need for massive amount of training data 

and can be applied to different languages.  

In order to achieve this goal, the following specific objectives have been identified:  

 To research the available literature for the best keystroke features applicable for 

use in this research.  

 To study the literature to find the feature subset selection methods most applicable 

to the system in hand. 

 To synthesise the related work to find the best classification methods for 

application in this problem. 

 To explore and design a keyboard-based key-pairing scheme for capturing users’ 

typing behaviours.  

 To implement a non-conventional features scheme for understanding the user’s 

typing patterns. 

 To investigate the fusion methods found in literature in order to realize how it can 

be applied to enhance the system performance. 

 To evaluate how well the suggested methods (on their own and fused together) 

benefit from the small amount of training data. 

 To test the feasibility of applying the key-pairing scheme on text in the Arabic 

language.  

1.5 Thesis Structure  

The rest of this thesis proceeds as follows (a demonstration of the thesis structure is 

illustrated in Figure 1.2):  

Chapter two: presents the keystroke dynamics theory, which includes a description of the 

biometric characteristics of keystroke dynamics, its phases, its advantages and limitations and 

its classes, i.e. fixed-text and free-text systems. The techniques that are followed for feature 

extraction and performance measurement are then considered, followed by a discussion of 
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state-of-the-art research that has been done in both fixed-text and free-text keystroke systems. 

This section concludes by outlining the factors affecting the performance of these systems, 

the various applications that benefit from these systems and the level of protection that these 

systems provide against some of the common security threats. 

 

 

Figure 1.2: Thesis structure. 
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Chapter three: describes the key-pairing method. The original method, which follows a 

simple key-pairing mechanism and classification method, is described first. An explanation 

of the original key-pairing technique is presented along with the timing features that were 

included in the study. An indication of the data collection technique is then provided, 

followed by the data space. The distance calculation process is explained next. The results of 

the experiment and comparisons with other recent studies in the same area are presented. 

After that, the extended version of the key-pairing method is presented. The modifications 

that have been added to the original method in order to improve performance are addressed 

briefly. And then, an explanation of the followed key-pairing technique is presented along 

with how it has been applied in the experimentation process. The timing features that were 

included in the study are discussed too. The feature subset selection and classification method 

is discussed, respectively. A description of the data collection technique and the data space is 

provided. The experiment results, in addition to comparisons with the original method and 

other studies in the area of keystroke dynamics, are also provided.  

Chapter four: introduces the non-conventional features method. A description of the 

features and how they are extracted is explained together with the classification method used. 

After that, the data collection and data space are described. Experiment details are then 

presented. Results are presented and comparisons with the key-pairing method are then 

conducted.  

Chapter five: provides an overview of fusion techniques and applies it to the methods 

described in Section 3 and Section 4. Both feature-level and decision-level fusion are applied. 

Results from both fusion techniques are produced in addition to a discussion of the level of 

improvements each has on the previously mentioned methods. 

Chapter six: examines the applicability of the key-pairing method on Arabic text. In this 

chapter, the difference between English and Arabic is presented in addition to the way key-

pairing method is applied in the case of Arabic text. The data collection and data space are 

also touched on in this section. Results from the Arabic study, along with comparisons with 

the experiment conducted on English input, are presented.  

Chapter seven: offers a conclusion for the topic and outlines the contributions that have been 

made by this research. Any limitations faced during this research are also presented. It also 

lists the future work that follows the research done in this thesis.   
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Chapter 2 

 

Overview of Keystroke Dynamics  

2.1 Introduction  

Keystroke dynamics utilize one’s innate typing patterns for validating his or her identity 

which is deemed to be a natural behavioural-based method for authenticating users. As 

mentioned in [33], keystroke dynamics is “not what you type, but how you type.” In this 

approach, the user types in text, as usual, without any kind of extra work to be done for 

authentication. Moreover, it only involves the user’s own keyboard and no other external 

hardware.  

The original idea of using keystroke patterns for user identification/authentication purposes 

originated from the idea of identifying the sender of Morse code on a telegraph machine 

around 1895, where operators had been able to identify the sender of a message by the 

rhythm, pace and syncopation of the received taps [19]. Likewise, the uniqueness of a user’s 

typing pattern is noticeable as anyone in close proximity to a certain typist is often able to 

recognise the typist through his or her typing rhythm [19]. Therefore, keystroke patterns 

provide promising identity verification abilities [34]. 

Checking the handwritten signature is standard when a person provides a written document in 

real life. Similarly, when providing an electronic document, a natural equivalent of the 

handwritten signature, using the keyboard, is the typing rhythm. This is due to the fact that 

the same neuro-physiological factors that permit the uniqueness of handwritten signatures 

also exist in a user’s typing pattern [35]. A digital signature is created when a user uses a 

keyboard, in the shape of time elapses between keystrokes, which can be pretty consistent for 

familiar and repeatedly typed text [36]. 

In 1975, Spillane [37] pioneered the suggestion that a person’s  typing keystrokes can be used 

to identify him or her, yet the first recorded research in keystroke dynamics was not until 
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1977 when Forsen et al. [38] first examined the possibility of distinguishing between users 

based on the way they type their names. Three years later, Gaines et al. [39] investigated the 

likelihood that users could be identified by the typing patterns that they follow when typing 

long pieces of text. Since then, researchers began to show interest in proving the hypothesis 

that typing patterns can be used for user authentication. Experiments were conducted to find 

typing features that can be used effectively for user authentication. Results from these tests 

showed that the similarity between typing samples from the same person is high with respect 

to the time delays it takes the user when typing one key or two successive keys [19]. These 

studies have also investigated the ability of several techniques to achieve the correct decision 

about the user’s identity. Some of this research will be examined later in this Thesis. 

2.2 Biometric Characteristic of Keystroke Dynamics 

Specific properties have to be present and valid in the system at all times to ensure that 

keystroke dynamics is considered a biometric feature that can be used to distinguish between 

users with high accuracy [25]. These properties are briefly described below:  

- Universality: every person should have this feature.  

- Distinctiveness: every two users should be adequately different in this feature. 

- Permanence: this feature value should not change after a period of time. 

- Collectability: this feature can be quantitatively measured.  

- Performance: the system using this feature is accurate. 

- Acceptability: this feature is ethically accepted by users. 

- Circumvention: this feature is hard to deceive.   

In the case of keystroke dynamics, each user can easily utilize the keyboard to type-in text, 

which fulfils the universality property. The timing features extracted from the user’s typing 

sample is considered distinctive enough to recognize a user for verification purposes more 

than that for identification purposes. Keystroke dynamics is, unfortunately, variable through 

time due to the physical or mental state of the user at that specific period of time, which 

reduces the level of the permanence property. Keystrokes are easily collected while users are 

typing on the keyboard, whether it was a long e-mail of several paragraphs or even a single 

password. The performance of keystroke dynamics systems varies a great deal depending on 

the features and classification methods used and on the environment surrounding the 

experiment. The privacy concerns of users, whom might not accept the idea of their 
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keystrokes being stored and analysed, may lower the level of the acceptability of the 

keystroke dynamics, particularly in the situation of typing sensitive information. Keystroke 

dynamics are very hard to imitate but, nevertheless, replay attacks are still a serious threat. 

Table 2.1 summarizes the level of fulfilment that keystroke dynamics have for each property 

as stated in [25].  

 

Table 2.1: Biometric properties of keystroke dynamics. 

 Property 

Feature Universality Distinctiveness Permanence Collectability Performance Acceptability Circumvention 

Keystroke 
Dynamics 

High Medium Low High Medium Medium Medium 

 

2.3 Phases of Keystroke Dynamics Authentication  

There are two main phases that a user has to go through in order to be authorized by 

keystroke dynamic systems; namely: the enrolment phase and the log-in phase [19]. The first 

phase has to do with collecting data about the user such as username and password in 

addition to capturing the user’s typing behaviour [40]. The system gathers the keystroke 

times and extracts the timing features to create a template for each user’s typing behaviour. 

This template, also referred to as a user’s profile, is stored in a database that corresponds to 

other details of the user.  

The second phase takes place whenever the user needs to actually use the system. At that 

time, the system collects the user’s keystroke times and, then, extracts the timing features in 

the same manner as followed in the enrolment phase. After that, the system performs feature 

matching with the user’s template, which is stored in the database [40]. Based on the results 

of the matching process, one of two actions will take place: granting access to the user if the 

two sets of data are sufficiently similar or otherwise denying access to the user. Figure 2.1 

shows the flow of these two phases. 

These two phases were represented in all keystroke dynamics studies by conducting five 

main experiment parts in the following order: recruiting participants, requesting a typing task 

to be done by the participants, collecting the keystrokes timing data, obtaining timing features 

from the raw keystroke data, training the classifier using part of the keystroke data and using 

the other part for testing the classifier [41]. Section 2.8 will go through the previous 
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mentioned stages in order to compare and contrast what has been done in this area as reported 

in the current literature.   

 

Figure 2.1: Flow of the two keystroke dynamics phases. 

2.4 Advantages and Limitations  

There are several reasons that make keystroke dynamics a strong contender for replacing the 

ID/password scheme as it provides good level of security while sustaining the usability level 

that the system’s users are mostly intrigued by. First of all, it is relatively cheap compared to 
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other biometrics as it requires no additional hardware [42]. Moreover, since keystroke 

patterns depend on the user’s behaviour, it is considerably difficult to copy by others and 

impossible to be lost, stolen, or loaned [4]. It also provides transparent authentication since it 

is completely non-intrusive, i.e. the user performs it unknowingly. Therefore, it is considered 

the most natural method for authentication in computer systems, which depend mainly on the 

keyboard’s input operation [19]. 

Additionally, keystroke dynamics can be used in multi-factor authentication as a means of 

strengthening the password [13]. This is done in an unobtrusive manner, since the user 

already needs to enter his or her password for authentication, during which the keystroke 

timings are captured. Therefore, it is not likely that the impostor can gain access to the system 

if he or she had illegally obtained the password. It also provides the potential for performing 

continuous authentication during the whole time that the system is in use, as opposed to only 

providing authentication at the beginning of a session [43, 44].  

In addition to the physical safety it provides for PC’s and laptops, it is also used for online 

services protection, since keystroke data can be gathered from anywhere in the world that has 

access to a keyboard and an internet connection, and with the aid of special software such as 

client-side Java applets [45]. Furthermore, this method is not only limited to computers, all 

devices equipped with a keyboard can benefit from it. This includes devices like tablets, 

smartphone, ATM machines etc. [46]. 

Nonetheless, similar to other biometrics, keystroke dynamics has some limitations that may 

affect its performance; especially because it is such a delicate measurement which is affected 

by changing the keyboard used for collecting data. It is also sensitive to the user’s mental and 

physical condition [47]. Certain conditions can change the typing pattern that the user 

normally follows such as: state of mind, fatigue, injuries etc. [48]. Moreover, other external 

conditions can also cause the user’s typing patterns to vary. Text choice, text length, entry 

mode etc. are all factors that can cause the user to behave different than normal [49].Typing 

errors also cause the user to behave in a different way, thus causing the system to react 

differently [50]. Furthermore, since it depends on the human behaviour, typing patterns are 

subject to change over time, with no obvious reason [18], which lowers its level of reliability. 

Moreover, due to the little amount of information that can be inferred from typing data, large 

amount of data are required to train the classifiers used for the authentication process [19].  
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In addition, the amount of false rejects that a genuine user may face is high compared with 

other biometrics. It was found in [51] that 30% of the users will face an account lockout 

before their 50th authentication session. Lastly, despite the amount of research that had 

already been conducted in the area of keystroke dynamics authentication, the performances of 

these different studies are very difficult to compare. This is due to the huge amount of factors 

that might vary from one experiment to another [4]. 

2.5 Classes of Keystroke Dynamics  

Two types of keystroke systems are discussed in the literature, for performing authentication 

in computer systems. These two classes are: fixed-text and free-text keystroke systems, also 

referred to as static and dynamic [18]. This section discusses the two classes in some detail, 

yet Section 2.8 will examine some of the significant studies conducted in each of these 

classes. 

Fixed-text forces the users to use only a pre-defined text to produce the typing samples. The 

pre-defined text varies in the research done in this area in the way that some have utilized the 

same shared password for all users [52] and others used different short fixed text for each 

user such as using the user’s name [53], log-in IDs [54] or passwords [12]. Other research 

utilized long phrases of fixed text [55], while others focused on short words [56]. The main 

function of the fixed-text systems is applying the authentication scheme at log-in time in 

order to verify the user’s identity at the beginning of the session only [19]. This is done by 

forcing the user to retype their password, or any predefined text, a number of times at the 

enrolment phase in order to determine the user’s typing rhythm for that specific password. 

This is considered a critical usability issue because of the extra load it adds to the user. In 

addition, the user still needs to memorize the predefined text in order to use it at each log-in. 

Generally speaking, fixed-text keystrokes are mainly used for strengthening passwords  [13, 

57]. 

When the user is typing his or her password, in fixed-text keystroke dynamics, the system not 

only checks the accuracy of the password but also the typing manner that the user followed. 

Although Monrose et al. [13] have demonstrated that keystroke dynamics have the ability to 

make even weak passwords protected against brute force attacks, Song et al. [58] denoted that 

if the time between the keystrokes is exposed whilst the user types a certain password, it will 

considerably reduce the effort and time that it will take an attacker to guess the password 
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using the brute force attack.  A valid solution for this problem is to use encryption to conceal 

the keystroke latency time, as done in [59]. 

The issue of the user’s increased familiarity with the password, after using it for a 

considerable amount of time was pointed out in [34]. This causes the user’s typing pattern to 

change and the overall typing speed to increase, which will negatively affect the 

authentication process. Moreover, the authors of [60] indicated the problem that occurs when 

a user wishes to change his or her password. In that case, the system will need to re-learn, 

which requires the user to go through the enrolment process again and re-type the new 

passwords repeatedly every time the password is changed.   

Most of the early research in keystroke dynamics only focused on the keystrokes generated 

by typing fixed words, starting as early as 1975. In fact, the majority of work in the field of 

keystroke dynamics was performed using fixed text [18].  

Free-text keystroke systems, on the other hand, don’t restrict users to a particular text; on the 

contrary, users are given complete freedom to use any text of any length without any 

constraints. Free-text authentication can be carried-out either periodically or continuously [4]. 

Unlike fixed-text, free-text systems can continue to collect the keystrokes, after successfully 

passing the log-in session, throughout the whole time that the user is logged-in. This can then 

ensure the identity of the user during the full duration of that session [40]. In continuous 

authentication, a static authentication is performed first at log-in, and then after, continuous 

authentication is carried-out during the remaining time of the session. Please refer to Figure 

2.2 for further details about the flow of continuous authentication. In free-text systems, the 

user’s typing pattern is typically monitored during several days, in which he or she is 

performing regular typing tasks such as writing e-mails or typing word documents. While  

both free-text and fixed-text systems are quite similar in the way that they utilize the key 

press and release times to build a user’s behaviour profile, they clearly differ in the way that 

the system is trained and applied [42]. 

In 1980, Gaines et al. [39] first utilized long text in free-text authentication, and in 1995, 

Shepherd et al. [61] was the first to show interest in continuous free-text authentication. In 

1997, the first organized attempt to use a free-text keystroke system was conducted by 

Monrose and Rubin [33] where both fixed-text and free-text were used. The overall 

performance was not encouraging for free-text giving only 23% correct classification, while 

fixed-text produced about 90% correct classification. This shows the complexity of using 
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free-text systems compared with the fixed-text systems. Nevertheless, free-text systems have 

gone a long way since that experiment and much better results have been obtained using 

more sophisticated techniques. 

 

 

Figure 2.2: Continuous authentication. 
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to more noise, since it is more likely for the user to introduce pauses in longer typing tasks 

compared with short and familiar passwords in the case of fixed-text keystrokes [62].  

Furthermore, the usefulness of free-text keystroke systems had decreased since the 

development of the Graphical User Interface (GUI), which resulted in reducing the amount of 

typing that a user goes through when using his or her PC [63]. In contrast to using console 

systems, such as MS-DOS, in which users type commands to perform all operations, almost 

all operations can be performed via mouse clicks in the GUI system.  This also applies to 

some services such as online banking, in which there is often no chance  for entering text 

except for the time when the user logs-in [4]. 

2.6 Keystroke Features  

After obtaining the users’ raw data, extracting the keystroke features is performed [64]. These 

features are computed using two main values, specifically: the press time (Dn) and the release 

time (Un) of each key (n), in milliseconds.  

One keystroke feature is extracted from the timing of a single pressed key as shown in Figure 

2.3. It had been used solely as a timing feature in [65] and coupled with other timing features 

in [45, 66, 67]. This feature is explained below: 

‐ Duration time (also called dwell time or hold time) (H). It is the time a key is pressed 

until it is released. It can be computed using the following formula: 

	 	                    (2.1) 

Three keystroke features are extracted from the timing of each di-graph, i.e. two successive 

keys, as shown in Figure 2.3. These features are called keystroke latencies or flight times. 

The three types of keystroke latencies are listed below: 

‐ Down-down time (DD) (also called press-press time (PP)): It is the interval time 

between two successive key presses; used in studies such as [68, 8, 69]. It can be 

computed using the following formula: 

	 	                   (2.2) 

‐ Up-up (UU) time (also called release-release time (RR)):  is the interval time between 

two successive key releases; utilized in [70, 52]. It can be computed using the 

following formula: 

	 	                    (2.3)                 
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‐ Up-down (UD) time (also called release-press time (RP) or inter-key time):  is the 

interval time between a key release and the next key press; examples of studies 

exploiting it are [49, 71, 50] . Moreover, UD time can be a negative value in the case 

that the next key is pressed before releasing the previous one, which can happen in the 

case of very fast typists. It can be computed using the following formula:  

	 	                   (2.4) 

 

 

Figure 2.3: Keystroke timing features. 

 

Most studies employed more than one of these latencies at once [72, 52]. Moreover, some 

studies claim that using hold time yields better results [54], while others argue that latency 

features produce better results [69]. Nonetheless, many studies deduced that using 

combinations of both hold and latency times have the best effects on the system performance 

[66, 72].  

Moreover, the down-down (DD) latency was utilized between more than two keys. 

Bergadano et al. [73] and Bond & Awad [74] employed it on tri-graphs, i.e. three keys; while 

Gunetti and Picardi [8] applied it to n-graphs, i.e. 4-graph, 5-graph and 6-graph. Using a 

larger ‘n’ increased the authentication performance based on the work done in [73]. 

Although, di-graph and tri-graph time has been used in plenty of research, Sim and 

Janakiraman [75] concluded from their several experiments that using di-graphs/tri-graphs is 

not a good discriminator between users when the actual typed words are not taken into 

consideration. This is because the context of the text that a particular letter is included in 

regulates the manner in which it is typed [44] i.e. the letters ‘te’ have different latency times 

in the words ‘sentence’ and ‘teacher’. Therefore, di-graphs/tri-graphs are more effective for 

keystroke dynamics when using context-specific n-graphs.  
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In many keystroke systems, users’ profiles consist of the mean and/or standard deviation of 

each key hold time and/or di-graph latency [33, 76]. Furthermore, only the latencies’ means 

and standard deviations for di-graphs that have occurred a minimum number of times are 

included in the users’ profiles in some studies such as [77, 78]. Moreover, only a fixed set of 

letters and two letter combinations were used in [44, 79]; these sets were chosen based on 

each letter’s frequency in the English language. Letters including E, A, T etc. and di-graphs 

including: AT, TH, HE etc. are frequently found in English text, therefore, it is good practice 

to use the mean and standard deviation of their duration and latencies in the user’s template, 

which will increase its stability. 

Other less common features were considered as well. Typing speed or words-per-minute 

(WPM) was used in [70]; it is the number of words that a user types in a minute. Frequency 

of error was also used in [80]; it measures the number of times that the user makes use of the 

backspace key. Shift key usage was used as well in [57]; it calculates the percentage of using 

the right and left shift-keys. Moreover, the additional keys usage was used in [49]; it 

computes the frequency of using special keys such as the num-pad and the control keys. Then 

again, to use these features, a piece of text with considerable length has to be typed in order 

to correctly capture the user’s habits. 

Another feature that was used for inferring the typing behaviour for users, was the typing 

pressure [81, 82]. This feature computes the pressure applied to each key being pressed on 

the keyboard, whilst the user is typing. This feature suffers from the drawback of having to 

use a special kind of keyboard, which defeats the purpose of using keystrokes in the first 

place.  

Other features that also suffer from having to use additional hardware include the finger 

placement feature [83]. This feature analyses the positioning and the angle that the fingers are 

applying on each key being pressed.   Even the finger choice for pressing each key on the 

keyboard is studied as a feature for keystroke dynamics [84]. Moreover, the shape and 

position of hands while typing were also used as features to infer users’ typing behaviour 

[85]. Unfortunately, all these features require an external camera to capture the shape, 

position of the hands and the placement, and choice of the fingers during the time of 

authentication. 

Quite a recent study has investigated the use of keystroke intensity as a feature for user 

authentication [86]. Keystroke intensity overcomes the problem of typing pressure, hand 
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shape and position, finger placement and choice as it does not impose the need for an 

additional camera. It is captured using the PC’s built-in microphone which is used to acquire 

an audio recording of the user’s typing. Nevertheless, this feature enforces a semi-controlled 

environment in which the user has to be alone in a quiet room to carry-out the typing. 

Table 2.2 lists all the keystroke features used for user authentication.  

 

Table 2.2: Features of keystroke dynamics. 

Category Features 

Conventional Features 

Hold time 

Down-Down time 

Up-Up time 

Down-Up time 

Non-conventional Features 

Typing speed 

Error rate 

Shift key usage 

Special keys usage 

Additional Hardware Features 

Typing pressure 

Fingers placement and choice 

Hands shape and position 

Keystroke intensity 

 

2.7 Performance 

Unfortunately, not only keystroke systems but all biometric authentication systems 

sometimes suffer from mistakes in the authentication decision. Some reasons that might 

influence the accuracy of the system are related to the classification method of choice, the 

features included in the timing vector, and the quantity of training data [4].  

It is possible for an imposter to be mistakenly identified as the legitimate user if, by chance, 

the typing patterns of these two individuals are close enough to the extent that the 

classification method fails to distinguish between them. Conversely, when one of the 

legitimate user’s fingers slips off the keyboard and causes the typing pattern to change 

slightly, the user may not be successfully authenticated. Thus, it is important to have some 
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metrics to exactly measure the error rate; this helps to identify the performance level that can 

be expected and tolerated by that system’s users [87].  

There are four possible results in a two-class problem which should be taken into 

consideration in any pattern classification system such as keystroke dynamics authentication 

[25]. The classifier will produce either a positive classification, if this is the legitimate user, 

or a negative one, if this is an imposter. If the actual classification is positive which means 

that the user under study is the legitimate user, then the result is true accept in the case where 

the classifier predicted a positive classification and then the result is otherwise a false reject. 

In the same manner, if the actual classification is negative, which means that the user under 

study is an imposter, then the result is false accept in the case where the classifier predicted a 

positive classification and the result is otherwise a true reject. Table 2.3 demonstrates all the 

possible result combinations in a more concise manner. True accept and true reject 

demonstrate the quantity of correctly classified users. False accept and false reject, on the 

other hand, are used to compute the system’s error rate [25]. 

 
Table 2.3: Two-class decision result’s combination. 

 
Predicted class 

Positive Negative 

Actual class 
Positive True accept False reject 

Negative False accept True reject 

  

There are many methods to evaluate the performance of a keystroke dynamics system, thus a 

variety of error rates can be found in the current literature.  

A very simple way to measure the error rate was used in earlier studies; using the accuracy 

measure, which is the percentage of successfully classified attempts compared to the total 

number of completed attempts; this technique was adapted in [33, 71, 68]. Quite the opposite, 

a misclassification error is the percentage of incorrect classifications compared to the total 

number of attempts; it was applied in [88].  Both rates are computed using the following 

equations: 

	 	 	 	 	 	 	 	

	 	 	
             (2.5) 

	 	 	 	 	 	 	 	 	

	 	 	
        (2.6) 
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The most frequently used error rates for determining the performance of an authentication 

system are: the False Accept Rate (FAR), also referred to as the Imposter Pass Rate (IPR) and 

the False Reject Rate (FRR), also called the False Alarm Rate (FAR). The FAR is the 

percentage of impostors who have successfully gained access to the system, while the FRR is 

the percentage of legitimate users who have been denied access to the system. These two 

error rates were used by the majority of free-text keystroke systems, including [8, 50, 80]. 

These error rates are computed using the following two formulas: 

	 	 	 	 	 	

	 	 	 	 	
              (2.7) 

	 	 	 	 	 	 	 	

	 	 	 	
             (2.8)       

When looking at the numbers produced by both FAR and FRR, the smaller these values are, 

the more secure the system under study is. As shown in Figure 2.4, there is a trade-off 

between the FAR and FRR which can be controlled according to the strictness level of 

security required [4]. FAR is required to be as low as possible in highly secured applications, 

even though a higher FRR compromise might be experienced. Meanwhile, a higher FAR is 

somewhat acceptable in systems where security is not the major aim yet the system’s 

usability is of higher priority.  

 

 

   

 

Figure 2.4: An example showing the relationship between FAR, FRR, and EER. 
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The other commonly used error rate is the Equal Error Rate (EER), also referred to as Cross-

over Error Rate (CER), which represents the value where FAR and FRR are equal. It was 

used in many studies such as [68, 69, 89], where lower EER values indicate a more secure 

system. Figure 2.4 demonstrates the relationship between FAR, FRR, and EER with respect 

to different threshold values and how it reflects on the security level of the application in-use.  

ZeroFAR and ZeroFRR are two other error rates used in [12, 66]. ZeroFAR corresponds to 

the FRR value when the FAR is equal to zero and, likewise, ZeroFRR corresponds to the 

FAR when the FRR is equal to zero. This is performed by setting the threshold so that FAR 

becomes zero in case of ZeroFAR and, similarly, setting the threshold so that FRR becomes 

zero in case of ZeroFRR. 

The Receiver Operating Characteristic (ROC) curve is another performance measuring 

method. It finds the relationship between the FAR and the True Accept Rate (TAR), which is 

the percentage of legitimate users correctly classified. A high accuracy system would have 

this curve plotted closer to the upper left corner of the diagram, as shown in Figure 2.5. This 

error rate was used in studies such as the one conducted in [67].  

 

 

Figure 2.5: An example of ROC curve. 

 

Due to the fact that free-text keystroke authentication can be a continuous process, another 

metric was proposed in some studies. This metric exactly defines the amount of time, in 

number of keystrokes, that it takes for the system to discover that an imposter has had access. 

This aims to detect the impostor as fast as possible, incorporating as few keystrokes as 
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possible, which implies that an attacker would be detected before he can do more harm to the 

system.  The number of keystrokes performed before the imposter was detected was used in 

[44, 77]. 

Giot et al. [90] introduced a Failure To Acquire Rate (FTAR) in their paper, which 

investigates the acquisition process of keystroke data. This error rate identifies the ratio of 

acquisition difficulties that face the users. A common example of such difficulties is typing 

mistakes in fixed-text keystroke dynamics. Such mistakes compel the users to delete the word 

being typed and start all over again. This might cause some frustration for the users, which 

deteriorates the usability of the method in-hand.   

The fact that there is no major method used for measuring the performance in the studies 

relating to keystroke dynamics authentication, makes it difficult to compare the results of 

these studies. This has a critical impact on the overall perception of the methods used and 

may result in incorrect conclusions about them [25]. 

2.8 State of the Art in the Area of Keystroke Dynamics 

Recognition 

As mentioned previously, keystroke dynamics have been around, in one form or another, 

since the late 1800’s. Having said that, it wasn’t until 1975 that the first preliminary tests 

were conducted. An enormous amount of work has since been done in the next 40+ years. 

Before going into details of what has been done in fixed-text and free-text keystrokes, it is 

worth noting that many of the methods used for classification have been utilized similarly in 

both these systems. The methods used for classification were categorised in [19] to range 

from simple statistical methods to more complex pattern recognition and neural network 

algorithms. Moreover, an even more sophisticated combination of methods was used in many 

cases.  

Simple statistical methods were used as a classification scheme for typing patterns in several 

keystroke systems studies; in which the mean and/or standard deviation of the hold and/or 

latency times were used for differentiating between users, as performed in [34, 78]. A variety 

of distance techniques have been used; such as: Euclidean distance [50], weighted Euclidean 

distance [76], scaled Manhattan distance [44] and Bhattacharyya distance [75]. Other 
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statistical methods such as Markov chain model [89] and K-nearest neighbour [12, 68] were 

also utilized.  

Pattern recognition and machine learning methods were also utilized as classification 

methods for keystroke authentication. For example: Bayes classifier [54], support vector 

machines (SVMs) [70], decision trees [71] and Random Forests [57] were used.  

Moreover, Neural networks were also implemented for the purpose of distinguishing between 

the typing behaviour of different users, as in [12, 54, 91]. Although using Neural networks 

yielded good results, it is considerably slow to apply and train. 

Furthermore, some research has considered fusion in keystroke dynamics. One of which is 

the work done in [72] which proposed a decision-level fusion between two methods. The first 

being the Gaussian similarity score between a reference template and a test data template. 

The second being the Direction Similarity Measure (DSM) for comparing the typing patterns 

of the user. The two scores were fused by using a weighted sum rule. Combining the two 

methods delivered more accurate results compared with using each method on its own [92]. 

A brief description of some of the research conducted in fixed-text and free-text keystroke 

dynamics is presented here. A chronological overview of the various algorithms deployed in 

each class is stated, in addition to the experimental details in the different studies, such as the 

number of participants and samples and the typing text used for training and testing the 

systems.  

2.8.1 Fixed-text Keystroke Dynamics 

It was 1975 when Spillane [37] initially suggested using the keyboard as a means for 

collecting keystrokes for identification purposes. Two years later, tests were conducted by 

Forsen et al. [38] to check if keystroke dynamics could be used as a mechanism to 

differentiate between typists. The participant’s name was typed by its owner and by other 

participants. Statistical comparisons proved that the manner that a user types his or her name 

was distinguishable from the way another user typed the same name. 

Three years later, Card et al. [93] suggested a psychological model for explaining the human 

interaction with computer programs on a keystroke level.  It summarizes a human-machine 

session as: 
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	 	 	 	 	                   (2.9) 

Where Tacquire is the time needed to assess the task and decide how to solve it. This differs 

between users based on the difficulty of the task and the user experience with it, therefore it is 

not considered a good way to distinguish between users. While, on the other hand, Texecute is 

the actual time needed to perform the task. It basically describes a mechanical act, so it can 

be described, in the case of a typing task, as: 

∑ 	                (2.10) 

Where Tm is time for mental planning and Tk is the time to perform the key press for 

character (i). The sum of this amount for all characters (n) denotes the execute time for a 

subsection of the text. Moreover, the text subsections are on average between 6 and 8 

characters long; this is the number of characters that the brain can handle at once [94].  

Therefore, keystrokes less than 6-8 are good candidates to show clear keystroke patterns.  

Another related theorem is Fitts’s law [95]. It defines the connection between the target 

distance, width, and time needed to perform a target acquisition task. It represents the 

speed/accuracy trade-off in rapid, aimed movement [96]. The movement time is computed 

using Fitts’s law as follows: 

	 	 1                 (2.11) 

Where MT is the movement time, a and b are empirically determined constants, that are 

device dependent, D is the distance of movement from start to target and W is the width of 

the target. 

Fitts’s Law can be physically interpreted as: big targets at close distance are obtained faster 

than small targets at long range [97]. This can be applied to the keyboard layout where the 

modifying keys that are pressed most often, i.e. space, enter and shift, are larger than other 

modifying keys. They are also closer to the alphanumeric keys which are frequently used 

[98]. These two characteristics make these keys, i.e. space, enter and shift, easier to hit. 

Moreover, Fitts’s law aims to reduce the total travel distance between keys. Therefore all 

alphanumerical keys (frequent keys) are located in the centre of the keyboard. Moreover, 

frequently connected letters (such as T and H) are located closer to each other compared with 

less frequently connected letters [98].  
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Although the width of all alphanumerical keys is equal, the distance between two adjacent 

keys is smaller than non-adjacent ones. This will cause higher accuracy of movement 

between adjacent keys compared with non-adjacent ones. This accounts for the non-adjacent 

key-pairs having more outlier or noisy data compared with adjacent ones. This is because 

users are more likely to miss when hitting a key that is located farther away. In addition, 

fitts’s law validates the idea behind grouping keys based on adjacency, i.e. distance between 

each other. As adjacent keys are closer to each other, they are pressed with higher speed 

compared with 2nd-adjacent ones. The same applies between 2nd-adjacent keys and 3rd-

adjacent ones and so on.   

A U.S. patent was granted to Garcia [53] for an identity verification method that involved the 

use of the user’s name as a keystroke generator. Garcia stated that the timing latencies 

produced by the user when typing his or her name had been proven to be stable enough to use 

for identity verification, therefore, the best data that can be used for authenticating a user is 

collected when the user types his or her own name. In his study, Garcia, asked the users to 

type their names a number of times. This data was used to create a vector of mean latencies 

for this user’s profile (electronic signature) after discarding any outlier data, i.e. values larger 

than 500% of the mean. At log-in time, the user was also required to type his or her name. 

This data was used to create the keystroke’s latency vector of the test data. The two vectors 

were compared using the Mahalanobis distance function. The user was denied access to the 

system if this distance was more than 100; and likewise, the user was granted access if the 

distance was less than 50. In addition, in the case where the value of the distance was 

between 50 and 100, the user was required to retype his or her name again. Garcia produced 

an overall performance of a 0.01% FAR and a 50 % FRR. 

Similarly, Bleha et al. [99] used latencies between keystrokes as timing features in their 

experiment, in which two different classification methods were used; the minimum distance 

classifier and Bayesian classifier, each of which used a different threshold. Both classifiers 

were used jointly in the classification process; i.e. the user was rejected only if both 

classifiers agree that the attempter was an imposter, and vice versa in case of accepted users. 

This, unfortunately, was the reason for some results being undecided.  The authors conducted 

three recognition systems. First of which was an identification system where 10 users retyped 

a fixed phrase five times.  An indecision error of 1.2% was produced. The second recognition 

system was a verification system, in which 26 users were asked to retype their names 30 

times. An FRR of 8.1% and a FAR of 2.8% was generated. The third system was an overall 
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recognition system, i.e. combining the two systems. In this part of the study, 32 users’ data, 

10 genuine and 22 imposter, were used to achieve an error of 3.1% FRR and 0.5% FAR.  

Joyce and Gupta [36] agreed with Garcia [53] in the sense that the timing data extracted from 

typing a well-known string provides more consistent results, compared with unfamiliar 

strings. They used a statistical method that employed the absolute distances between the 

timing vectors of the user’s template and test data. Each of these vectors consisted of the 

means of di-graph latencies for a fixed-text, i.e. digital signature. This digital signature 

consisted of the username, password, first name and last name of the user. All outliers, i.e. 

values as three times standard deviations greater than the mean, were discarded. A suitable 

threshold was identified for each particular user based on the mean and standard deviation of 

his or her template data. This threshold was used for deciding if the test data was actually for 

the user in question. More specifically, the user was authenticated only if the distance 

between his or her test data and profile data was less than the threshold. Thirty-three users 

were asked to go through the training session, in which they provided eight digital signatures 

each. Then, they were allowed to re-enter the system using that same digital signature, five 

times for testing.  In the rest of the testing process, twenty-seven users acted as imposters and 

targeted the remaining six users by entering the victims’ digital signatures five times. The 

study produced an FAR of 0.25 % and a FRR of 16.36 % over all the tested data. 

Although the results produced by Joyce and Gupta [36] were encouraging, they used a 

replacement methodology in their tests, in which they asked users to provide training data all 

in one session. Monrose and Rubin [33] suggested the use of data sets that had been recorded 

at variable times to improve the dataset created by Joyce and Gupta in [36] and therefore 

make it more reliable. In addition, their study allowed the participants to download the data 

collecting program on their personal PC’s rather than restricting them to use a specific PC as 

done in [39, 53, 36]. This allowed them to run the experiment at times when it was most 

convenient for them. The collected users' profiles were represented as n-dimensional feature 

vectors, which were created using the same method developed by Joyce and Gupta in [36]. 

Three different experiments were conducted on the collected data. The first utilized the 

Euclidean distance between the vectors of the test data and the profile data. The second used 

a non-weighted probability scheme. The last experiment adds a weight to the probability 

measure; this weight was based on the frequency in which the di-graph occurs in the written 

language. Over a period of 11 months, typing data was collected from 63 users. The rate that 

users were correctly identified using the weighted probabilistic classifier was approximately 
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87.18%, which was better than the performance of the Euclidean distance which was 83.22% 

and the non-weighted scoring approach being around 85.63%. A better performance was 

produced using a fourth scheme, the Bayesian classifier, which resulted in around 92.14% 

correct identification. 

One of the first research that used Neural Networks for keystroke dynamics authentication 

was produced by Obaidat and Macchairolo [100]. In this study, they presented a new 

multilayer neural network system to be used for identifying users based on their typing 

patterns. Only the down-down time, between two consecutive keystrokes, was used. The 

experiment made use of three different types of networks, namely: a multilayer feed-forward 

network which was trained using the back propagation algorithm, a sum-of-products network 

which was trained with a modified version of the back propagation algorithm, and a new 

hybrid network that combines the two previous kinds. In the experiment, six participants 

were requested to enter the same password. This password consisted of a phrase that had 

thirty letters, but only the first 15 characters were used because using all 30 did not have any 

effect on the final results. In total, 40 vectors were collected for each user over a period of 6 

months. After collecting the raw data, it was divided into odd patterns and even patterns in 

order to use either part in training and the other for testing. The neural network used for 

classification consisted of 15 inputs, corresponding to the length of the tested pattern, and 6 

outputs, corresponding to the number of users, and 5 hidden units. Each of the three types of 

neural networks was trained similarly: training data was fed to the network and the weights 

were adjusted until the total summed squared error produced by the training set was smaller 

than 0.05. It was proven that the back propagation algorithm provided better accuracy than 

the sum-of-product algorithm; the accuracies for the two algorithms were 97.5% and 93.7% 

respectively. The new multilayer hybrid sum-of-products neural network produced accuracy 

of 96.2%, yet it required less training time than the other two. 

Fuzzy logic was first used by Ru and Eloff [101] for keystroke patterns classification. They 

used flight time to distinguish between the typing patterns of the users. In this research, five 

fuzzy rules corresponding to the typing speed were used for classification. Thirty users were 

asked to type a minimum of eight-character passwords 25 times. A mean accuracy of 87% 

was produced.  

Cho and Hwang [102] looked at the keystroke system from a different perspective. They 

argued that the quality of the user’s patterns is very important in obtaining a high 



35 
 

performance keystroke authentication system and has the same significance as the quality of 

the classifier. Therefore, their study suggested different ways to improve the typing pattern 

quality using specific motions performed by the user. The concept of the typing pattern 

quality has to do with two issues, namely: uniqueness, which emphasises the difference 

between the users’ patterns, and consistency, which focuses on the similarity of a single 

user’s patterns. Several techniques were proposed to improve both factors. First, artificial 

rhythms were used to improve uniqueness including: pausing, musical rhythm, staccato 

(minimum duration), legato (maximize duration), and slow tempo. Second, timing cues were 

used to improve consistency including: auditory (ticking sound), visual (hammer hitting a 

nail video-clip), and audio-visual (combining both) cues. Five users were involved in the two 

experiments of this study. The chosen password was “password”, which was typed naturally 

by the user 20 times; the different typing rhythms and cues of this password were also typed 

by each user 20 times. The uniqueness level was escalated significantly using these rhythms; 

there was a 200% improvement using short pauses and 500% using slow tempo. The 

consistency level has also improved using the cues; it improved almost 15 times using the 

auditory cues. The above strategies have also improved the discriminability of the typing 

pattern, which is defined as the relation between uniqueness and consistency, to more than 

twice using only auditory cues. 

A major limitation of the scheme used in [102] was applicability to real life situations, since 

it only gave results from 5 users. Therefore Hwang et al. [103] used data from 25 users to 

investigate the level of improvement that artificial rhythm and tempo cues can add to the 

uniqueness and consistency of the typing pattern, in the case of a larger population. The 

results showed an error of 11% EER using natural rhythms; this was improved to 3% EER 

using pauses.  An even better performance of 1% EER was produced using auditory cues in 

addition to pauses. This proved the validity of using these rhythms to improve the system 

performance. 

Moreover, Maxion and Killourhy [104] examined using a keystroke dynamics identification 

system that uses digits only. This system can be adapted in ATMs, mobile phones, building’s 

electronic security keypad etc. The experiment was performed on 28 subjects, each of which 

was asked to type-in a 10-digit number using only their right-hand index fingers. The 10-digit 

passcode was the same for all users and it was carefully chosen to satisfy some conditions 

such as: memorizing factor and digit’s location on the keypad. The actual typing of the digits 

was restricted to using only the number-pad section of the keyboard. Participants were 
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requested to type this 10-digit passcode 50 times, throughout four sessions, which were held 

over four different days. This adds up to 200 repetitions per person; half of which were used 

as training data and the rest were used as test data. The features used in the timing vector 

were: hold time, down-down time and up-down time. The random forest classifier was used 

to determine the identity of the test data’s owner. An EER of 8.5% was achieved when using 

this model, which was less than the target that the authors hoped to reach. Therefore, some 

improvements were added to the original model in order to increase the performance; this 

included: outlier data handling and incorporating practice time. This improved the overall 

performance of the system to achieve an EER of 1.00%. Although practice time had 

improved the system performance rather a lot, it was not a realistic step to include in such a 

system, as it adds extra load on the users.   

Liu et al. [105] used duration and latency as the original features. These original features 

were then transformed using: Fast Fourier Transform (FFT), Discrete Cosine Transform 

(DCT) and Gabor wavelets. Moreover, SVMs, Gaussian classifier, nearest neighbour were 

used in both the single classification model and a fusion of features and classifiers model. In 

this study, two large-scale databases were collected, each of which were split into two 

datasets. Database 1 consists of 1902 test samples and 477 training samples from 117 

subjects while database 2 consists of 5089 test samples and 478 training samples from 102 

subjects. The best accuracy was produced using original features and the Gaussian classifier 

reaching 3.6846 EER. Even though, this research has introduced many feature selection 

techniques and classification methods, these schemes did not produce similar results when 

applied to different datasets.  

A summary of some of the keystroke dynamics studies employing fixed-text are listed in 

Table 2.4. 
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Table 2.4: A list of fixed-text keystroke dynamics studies. 

Study Features Method Subjects Samples Performance 

Garcia [53] Latency Mahalanobis distance - - 
0.01% FAR, 50 

% FRR 

Bleha et al. [99] Latency 
Minimum distance classifier, Bayesian 

classifier 
26 780 

2.8% FAR, 8.1 % 
FRR 

Joyce & Gupta [36] Latency Absolute distances 33 429 
0.25% FAR, 
16.36 % FRR 

Monrose & Rubin [33] Latency, duration 
Euclidean distance, non-weighted 

probability scheme, weighted 
probability scheme 

63 
 

- 85.63% accuracy

Obaidat & Macchairolo 
[100] 

Latency Neural network 6 240 96.2% accuracy 

Obaidat & Sadoun [54] Latency, duration Neural network 15 3375 
0.00% FAR, 0.00 

% FRR 
Ru & Eloff [101] Latency Fuzzy logic 30 750 87% accuracy 

Lin [106] Latency Neural network 90 270 
0.00% FAR, 1.1 

% FRR 

Robinson et al. [107] Latency, duration 

Nearest neighbour, minimum 
intra-class distance, nonlinear 

classifier, inductive 
learning classifier 

140 2800 
10% FAR, 9% 

FRR 

Lau et al. [45] 
Latency, duration, press-
release ordering, typing 

speed 
Mean, standard deviation 15 150 

1.01% FAR, 
1.25% FRR 

Araujo et al. [66] Latency, duration Absolute distance 30 300 
1.98% FAR, 1.45 

% FRR 

Bartlow & Cukic [57] 
Latency, duration, shift 

key usage 
Random forests 53 10000 

2.1% FAR, 15.1 
% FRR 

Modi & Elliott [108] Latency, duration Absolute distance 40 6000 
0.94% FAR, 
94.87% FRR 

Jiang et al. [55] N-graph duration Hidden Markov model, Gaussian 58 2030 2.54% EER 

Teh et al. [72] Latency, duration 
Gaussian similarity, direction 

similarity measure 
50 500 6.36% EER 

Jin et al. [109] Latency, duration Fuzzy logic 10 1000 20% EER 

Hwang et al. [103] Latency, duration 
Gaussian, Parzen window, density 
estimators, k-nearest neighbor, K-

means, one-class SVMs 
25 6300 3% EER 

Rybnik et al. [56] Latency, duration K-nearest neighbours 250 1100 88.5% accuracy 
Maxion & Killourhy 

[104] 
Latency, duration Random forest 28 5600 8.5 EER 

Stefan & Yao [70] Latency PCA/SVMs 20 700 4.2% FAR 
Narainsamy & 
Soyjaudah [15] 

Latency, duration Neural network 40 400 
1.00% FAR, 8% 

FRR 
Giot et al. [52] Latency SVMs 100 1200 15.28% EER 

Abualgasim & Osman 
[110] 

Latency, duration Statistical weight 26 130 
20% FAR, 0.00 

% FRR 
Kekre et al. [111] Latency, duration Relative Entropy, Euclidian distance 33 330 55%EER 

Raghu et al. [12] Latency Neural network 21 4347 
0.00% FAR, 1.1 

% FRR 

Zhong et al. [112] Latency, duration Nearest neighbour 51 20400 8.7% EER 

Rezaei & Mirzakochaki 
[113] 

Latency, duration 
Linear discriminate classifier, 

quadratic discriminant classifier, k-
nearest neighbour 

24 240 
19.20% FAR, 
0.81% FRR 

Gunathilake et al. [65] Duration, frequencies Deviation of duration and frequencies 48 - 
0.10% FAR, 
0.12% FRR 

Hansen & Willmore [86] 
Latency, keystroke 

intensity 
Naive Bayes, neural network 14 1317 

1.00% FAR, 25% 
FRR 

Liu et al. [105] Latency, duration 
SVMs, Gaussian classifier, nearest 

neighbour 
50 3154 7.66% EER 

Bours & Komanpally 
[114] 

Latency, duration 
Manhattan distance, scaled Manhattan 

distance, Euclidean distance, scaled 
Euclidean distance 

28 5600 13.0% EER 

Descriptions of latency, duration and n-graph duration are found in Section 2.6. Definitions of accuracy, FAR, FRR, ERR and keystrokes 
are found in Section 2.7 
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2.8.2 Free-text Keystroke Dynamics 

One of the early works done on free-text keystroke dynamics was that done by Gaines et al. 

[39] in 1980. In that research, data was collected from six professional typists. The typists 

were requested to type-in three paragraphs of text at two different times, which were four 

months apart. The data from the three different passages were then used in combination 

because it was found that there was only little information when using the three passages 

individually. The three passages included: ordinary English text, a collection of random 

words, and a collection of random phrases, respectively. The study relied on the down-down 

time of di-graphs that had occurred at least 10 or more times.  Removing the outliers was then 

performed for di-graph latencies that exceeded 500 milliseconds. The classification process 

was done using a two-sample t-test for each user. The FAR for this study was zero and the 

FRR was about 4%. A further enhancement was applied to this study; using only core 

digraphs which are these five di-graphs: “in, io, no, on, and ul” in the testing process. This 

yielded in perfect authentication performance, zero FAR and FRR. Although the results are 

very encouraging, the number of participants involved in the experiment was significantly 

small. 

Likewise, Umphress and Williams [34] used the mean and standard deviation of all latencies 

to represent the users’ profiles. Samples with errors and standard deviation over 0.75 were 

discarded. Only the first 6 letters of each word were considered which matched with what has 

been already discussed by Card et al. [93]. This study utilized two tests, the first of which 

compared each of the latencies in the test data with the corresponding di-graph in the profile 

matrix; if it was within 0.5 standard deviation from the mean, it was considered a valid di-

graph; the ratio of valid di-graphs governed the acceptance of the test data as being from the 

original user. The second test applied a two-tailed t-test to the overall means. Seventeen 

people were asked to take 2 typing tests separated by several days. The first was the user 

profile, including 1400 characters, and the second was the test sample, consisting of 300 

characters. The error rates of the study were found to be 12% FRR and 6% FAR. 

The R measure, or degree of disorder, was first introduced by Bergadano et al. [73]. The 

degree of disorder was calculated by summing the distances between the orders of each 

element in the two samples. It was used to find the distance between two samples based on 

the tri-graph duration time of these samples. The tri-graph duration is the elapsed time 

between the press of the first and of the last keys of a three key sequence. Forty-four 
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volunteers were requested to re-type a text of 683 characters five times. This produced a total 

of 220 samples, which were used for genuine testing. In addition, 154 participants produced 

71500 samples for imposter testing. An overall of 0% FAR and 2.3% FRR was produced in 

this study. 

One of the most cited free-text studies is that conducted by Gunetti and Picardi [8], in which 

they aimed to refine the algorithm used by Bergadano et al. [73]. This study depended on two 

measures, the first of which was the relative measure (R measure), which was developed by 

Bergadano et al. to find the degree of disorder between the two samples; similar to [73]. 

Unfortunately, the R measure was not always enough, i.e. if the typing speed of all the di-

graphs in one sample are exactly twice as the other sample, the distance between the two 

samples will be zero and fail to differentiate between samples. Therefore, the absolute 

measure (A measure) was introduced to calculate the absolute distance between the two 

samples. In both the R and A measures, only down-down time of n-graphs occurring in both 

typing samples was considered. These n-graphs include di-graphs, tri-graphs, and other 

longer n-graphs, as opposed to using only tri-graphs in [73]. Forty people participated in this 

study providing fifteen typing samples each; over a period of six months. Both A and R 

measures have to be a minimum value to give good estimation that the two typing samples 

are fairly similar, therefore, originated by the same person. The authors experimented with 

several combinations of A and R measures using various n-graphs. The best result they found 

was an FRR of 5% and an FAR of 0.005%. Even though these results were very good, the 

computational cost required to identify users was expensive because it was necessary to 

compare the test sample with all users’ templates in the database, which clearly makes it less 

scalable.  

Hu et al. [115] attempted to solve the scalability issue of Gunetti and Picardi’s method [8] 

using the K-nearest Neighbor classifier.  In this approach, training samples were divided into 

clusters such that, every test sample was compared only with the samples of those users in the 

same cluster. Results from this modification revealed accuracy which compared well with 

that of [8]. Computation speed, on the other hand, proved to be 66.7% better. 

In addition, Davoudi and Kabir carried-out a number of modifications on the method 

introduced by Gunetti and Picardi [8]. In [116] Davoudi and Kabir combined the R and A 

measures with a distance-calculating method that used histogram-based density estimation to 

find the probability density function of each di-graph’s duration time. This modification 
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resulted in five false rejections and nine false acceptances. Moreover, Davoudi and Kabir 

modified the relative distance, in [117], by choosing the di-graph with the highest difference 

in duration between the two samples to compute the difference of its positions first. After 

that, it was removed from the two timing vectors, and then, the new vectors were sorted 

again. This resulted in 0.08% FAR and 18.8% FRR.  Davoudi and Kabir also applied one 

further modification to Gunetti and Picardi’s method, in [118], by adding a weight factor to 

the digraphs when computing the relative distance. This weight was defined as the ratio of the 

number of occurrences of this di-graph and its standard deviation. The study resulted in 

0.07% FAR and 15.2% FRR. All of the modifications mentioned were applied to a subsection 

of the data extracted by Bergadano et al. in [8]; this includes 21 participants producing 15 

samples each. 

Continuous authentication was investigated by Bours and Barghouthi [77]; they used a 

penalty-reward function for long free-text keystroke authentication. They used the duration of 

a single key and the latency of two successive keys as the timing features for their 

experiment. In particular, only the durations and the latencies of keys which occurred more 

than 50 times and which mean and standard deviation were under a predefined value were 

added to the user’s templates. The penalty-reward function in this research had a zero start-up 

value and it increased if the distance between the test sample and the user’s template was 

larger than a threshold and decreased otherwise. If the value of this function gets higher than 

another threshold, the user was denied further access to the system. This experiment used 

data from 25 volunteers, which was collected over at least six days. At the end of the 

experiment, the average number of keystrokes typed before an imposter was locked out was 

found to be between 79 and 348 keystrokes. 

Most of the previous work has not fully benefited from the keystroke dynamics concepts, in 

the sense that they did not consider key-pairs. Therefore, Park et al. [69] divided all 

keystrokes to four features; left hand side, right hand side, spacebar and backspace bar. Then, 

they created di-graphs using feature combinations. This resulted in sixteen key-pair features, 

e.g.: left hand side key & space bar, left hand side key & backspace bar etc.  Comparing the 

two samples was performed using these key-pairs. Only key-pairs with more than ten 

appearances were used in the comparison process. The Kolmogorov-Smirnov test (KS-test) 

was then used to compare samples. Thirty-five users participated in this study, in which they 

were requested to type two page length news articles. An EER of 0.0892% proved that this 

method had indeed increased the performance of keystroke dynamics authentication. 
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Similar to Park et al. [69], a key grouping technique was introduced by Sing and Arya [50]. 

Key grouping was performed by classifying the keys based on their location on the keyboard. 

The keyboard was divided into 8 sections; two left and right halves and then each half was 

divided into 4 lines representing the rows of the keyboard. For example “wm” is represented 

as Left2-Right4. Flight times between these key-pairs were utilized. Euclidean distance was 

applied to calculate the difference between the training and testing vectors. A threshold was 

defined to decide if the test sample had originated from the authorised user, however, there 

were no details about its value or how it was chosen. Data used in this experiment was 

collected from 20 objects, each of which performed 5 login trails, as a legitimate user, and 5 

login trails, as an impostor. The overall performance reached 4.0% FRR and 2.0% FAR. 

In addition to the standard duration, the latency of the 20 most frequent di-graphs in English 

and the total duration time of the 20 most frequent words in English were also used as 

keystroke features in [119]. SVMs, k-nearest neighbour, Naive Bayes classifier were all used 

to classify the data collected from 28 individuals. For building the user profile, the first 25 

repetitions of each feature were captured, 20 of which were used for training and the 

remaining 5 for testing. The SVMs succeeded to achieve the best accuracy reaching 90%. 

Moreover, duration time was found to produce the best performance followed by the word 

total duration. Using only the frequent words might not have been the best choice, as most of 

the frequent words used in this study are very small words such as: “the”, “is”, “it”. It would 

have been interesting to compare the results from such words with the results from other 

longer words. 

Moreover, a list presenting brief details about some of the work done in free-text keystroke 

dynamics authentication is shown in table 2.5. 
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Table 2.5: A list of free-text keystroke dynamics studies. 

Study Features Method Subjects Samples Performance 

Gaines et al. [39] Latency T-test 6 36 
0.00% FAR, 4% 

FRR 
Umphress and Williams 

[34] 
Latency Standard deviation, t-test 17 34 

6% FAR, 12% 
FRR 

Monrose & Rubin [33] Latency, duration 
Euclidian distance, probability score, 

weighted di-graph probability 
31 - 23% accuracy 

Gunetti & Ruffo [71] 
Latency, executed 

commands 
Decision tree 10 - 90% accuracy 

Dowland et al. [78] Latency Mean, Standard deviation 4 - 50% accuracy 

Gunetti & Picardi [8] N-graph duration Relative distance, absolute distance 205 765 
0.005% FAR, 5% 

FRR 

Gunetti et al. [88] N-graph duration Relative distance 30 124 
1.67%FAR, 
11.67% FRR 

Villani et al. [49] 

Latency, duration, typing 
speed, percentage of 
special characters, 

editing patterns 

Euclidian distance, k-nearest 
neighbour 

118 2360 
99.8% - 44.2 % 

accuracy 

Curtin et al. [79] 

Latency, duration, typing 
speed, percentage of 
special characters, 

editing patterns 

Euclidian distance, k-nearest 
neighbour 

30 90 
100% - 97% 

accuracy 

Filho & Freire [89] Latency Simplified Markov chain model 15 150 
41.6% - 12.7% 

EER 
Janakiraman & Sim 

[120] 
Latency, duration Bhattacharyya distance 22 - 

100% - 70% 
accuracy 

Buch et al. [121] 
Latency, duration, 

percentage of special 
characters 

Euclidian distance 36 650 
100% - 98% 

accuracy 

Hu et al. [115] N-graph duration 
Relative distance, absolute distance, k-

nearest neighbour 
36 36554 

0.045% FAR, 
0.005% FRR 

 

Hempstalk et al. [80] 
typing speed, error rate, 
press-release ordering 

One-class classification 10 150 
11.3% FAR, 
20.4% FRR 

Ahmed et al. [91] Latency Neural network 22 - 
0.015% FAR, 
4.82% FRR 

Davoudi & Kabir [116] N-graph duration 
Relative distance, absolute distance, 
histogram-based density estimation 

21 315 
0.015% FAR, 
0.0025% FRR 

Pilsung et al. [122] Latency Kolmogorov-smirnov Test - - 0.17% EER 
Samura & Nishimura 

[76] 
Latency, duration Weighted Euclidian distance 112 - 

67.5% - 81.2% 
accuracy 

Bours & Barghouthi, 
[77] 

Latency, duration Distance measure 25 - 
79 – 348 

keystrokes 

Davoudi & Kabir [117] N-graph duration Modified relative distance 21 315 
0.08% FAR, 
18.8% FRR 

Davoudi & Kabir [118] N-graph duration Weighted relative distance 21 315 
0.07% FAR, 
15.2% FRR 

Park et al. [69] Latency Kolmogorov-smirnov Test 35 - 0.089% EER 

Messerman et al. [43] N-graph duration Normalized relative distance 55 - 
2.20% FAR, 
1.84% FRR 

Sing & Arya [50] Latency Euclidian distance 20 - 
2.00% FAR, 
4.00% FRR 

Chantan et al. [27] Latency Bayes classifier - - 0% EER 

Bakelman et al. [68] Latency K-nearest neighbour 20 200 4% EER 

Bours [44] Latency, duration Scaled Manhattan distance 25 1620 182 keystrokes 
Monaco et al. [123] Latency, duration K-nearest neighbour 30 300 99.96% accuracy

Kang & Cho [124] Latency 
MV test, K–S statistic, C–M criterion, 

R measures, A measures, 
Gauss, Parzen, k-NN, SVDD. 

35 35 7.87% EER 

Matsubara et al. [125] Latency, duration Weighted Euclidean distance, Relative 
distance 

250 2500 92% accuracy 

Darabseh & Namin 
[119] 

Latency, duration, word 
total time duration 

SVMs, k-nearest neighbour, Naive 
Bayes classifier 

28 700 90% accuracy 

Descriptions of latency, duration and n-graph duration are found in Section 2.6. Definitions of accuracy, FAR, FRR, ERR and keystrokes 
are found in Section 2.7 
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2.9 Factors Affecting Performance 

In addition to the various options of timing features and classification methods, there are 

many different performance measures used to determine the error rate in keystroke systems; 

it is therefore often difficult to compare studies in this field [87]. This is also due to not 

having any form of standardization in the data collection process in these different 

experiments. Therefore, even though the error rate of study A is lower than that of study B, 

that does not necessarily mean that the method adapted in A is better than that used in B. 

Different factors may have positive or negative impact on the authentication process 

regardless of the actual functionality of the method [126].  

Moreover, it has been argued by Killourhy and Maxion [67] that even though performance 

measuring was done by many researchers for different keystroke authentication systems, it is 

not fair to compare these performances, due to the fact that there are many aspects that vary 

between the different conducted experiments. These factors include: classifier, feature set, 

password length, number of repetitions, number of testing attempts, threshold values, used 

keyboard etc. Therefore, in order to get an idea which system works best, it was inevitable 

that a standardized environment had to be established when conducting all experiments [127]. 

Standardization of such factors will offer an improved comparison mechanism between 

algorithms [128]. This standardization requires information exchange amongst researchers. 

Moreover, there are two main techniques for standardizing the factors involved in keystroke 

dynamics studies. First, using one of the automated programs, available in the market, for 

collecting the data used for the studies. A broad range of software is available commercially; 

for example: AdmitOneSecurity and BehavioSec [4]. Another solution involves the use of 

standardized databases, which has been formerly created and published for the purpose of 

keystroke dynamics research. A list of some of the databases available online can be found in 

[128]. Using these solutions could not only standardize the data collection method, it could 

also decrease the duplication of effort among researchers. 

Furthermore, there are a large number of different factors which have proven, by various 

researches, to affect the performance of the keystroke dynamics systems. These factors have 

to be considered when attempting to deploy a keystroke system. A detailed list of these 

different factors is provided in this section. 
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2.9.1 Environment Controlling 

There are two basic categories in which experiments have been conducted in keystroke 

studies. Experiments have either been conducted in a controlled environment or in an 

uncontrolled one. In a controlled environment, users are asked to type on a specific machine 

which has built-in software for recording the keystrokes. Thus, the same external conditions 

were consistent for all users [87]. The issue with this kind of arrangement is that it may not 

have the same characteristics as those encountered in realistic situations; therefore, the 

response may not be representative of a user’s typical typing patterns [4].  

In uncontrolled environments, on the other hand, users are asked to either download a 

program, for collecting keystrokes, on their machines [120, 89] or to use an online data 

collection form [8, 115]. This indicates that the data is collected wherever and whenever it is 

convenient to the user. Although, this method provides a realistic representation of the 

normal conditions for the user, each user’s surroundings can be very different, which makes 

the data harder to analyse. It might also be the reason for inconsistencies in the keystroke data 

provided by the users. Although some of the experiments in the literature have been 

conducted in a controlled environment [99, 103],  the majority  of research has, so far, been 

conducted in uncontrolled environments [8, 116, 27, 54], due to the authors’ desire to imitate 

the life-like conditions of a real authentication system. 

2.9.2 Keyboard Type 

Using different computer brands has an impact on the user’s typing pattern since the 

keyboard of different brands varies in key size and spacing between keys. This is clearly a 

reason for users to type differently on different keyboards [4]. Furthermore, different 

keyboards have different key pressing sensitivity levels which consequently may affect the 

timing data collected from the users [129]. Using a laptop keyboard adds another variation 

which can also affect the typing behaviour; as laptops provide the freedom of movement, 

users may use it in different positions, such as on a bed or on a table [42].  

Villani et al. [49] investigated the case of using different keyboards in free-text keystroke 

systems. One of their experiments was conducted using a desktop keyboard and another was 

performed on a laptop keyboard. A significant finding was uncovered, which can be 

summarized as: the system has a good chance of accurately identifying a user as long as he or 

she uses the same type of keyboard for training and testing. It is therefore important that 
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researchers keep using the same keyboard in order to maintain the same level of typing 

consistency throughout the data collecting process [79]. In contrast, Giot et al. [6], conducted 

a study which led to proving that although using two different keyboards for training and 

testing may slightly reduce the system performance in the case of fixed-text keystroke 

dynamics, it did not have a significant negative influence on the system. 

2.9.3 Entry Mode 

Because free-text keystroke systems are used for long text, it makes more sense to allow the 

users to enter whatever text they prefer. Having said that, free-text authentication studies 

have actually used two different methods for text entry, i.e. way of input. The first technique 

allowed the users to type completely free text as they desired, such as: typing an e-mail or a 

report for work or an essay for school [8, 75]. The second approach required the users to type 

a specific long text from an article, in which the users needed to copy specific text into a 

section specified for text entry [79, 115].  

In the research conducted in [49], participants were asked to be a part of several experiments 

with different conditions. One of these tests incorporated a copy-task in which the 

participants were asked to copy a predefined long text. Another included a free-text input 

where users were free to type arbitrary text. It was found that the accuracy of correctly 

authenticating a user decreased considerably when using different input modes in the training 

and testing phases. Moreover, it was also shown that the accuracy in free-text typing mode 

was slightly higher than that in the copying task mode. This can be explained by the frequent 

pauses that a user has to perform in order to look at the text during the copy-task which might 

cause the collected data to be inconsistent. 

In contrast, the experiments carried-out in [130] produced results that showed that using 

either free or copied text has no effect on the results of free-text keystroke systems. This 

conclusion was reached after analysing two keystroke systems, one involving free-text 

samples while the other included text that participants were asked to copy. The insignificant 

difference between the two entry modes is maybe due to the fact that the timing differences 

between free and copied typing are small in comparison with the timing differences between 

two different typists. 

Another experiment was conducted for fixed-text keystroke dynamics in [90] to investigate 

the relationship between the data acquisition method and the recognition performance. 
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Different scenarios were, also, followed to acquire data for this study. These scenarios differ 

in the way that the pre-defined text was presented to the user. It was either displayed on the 

graphical user interface or the pronunciation of the words was orally provided. The 

conclusions that can be drawn from this study can be summarised as: oral presentation 

improves the EER for unknown words, while it stays the same for known words. Generally, 

there is no significant difference found between displaying and telling a user the text when 

acquiring the keystroke data. 

2.9.4 Text Length 

One area in which standard keystroke systems lack is the amount of information that can be 

obtained from raw data [49]. The only data that can be collected while the user is actually 

typing is the time each key is pressed and released, from which only little information can be 

inferred, including the time interval between each two consecutive keys and the duration time 

for each key pressed. In addition, the data is often not stable since it changes based on the 

environment surrounding the experiment, or based on the state of mind of the user at the time 

[87]. To reduce the effect of such instabilities, a large amount of research has shown more 

interest in using short text [27, 33] in fixed-text keystroke systems.  

Furthermore, Montalvao et al. [131] carried-out a comparison between three fixed-text 

databases. They concluded from experimenting with different length passwords that the EER 

tends to deteriorate as the length grows for passwords. In contrast, the study in [110] 

examined the application of keystroke dynamics as a part of a multifactor authentication; in 

which it was used as an extra security measure for card/PIN schemes used in apparatuses 

such as Automatic Teller Machines (ATM). Results showed that PINs of longer lengths 

yielded better performance. However, using long passwords, for example, will worsen the 

password’s security-usability problem [28]. 

In free-text keystroke systems, however, it is not enough to use short texts to analyse 

keystrokes since it does not offer an adequate amount of information to distinguish between 

users. Consequently, using longer text samples is considered a better alternative [78, 8, 39, 

124]. Furthermore, more typing features can be collected from longer texts, such as shift key 

usage and editing habits. Moreover, the study in [79] provided evidence that using long-texts 

increases the stability of the di-graph’s mean and standard deviation significantly. 
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Nonetheless, the problem with using long free-text keystroke systems is that the training 

phase, unavoidably, needs more time. 

The authors of [79] investigated the accuracy of identifying users when typing long-texts in 

cases where the training and testing texts were different in length. The accuracy from 

different-text/same-length experiments was better than that from different-text/different-

length experiments. Therefore, improving authentication accuracy can be achieved via 

standardization of the feature measurements, i.e. the text size in this case.  

2.9.5 User’s Experience 

The user’s health and state of mind are not the only crucial part of the authentication process 

using keystroke dynamics. A user’s typing skills and level of comfort while using a keyboard 

are also characteristics that have a clear impact on the user’s typing behaviour [76]. The more 

skilful the user is, the more stable his or her fingers are located on the keyboard and the more 

familiar he or she is with the position of each character on the keyboard. This will result in a 

more consistent typing pattern all through.  

Samura and Nishimura [76] conducted a study that examined the effect of the user’s 

experience on long, free-texts keystroke systems. Participants were divided into three groups 

based on their typing speed, specifically the number of letters typed in a 5 minute period. 

This study indicated that the best recognition accuracy was obtained from the group which 

typed the fastest, i.e. the more skilful typists. 

2.9.6 Monitoring Mode 

A free-text keystroke system can be a continual process of identity verification, which takes 

place during the whole time a user is using the system. This can be done in either a 

continuous or a periodic manner. Continuous authentication is done, in real time, every time a 

key is clicked on the keyboard [44]. Although this method provides strong imposter 

detection, it is computationally expensive.  

Periodic authentication, alternatively, is repeated every time a certain text is entered [120]. 

This is a less strict method, security wise, yet it is computationally cheaper. Moreover, 

waiting until a specific text is entered may cause the system to wait for long periods of time if 

this particular text does not occur frequently enough in the typed text; which will represent a 
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security threat for the system. A periodic verification scheme that included the use of 

interruptions was utilized in [68]. In this research, the identity of the user was only verified 

after text breaks, e.g. user leaving the PC for a coffee break. The system only captured the 

first burst of input after each pause. This method reduced the frequency of authentication 

checks, which was a key reason for decreasing the false alarm rate in addition to decreasing 

the computational cost. 

2.9.7 Text Choice 

It is clear that choosing a specific piece of text is crucial for training and testing the system. It 

might be assumed that using familiar English words may produce more consistent typing 

patterns. However this was proven wrong by Janakiraman and Sim [120]. In this research, a 

new “goodness” measure was suggested to calculate the universality, accuracy and 

expectancy of a word used for periodic free-text keystroke authentication. Universality is a 

measure to identify if a word is one of the words commonly used by users. Accuracy 

measures how unique a word is. Lastly, expectance is used to calculate the average number of 

keystrokes typed before that word actually appears in the text. Unexpectedly, using the 

goodness measure, non-English words, such as: ‘tmr’ which is an abbreviation of ‘tomorrow’ 

used in online chats, are proven to be better than English words for identification and 

verification purposes. Similarly, both studies [109, 101] reached similar outcomes, in which  

normal "English-like" text was discovered to be less capable of discrimination between users.  

Moreover, Mondal et al. [132] focused on the relation between the password complexity and 

the system performance. They produced results that showed a reduction in system 

performance when passwords increase in complexity. Thus, although random passwords 

make password guessing by attackers harder, it might not be appropriate for keystroke 

dynamics systems. 

Another aspect that was considered in the literature was the familiarity aspect of the pre-

defined text. This aimed to find how the expertise of a user with a certain text affected the 

system performance. Giot et al. revealed in [6] that there was no noteworthy accuracy 

difference between an imposed login/password and a login/password that users chose 

themselves. Alternatively, it was observed that long and familiar strings produces better 

performance than short and random strings in the experiment conducted by Stefan and Yao in 

[70]. Similarly, Joyce and Gupta [36] and Garcia [53] both stated that using well-known text 
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such as the user’s name, provided better authentication accuracy, compared to un-familiar 

text. Even though there is a split of opinion in the available literature, it is clear that the 

authentication system performance differs depending on the type of strings used. 

2.9.8 Number of Training Samples 

When considering the training phase in fixed-text keystroke systems, it is hard to ignore the 

time required for training the system by re-typing the password again and again. This is 

needed for the users to develop a stable rhythmic signature corresponding to their password 

[131]. For instance, in [104] participants were requested to type a 10-digit passcode 50 times 

throughout four sessions, which were held over four different days. This adds up to 200 

samples per person; half of which were used as training data and the rest were used as test 

data.  

The same issue arises for free-text keystroke systems where the text collected for training is 

longer than that collected for fixed-text. In some cases, free-text data can be collected while 

the user is performing daily typing tasks. For example, 15 samples were collected from the 

participants over a two weeks period in [68]; each sample was 400 characters long of 

whatever the user needed to type at the time.  

From the results of the experiment conducted in [88], it was found that the accuracy of the 

system generally escalated when the number of samples in the user’s profile increased. In 

fact, the study in [6] had proved that less than 10 samples per user were not sufficient enough 

for fixed-text authentication systems, while exceeding 50 samples can also deteriorate the 

system performance. Moreover, around 40 samples yielded the best results. Meanwhile, an 

effective mechanism for free-text profile enhancement was suggested in [50] where the user’s 

profile was expanded, during the typing session, by adding new timing data attained from the 

user after being authenticated. This was done to increase the number of samples in the users’ 

profiles. 

2.9.9 Number of Participants 

Good performance resulting from a particular system cannot be generalized unless it was 

proven to distinguish between a reasonable number of users [4]. Some methods work 

perfectly in smaller populations but fail to scale-up when applied to a realistic number of 

users. For example, Ke et al. [133] suggested a system that produced a good performance 
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achieving 3% FRR and 2% FAR; but they used data from only 4 subjects to conduct their 

study, which is regarded as very small.  

Lau et al. [45] intended to make sure that the statistical model proposed by Ke et al. was 

scalable to a larger number of users. Therefore, they implemented a similar model to that 

introduced by Ke et al. in [133]. A larger sample size was used in this study; 15 participants 

in total who produced 10 samples each. The error rates produced by this test were 12% FFR 

and 10% FAR, which is considerably higher than that of the experiment conducted by Ke et 

al. [133]. That means that even though this method produced good results, it was not 

applicable for real-life usage.  

2.9.10 Threshold Choice 

Many of the schemes used in keystroke dynamics systems rely on a specific value, or 

threshold, used to judge if the typing sample in-hand was originated by the authorized person. 

Furthermore, thresholds are used in many studies to act as a barrier between genuine data and 

impostor data; Figure 2.6 demonstrates the segregation of data performed by a threshold. An 

imposter’s data is mistakenly considered as genuine if it falls below the threshold and, in the 

same manner, genuine data is incorrectly considered as an imposter if it falls above the 

threshold.  

 

 

Figure 2.6: Discriminating data using a threshold. 
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There are two main types of thresholds: namely: global and local. A global threshold is a 

single value used for all users [134], while a local threshold is different for each user 

depending on his or her typing behaviour [50]. Both the work done in [6, 135] agreed that 

using an individual threshold yielded better results compared with a global threshold. On the 

contrary, the study in [136] made use of both global and local thresholds. The global 

threshold was set to a constant value for all users; the local threshold was obtained by using 

the average score of each user’s training set and an experimental constant factor. The overall 

performance of the study using the global threshold was 8% EER while using the local 

threshold was 8.22% EER. This suggested that using a local threshold does not affect the 

over-all performance of the system significantly.  

2.9.11 Pre-processing and Post-processing  

Data collection in free-text keystroke systems involves the collection of a large amount of 

text, gathered over a period of time. From all the typing data collected during this time, the 

system infers the typing pattern that the user typically follows, which will be then stored as 

the user’s profile. It is, however, not necessary to include all letters and letter combinations 

typed during the enrolment phase in the user’s template, i.e. there are conditions for including 

a particular letter or combination of letters in the template. The character or combination of 

characters have to be typed often enough, during the enrolment phase,  to ensure that its mean 

and standard deviation are statistically sound [44].  

Therefore, large amounts of research include a pre-processing stage for removing noise from 

the data set. Extreme duration or latency values, i.e. very small or very large outliers, were 

discarded. For example: only the durations and the latencies of keys for which the standard 

deviation was below a predefined value were added to the user’s template in [33, 77], while 

minimum and maximum values were fixed for the latencies that were used in [78]. Moreover, 

there were a large number of features to be considered in [70], therefore, Principle 

Component Analysis (PCA) was used to minimise the dimensions of the feature vectors 

before attempting to classify the data. Similarly, PCA, Multidimensional scaling (MDS), and 

probabilistic PCA were used for dimensional reduction in [137] while Linear Discriminant 

Analysis (LDA) and PCA were used for pre-processing the data used in [138]. 

In addition to pre-processing, post-processing was often used to enhance the quality of the 

authentication system. The adaptation process is a post-processing step where data is 
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collected during the authentication stage to update the users’ existing templates. For example, 

the method used in [6] resulted in around 10.30% EER; using an adaptation mechanism 

improved the system performance to achieve 6.96% EER. An intelligent adaptation scheme 

was followed, which added new timing vectors to the users’ profile, during log-in time, if the 

total number of samples was less than 15; and if not, the new vector was swapped with one of 

the old vectors in the profile. The new vector had to be relatively similar to the ones already 

stored in the profile in order to avoid distortion of the data in the profile. Additionally, the 

work in  [13, 43, 66, 125, 139] showed that the adaptation mechanism has proved to decrease 

the error rates since it had the ability to automatically adapt to changes that the user's typing 

patterns went through, by frequently updating the data in the users’ profile.  

The 75 timing features selected from the key-pairing scheme, defined later in this research, is 

chosen to capture the mechanical patterns performed by a user through the time elapses 

captured when he or she is typing. In addition, the nine non-conventional features, described 

later, are chosen to capture the user’s typing and editing patterns while typing a whole piece 

of text. These two feature sets are employed in the process of user recognition due to the 

unique characteristics they extract from the users typing stream which can be used for 

differentiating between users. In the course of this research, the reasons taken into 

consideration when selecting these timing features and non-conventional features are further 

explained in Chapter 3 and Chapter 4.  

2.10 Applications 

Although more than a third of a century has passed since keystroke authentication was first 

introduced, it has not yet been applied in the security field to a high degree. Fixed-text 

keystrokes has been used to add protection for PCs at log-in. Free-text keystrokes, on the 

other hand, has provided security to the user by locking-up the workstation when an imposter 

is detected at any point of time, during which the system is in use.  In addition to that, a wide 

variety of other applications can also benefit from the keystrokes scheme. Many of the 

keystroke dynamics applications are listed in this section. 

2.10.1 Identification and Authentication 

Keystroke dynamics systems are used mainly for two different purposes. Firstly: 

identification, which is a way of determining the user’s identity when no data is available 
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about their identity beforehand [7]. In this method, a test sample is matched with all the 

templates stored in a database. The system assigns the user to the identity of the person 

whose template is the most similar to the test sample. Authentication, alternatively, is used to 

verify the identity of the user [1]. The user supplies his or her identity and the system takes-

on the responsibility of making sure that the user is who he or she claims to be. The test 

sample, in this case, is only compared with the user’s template in the database.  

The complexity of performing identification is clearly higher than that of authentication since 

it includes comparing the test sample with all available templates, which may be a very large 

undertaking in large-scale systems. From the definition of both methods, a fixed-text 

keystrokes system is used mostly for authentication as the system employs a ID/password 

that is considered a mean for providing the user’s identity [102], while it can be used for 

identification in the case of a shared password [52]. Nevertheless, fixed-text seems more 

suitable for authentication rather than identification [140]. A free-text keystrokes system, on 

the other hand, is used for both identification and authentication, as it makes use of long, 

random text [8]. 

2.10.2 Different Language Authentication 

Most of the work done on keystroke dynamics has concentrated on using the same language 

for training and testing the system. In fact, the vast majority of studies included only English 

input. Gunetti et al. [88], however, gave empirical proof that free-text typing patterns could 

be used to authenticate the user, even when the test samples were written in different 

languages to that of the samples in the user’s profile. Evidently, this only works when the two 

languages share a significant number of di-graphs. So, languages like English and Italian, 

which have the same alphabet, can be used for this kind of authentication, but English and 

Arabic, for example, cannot be used because they have a completely different set of letters.  

The data used in this study was provided by Italian speakers, each of whom provided two 

samples typed in Italian and another two samples typed in English. From experimental 

results, about 10% mistakes in identification occurred when the test sample was in a language 

different to that of the user’s profile. Better performance was obtained when the user’s profile 

contained samples in both languages. The error rate was even smaller when the test sample 

was in the same language as that which dominated the samples in the user’s profile.  
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By experimenting with different combinations of template samples and test samples, it was 

clear that those samples provided by the same person when typed in different languages were 

more similar than those samples provided by different persons which were typed in the same 

language. An average performance of 1.61% FRR and 3.23% FAR was achieved in total. 

Thus, although keystroke authentication for different language texts is possible, it is more 

difficult than the case where all samples are in the same language. 

2.10.3 Old Profile Authentication 

Most of the studies conducted in the free-text keystroke authentication field have had only a 

few months gap between the time the training samples were collected and the time in which 

the test samples were gathered. Gunetti et al., however, showed in [141] that a typing profile 

could still be used to identify a user, even though, it has been created a long time before the 

test samples are provided.  

Gunetti et al.’s original experiment involved 30 participants whom were asked to provide 15 

samples each. The samples consisted of whatever the users chose to type. One and a half 

years later, the same 30 volunteers were asked again to provide another two free-text 

samples. It was discovered that even after such a long period of time, the keystroke dynamics 

system was still able to identify users with an average accuracy of 1.67% FAR and 11.67% 

FRR. 

2.10.4 Intrusion Detection 

The continual authentication scheme that the free-text method can provide is a very effective 

intrusion detection method [44]. It is mainly used to notice any warnings with regards to 

irregularities in the typing patterns of a specific user. Moreover, free-text keystroke systems 

are used for active monitoring of the system which can aid in finding any intrusion quickly 

and reliably.  

One important issue that has to be addressed here is the generation of false alarms in such 

systems. This might cause frequent and rapid system halts, which cause a great deal of 

annoyance for the users when they falsely occur. Therefore, Gunetti et al. [88] suggested 

using it combined with other authentication methods in order to reduce the false alarms, or 

FRR. 
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2.10.5 Online Marketing 

Free-text keystroke systems can also be utilized for identifying users over the internet. This is 

done by capturing the users’ typing patterns on their first visit to the website, and then it can 

be used to identify returning users [88].  

This data can be used to determine user preferences and interests which can be employed for 

marketing purposes. This approach, on the other hand, has many privacy issues regarding the 

amount of information that users are happy to hand-in to the websites they visit. It also can 

cause the user to experience large amounts of un-wanted marketing advertisements. 

2.10.6 Cybercrime Investigating 

Tracking users through their typing patterns can also help in cybercrime and investigating 

illegal electronic movements of anonymous users. Using free-text keystroke schemes was 

suggested for network forensics in [91], through attacker profiling, which is conducted by 

collecting the suspect’s typing patterns when he is surfing websites on the internet. This 

profile, collected for each user, can be used as a digital fingerprint gathered from the 

cybercrime scenes.  

This is considered as passive fingerprinting because it can be created without the knowledge 

of the attacker, which can be extremely beneficial in fraud or identity theft cases [142], in 

which attackers are completely oblivious that they are being monitored. The issue with such a 

digital fingerprint is that it must be built progressively, which requires a large number of 

internet service providers to collaborate and work together to face such threats. 

2.10.7 Emotion Detection 

Free-text keystroke systems gather great amounts of data from the user during the whole time 

he or she is using the computer. This data can also be used to infer the emotional state that the 

user is going through during the typing process. This has been employed in [143] to 

determine what the user is feeling during every day free typing. Emotions such as: frustration, 

focus, anger, stress, relaxation, excitement and tiredness were derived from the user’s typing 

behaviour. 
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A similar study was performed in [144] to identify the level of boredom and engagement 

during typing in educational systems. Keystroke features were applied separately or coupled 

with stable traits and/or task appraisals in this research.  

Extracting the emotional state that the user is going through during a particular period when 

the user is using the system has many benefits for intelligent computers. It helps the system 

make the right decisions regarding the best interaction method to follow with the user [143]. 

This can also aid in detecting the fatigue level of the employees as suggested by [33], which 

helps to increase the productivity of the organisation.  

Moreover, levels of stress were successfully recognised for the individuals involved in the 

study published in [145]. The detection of harmful levels of stress can be an easy solution for 

users to manage their health issues. In this study, typing samples were gathered under stress 

and no-stress conditions. In addition to keystroke features, linguistic features were also 

extracted from the samples of each user.  

The issue with using keystrokes for user emotion detection is that it can cause an invasion 

into the user’s typing experience. For example, in [143], the user was required to determine 

his or her emotion every 10 minutes, in order to train the system to identify his or her 

emotions automatically. 

2.10.8 Soft-Biometrics Identification 

Keystroke dynamics can be used to infer some of the “soft biometric” information [146] of 

the typist. Soft biometrics are characteristics not unique to an individual but are directly 

related to him or her, such as: gender, age, dominant hand, native language ... etc. 

Keystroke dynamics was deployed for providing information to the message recipients about 

the message sender’s gender in the social network environment. This was done in the work 

conducted by Fairhurst and Costa-Abreu [147] in which they used data from 98 male and 35 

female participants. All individuals were asked, over a period of three months, to type the 

password “greyc laboratory” between 5 and 107 times. K-nearest neighbours, decision trees 

and Naive Bayesian were used for classification. Additionally, fusion techniques were also 

used to combine the three classification methods; the fusion techniques used were: dynamic 

classifier selection, majority voting and Sum. Individual classifiers achieved the best 
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accuracy of 79%. Fused classifiers succeeded to predict the gender with a higher degree of 

accuracy with the best reaching 97%. 

Another study that involved gender recognition using the users’ typing pattern was published 

in [148]. The data set used in this study was the same as the one used by the authors of [147]. 

Moreover, SVMs were used to achieve gender recognition with 91.63% accuracy. 

The research in [149] investigated soft biometrics identification for both fixed-text and free-

text keystrokes. Gender, age and dominant hand were the focus of this study. In the fixed-text 

experiment, the recognition rates of the three soft biometrics were: gender between 70% - 

86%, age between 67% - 78% and dominant hand between 78% - 88%. In the free-text 

experiment, the recognition rates were slightly better: gender between 79% - 84%, age 

between 72% - 75%, dominant hand between 83% - 88%. 

Moreover, keystroke dynamics features were used together with stylometric features and 

language production features to identify some of the users’ demographic attributes. The study 

carried-out in [150], aimed to recognise the user’s age, dominant hand and native language. 

In this study, free-text sentences were used to achieve the following results:  for 55% of the 

text, all 3 demographics were correctly predicted and for 95% of the text at least 2 of the 3 

demographics were correctly predicted. 

2.10.9 Key-pad Devices   

Devices that include key-pads for user input such as mobile phones, automated teller 

machines (ATMs), point of sales (POSs) and building access control systems have been the 

focus of many keystroke dynamics research. The users of these devices don’t normally type 

as often on their devices as they do on computers, which has caused the recognition of unique 

typing to be more challenging in these devices [151]. Therefore, keystroke dynamics 

authentication is frequently done on these devices using fixed-text that is used to unlock the 

device when beginning to use it.  

An example of that can be found in the work done in [152] in which a 4-digit numeric PIN 

was used. In this experiment, 25 users provided five training samples and 30 testing samples. 

All samples were provided using the SAMSUNG SCH-V740 phone. An average of around 

14% EER was achieved.  
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A similar research was performed on 25 Nokia smart phone users [46] in which keystroke 

data was collected over a 7 day period. In addition to the standard duration and latency, the 

authors made use of another four features: they are: error rate, horizontal digraph, vertical 

digraph, non-adjacent horizontal digraph and non-adjacent vertical digraph. An FAR of 

29.2% and FRR of 30.8% were achieved in the end of the experiment.  

Moreover, a keystroke dynamics authentication system was applied on a modified ATM 

keypad in [153]. In that research, both the applied force and the duration and latency timings 

were used as the keystroke features. A total of 30 subjects were asked to enter a PIN eleven 

times to be used in the experiment resulting in a 10% EER. 

2.10.10 Touchscreen Technology 

The introduction of advanced and sensitive multi-touch screen devices such as touchscreen 

phones and Personal Digital Assistants (PDAs) has improved the abilities of the hardware 

used for keystroke dynamics research. This development accounts for more accurate 

measurements of existing timing features in addition to the introduction of new 

measurements that have the potential of being deployed in keystroke dynamics systems [48].  

A notebook touch PDA was used to capture users’ typing rhythms in [64]. Duration and 

latency times were used along with figure pressure as features for the authentication system. 

A total number of 10 participants were asked to enter a 10-digits-long password 30 times. 

Probabilistic neural network (PNN) was employed to carry-out the classification stage of this 

study. Finger pressure produces higher accuracy, compared with duration and latency times, 

reaching the EER value of 1%. 

Moreover, another study published in [154] involved 152 subjects typing a 17-characters-

long passphrase for ten times on a Samsung Galaxy Nexus keyboard. A K-Means classifier 

was used to classify users based on their n-graph (di-graph and tri-graph) times. FAR and 

FRR resulting from this study were: 4.59% and 4.19%, respectively. 

A different study used Android-based smart phones to collect data from 42 individuals [155]. 

This data consisted of the password “.tie5Roanl” which was typed 30 times by each user over 

two sessions. Features used in this study were: hold time, latency time, key-hold pressure and 

finger area. Naive Bayes, K-nearest neighbour, SVMs, random forest and multilayer 

perceptron were used for classification. The best achieved accuracy was 93.26%.  
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More recent research was published in [156], which involved a simulation of an Android 

pattern-lock layout. In such a layout, the keystroke features: DU, DD, UD, and UU are 

extracted in a slightly different way. In the graphical keystrokes, such as the pattern-lock 

layout, these features are formed through the press, move-in, move-out, and release events. 

Furthermore, an authentic pattern-lock should be completed in one draw. Therefore, the 

pattern-lock construction process consists of only one press and release event. In addition to 

the four timing features, three original features were used: pressure for move-in, size for 

move-in and angle for move-in.  A total of 113 participants provided 20 samples each to 

produce empirical results, of which pressure and angle offers the best EER reaching 3.03%.     

Even though touchscreen is the future for most devices, the study conducted in [124] 

produced proof that the usage of the PC’s keyboard conveyed the best authentication 

accuracy, followed by soft keyboard and touch keyboard. 

2.11 Security Issues 

This section discusses the security level that keystroke authentication systems provide. This 

is certainly crucial when it comes to actually applying such a scheme to highly secured 

systems. Moreover, some research in the literature was completely dedicated to test the 

tolerance of keystroke systems against a variety of attacks; such as the work done in [70, 

157]. For example, in the study conducted in [70], a series of tests were undertaken to 

evaluate the performance of the keystroke dynamics system against human and bots attacks. 

Two bot simulations, i.e. GaussianBot and NoiseBot, were programed to attempt passing the 

keystroke authentication system by imitating a specific user’s keystroke patterns. They 

worked by inserting statistically-generated keystroke sequences on the victim’s computer.  

The keystroke data was collected from 20 users, typing short strings. This was used in three 

sets of experiments. The first experiment used the data collected from each user to attack 

other users’ profiles. The second and third experiments used the two simulated bots to attack 

the system. In both experiments, the bots were given access to the keystroke data of all 19 

users except the original user’s data. The average FAR of the human attacker experiment was 

4.2% while the average FAR for the bots attacker experiments was 1.5%. This shows that 

even though human attackers can slightly exploit the system, it was still adequately protected 

against automated attacks.  
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Moreover, a list of the most common security threats is provided below along with the degree 

of safety that keystroke systems deliver against these dangers [18]. 

1. Shoulder surfing and user mimicking: is an attack in which the attacker monitors the 

victim typing, in order to try imitating his or her typing behaviour [1]. Even though there is 

little possibility of an attacker successfully mimicking a user’s typing pattern in fixed-text 

keystrokes [70], it is even harder to do so in free-text systems. Since it requires the attacker to 

observe the user’s behaviour for a long time, it is very rare that an attacker can actually 

imitate all the aspects of the user’s typing behaviour.  

In fact, the study published in [66] investigated this issue and concluded that it is still 

unlikely to authenticate an imposter even if he or she observed the way the legitimate user 

types the password. 

2. Spyware and replay attack: spyware is software downloaded into the victims’ computer 

without their consent, to record information about them [1]. Spyware is perhaps the biggest 

threat to keystroke dynamic authentication systems [4] because it can record exactly the time 

each key is pressed and released. This can be used by the attacker to simulate the legitimate 

user’s typing behaviour and initiate a replay attack such as the one used in [158].  

This attack was carried-out through “snooping” the victim’s keystrokes, i.e. stealing around 

20 to 1200 of his or her keystrokes using a key-logger. Then, another typing sample was 

forged, using the stolen data, by creating a new sample that contains only di-graphs similar to 

that existing in the stolen sample. Lastly, the foraged text was injected into the system to 

make it appear as if the victim was the person using the system. Data from 150 subjects was 

exploited using four state-of-the-art continuous authentication methods. This attack 

succeeded in raising the average EER between 69.33% and 2730.55%.  

3. Social engineering: is manipulating the user in order to obtain his or her private 

information [14]. Tricking the victim to reveal his or her typing pattern is not possible using 

telephone calls or face to face meetings.  

Yet, phishing emails [1] can be used to trick the user to type some text which can be used to 

extract the victim’s typing patterns. But even then, the attacker has to get hold of a sufficient 

amount of keystrokes to be able to actually simulate the victim’s typing patterns. 
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4. Guessing: is trying to guess the way that a victim types. There are simply too many 

different ways that a user might normally follow when typing. Therefore, guessing the typing 

behaviour of another person is almost impossible especially for free-text keystroke dynamics 

[4].  

Even if that was possible, it will take a considerably long time to extensively try all 

conceivable patterns. This exponentially hardens the task of keystroke guessing without any 

additional knowledge about the user’s typing. 

2.12 Summary 

Keystroke dynamics is a behavioural biometrics solution for identifying a user based on his 

or her distinctive typing patterns. This is done using the time taken to press a single key 

and/or the interval-time when pressing two keys sequentially. 

Utilizing users’ typing behaviour for authentication is performed using either fixed-text or 

free-text schemes, each of which has advantages and drawbacks. Therefore, the application 

requirements govern the type of keystroke dynamics system that should be applied. 

One concern about keystroke systems is that it tends to be instable, in the sense that it might 

be influenced by the user’s state or by experimental conditions. Nevertheless, keystroke 

dynamics still has potential in the area of identity verification. This is because it’s a low-cost 

and non-intrusive alternative to the traditional ID/password authentication technology.  

Keystroke dynamics offer many security functions, such as providing a more secure 

ID/password scheme and delivering continuous protection to a PC or an online service. It can 

also be used in many other real life situations as the same keystroke concept can be also 

applied to other kinds of keyboards such as virtual keyboards and other keypad operated 

machines.   

From the literature covered in this chapter, a number of gaps have been identified. These gaps 

have influenced the progress of this research. For instance: free-text keystrokes, although 

being more applicable in real-life situations, are not examined thoroughly in the current 

literature (compared with fixed-text). This has driven this research to concentrate on applying 

free-text in keystroke systems.  
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Moreover, exploring a wide range of features (including conventional and non-conventional) 

is of high importance in this research. This is because each one of these features represents 

the individuality of the user’s typing behaviour in a different way.  Moreover, feature 

selection is a vocal point with which the authentication system can make use of the features 

that have the most influence on the system performance.  

In addition, choosing a classifier that best represents the problem in hand is crucial. As found 

in the literature, the method chosen for classification has a great impact on the system 

performance. Moreover, testing the proposed technique using more than one classification 

methods is preferable as well.  

It should be noted, as well, that most of the previously reported studies involved substantial 

input from the user in order to provide the computer system the chance to learn the user’s 

keystroke characteristics. Whilst such experimentation can be acceptable in the laboratory, 

this extensive initial input can in reality be very off putting for the user, in a practical system. 

It is more the practical, real-world situation that is focused on here as the least amount of 

training data is used to infer the user’s identity. 

It also should be remarked that the vast majority of the studies conducted in this area, only 

accepts English input from the user. Whilst such experimentation is very important, there 

clearly is a lack of language variation used in such systems. Therefore, the inclusion of input 

from another language whose characteristics are completely different to that of English, i.e. 

Arabic, is a main interest of this research. 
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Chapter 3 

 

Key-Pairing Method 

3.1 Introduction  

As mentioned in Section 1.2, keystroke dynamics was chosen for this study to provide an 

inexpensive, easy alternative to the problematic ID/password scheme [42]. More specifically, 

free-text keystroke dynamics was found to be closer to real-life situations than fixed-text 

keystroke dynamics because the identities of participants are verified through natural, 

everyday typing tasks, and this greatly facilitates ease of use [40]. Nevertheless, keystroke 

dynamics is hampered by the need to acquire huge amounts of training data [4]. For the 

purpose of training the system, the users are requested to type large amounts of text in the 

enrolment session. This research tackles this problem by introducing a novel key-pairing 

scheme that promotes the most effective use of a minimum amount of training.  

This chapter provides an explanation of the original key-pairing method, that has been 

introduced as part of this PhD research, and then goes on to explain how it has been applied 

in this study. Some pilot results produced by a very simplified version of this method are also 

discussed.  

Many improvements have been implemented to further enhance the original scheme. In the 

extended version of the key-pairing technique, more timing features are added in order to 

capture the significant habits that users follow when typing. The second part of this chapter is 

dedicated for explaining the modified method. The results of applying the extended method 

on a group of individuals are presented along with a comparison of the two proposed 

techniques and comparisons with other state of the art research. 

3.2  Original Technique 

The original key-pairing technique considers a keyboard-layout based method to compare 

timing features of free-text typing samples. The method classifies the text to five different 

key-pairs depending on the position of the two keys on the keyboard. The Euclidian distance 
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between the timing features vectors of each key-pair is used to find the level of similarity 

among the samples. 

This particular structured key-pair based method for extracting features was explored in this 

study in order to increase the number of the di-graphs, i.e. combination of two keys, found 

and compared in both the training and the testing samples. The aim of that is to enhance the 

stability of the means of each timing feature extracted from these key-pairs which are the 

main components of the user’s timing vector. Thus, the authentication process can be carried-

out with the least amount of text possible.  

In this approach, an attempt to use the least amount of training possible was carried-out. The 

main goal for this is the user’s comfort and relaxation and hence the realization of a practical 

and employable system. It is not adequate to relieve users from remembering long passwords 

if they will still have to type-in a huge amount of text, multiple times when enrolling in the 

system. Hence, here enrolment is a simple, relatively rapid process.  

3.2.1 Feature Definition  

The features used in original key-pairing scheme are described in this section. The methods 

by which key-pair formation and feature extraction were performed are both explained here.  

3.2.1.1 Key-pair Formation  

This research introduces a novel approach, for free-text keystroke dynamics authentication, 

which makes use of the keyboard’s key-layout. The approach uses the keystroke features 

extracted between two keys (key-pair) that are pressed consecutively and have a relationship 

on the keyboard layout. This relationship depends mainly on the key position of each 

character on the keyboard. The keyboard used in this study was the English QWERTY since 

it is both the most common keyboard layout and the most popular one [129]. 

There are five types of key-pairs: 

1) Adjacent: keys located next to each other on the keyboard. 

2) Second adjacent: keys that are one key apart from each other. 

3) Third adjacent: keys that are two keys apart. 

4) Fourth adjacent: keys that are three keys apart. 

5) None adjacent: keys that are more than three keys apart. 
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Figure 3.1:  Key-pair formation example. 

 

For further explanation, an example is provided in Figure 3.1. If the key G is considered, the 

related key-pairs are as follows: 

 Y, H, B, V, F and T are adjacent keys to G. 

 U, J, N, C, D, and R are second adjacent to G. 

 I, K, M, X, S, and E are third adjacent to G. 

 O, L, Z, A, and W are fourth adjacent to G. 

 P and Q are none adjacent to G. 

This key classification can be performed in the same way for all the key-pairs in the typed 

text. 

Table 3.1 gives an empirical example for all of the key-pairs in the word “university”. This 

shows the process that is followed to break a text down into di-graphs, or key-pairs, and then 

classify each di-graph into one of the five types of key-pairs before using its timing data in 

the corresponding timing vector. 

 

Table 3.1: Key-pairs in the word “university”. 

Di-graphs un ni iv ve er rs si it ty 

Key-pair type 2nd adjacent 2nd adjacent 4th adjacent 3rd adjacent Adjacent 2nd adjacent Non Adjacent 3rd adjacent Adjacent

 

Given that the key-pairing method significantly boosts the number of key-pairs that can be 

found and compared in the training and testing samples, it was adapted as a way to increase 

the soundness of the means of the timing features extracted from these key-pairs. This will 

help to increase the stability of the timing vectors. This is a clear benefit of the suggested 

scheme because it enables it to facilitate a small amount of text to compare two samples, i.e. 
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uses a small amount of typing data in the best possible way. For example, given the following 

training and testing data: 

 Training data: “University of Reading” 

 Testing data: “Systems Engineering” 

There are only two similar key-pairs (“in” and “ng”) whose typing times can be compared in 

the authentication process, using regular keystroke schemes such as the one introduced in [8]. 

However, this is not the case when using the key-pairing method introduced here because 

there are more instants for each kind of key-pair extracted from both the training and testing 

data. This is shown in Table 3.2. 

 
Table 3.2: Total number of key-pairs. 

Key-pair type Adjacent 2nd adjacent 3rd adjacent 4th adjacent Non adjacent 

Training data 3 7 2 1 3 

Testing data 1 5 2 3 4 

 

Pairs that involve the space key are discarded because of the work conducted by Singh and 

Arya [50], which provided evidence that a user normally experiences very unusual pauses 

before and after pressing the space key, which causes inconsistent typing behaviour. Also, 

typing mistakes have been allowed in this study, as the timing of each key-pair is collected 

even when it is not correctly spelled. However, key-pairs that include the backspace key are 

excluded for reasons similar to that of eliminating key-pairs that include spaces [50]. 

3.2.1.2 Feature Extraction 

Once the key-pairs have been obtained from the users’ raw data, the keystroke features are 

extracted. These features were computed for every key-pair, using four main values: the press 

time and the release time of the first and the second keys of the key-pair, i.e. D1, U1 and D2, 

U2. In this research, five keystroke features were extracted from each key-pair, as shown in 

Figure 3.2: 

 Hold time: each key-pair has two hold times, the hold time for the first key (H1) 

and the hold time for the second key (H2). 
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 Keystroke latencies: three types of latencies were extracted from each key-pair, 

down-down (DD) time, up-up (UU) time and up-down (UD) time. 

Section 2.6 provides a full description of these timing features. 

 

 

Figure 3.2: Timing features for a key-pair. 

 

In summary, five timing features were defined for each key-pair appearance in the text. This 

was done for all five types of key-pairs. Therefore, the overall number of timing features is 

25 (5 timing features * 5 key-pairs). The means of these features were calculated and stored 

in the timing vector of each user, i.e. user’s template. Table 3.3 lists all the 25 features 

extracted from all key-pairs. The features abbreviations listed in the table combine the key-

pair category and the timing feature, for example: “A-H1” stands for: Adjacent -Hold1 and so 

on. 

 
Table 3.3: Original approach feature set. 

Key-pair Category Feature Set 

Adjacent A-H1 A-H2 A-DD A-UU A-UD 

SecondAdjacent S-H1 S-H2 S-DD S-UU S-UD 

ThirdAdjacent T-H1 T-H2 T-DD T-UU T-UD 

FourthAdjacent F-H1 F-H2 F-DD F-UU F-UD 

NonAdjacent N-H1 N-H2 N-DD N-UU N-UD 

 

Key 1  Key 2 
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3.2.2 Experimental Results and Discussion 

In this section, a description of the experiment and the data collection is provided. The data 

space and the experimental results are also delivered. Moreover, a discussion about the 

results of this experiment in addition to some comparisons with other studies is produced in 

this section. 

3.2.2.1 Data Collection 

For this study, 15 users participated in the experimentation process. Each participant provided 

merely one training sample and two testing samples. There were participants from both 

genders and all participants were in the age group between 20 and 60 years. They had 

different levels of typing skills that varied between moderate and very good. They were not 

all native speakers of English and included, for example, Greek, Czech and Arabic speakers. 

Table 3.4 describes some of the demographic characteristics of the participants.  

 

Table 3.4: Characteristics of the participants in the original experiment. 

Gender  Age Native language Typing skills 

Male Female 18-37 38-57 58+ English Non-English Good Moderate Poor 

6 9 7 6 2 6 9 10 5 0 

 

During the data collection, or enrolment phase, participants were asked to type a paragraph 

consisting of five lines of text. The text included five short and well-known English quotes. 

Most of the words used in the text were short, simple and well-known words. All the words 

were in lower case, and there were no numbers or punctuation marks.  

The 380-character-long text was the only sample used as training for the system; this was 

considered to be a very short training sample compared to previous studies. This added to the 

user-friendliness of the system because the only instance of typing that was required as 

training for the system was of reasonable length. This spared the users from the annoyance of 

having to spend a long time in the enrolment phase. Users were directed to enter the samples 

in much the same way that they usually follow when typing. Users were allowed to enter 

carriage returns and backspaces if needed.  
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Two shorter testing texts were also collected from the participants, in the same way. These 

texts were each approximately 75 characters long and were completely different from the text 

that was used for training. 

Volunteers were recruited by the researcher personally approaching them. After receiving the 

initial approval from prospective participants, they will be provided with the experiment 

details. All participants were asked to read and sign a consent form that explains the purpose 

of the research, the nature of the collected data and how the recorded data is treated. This is 

done in order to fulfil the University of Reading ethical approval process. A copy of the 

consent form and the information sheet for the ethical approval can be found in Appendix A.1 

and Appendix A.2, respectively. 

The data collection was performed on a GUI program implemented using Java language. 

Figure 3.3 illustrates a screenshot of the data collection program. This program was installed 

in one machine that all participants had to use in order to perform data collection. This is the 

reason for all the participants being situated in the same location where this research is 

performed. 

 

 

Figure 3.3: A screen-shot of the data collection program for the original scheme experiment. 
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The decision to collect data as the users were typing on a text area, rather than gathering it 

while they were using regular applications such as word processors or programming editors, 

was because of previous work done in [35]. The research done in that study concluded that 

the keystroke behaviour of a single user varies for different applications. This could add more 

complexity to the system and interfere with the purpose of this research.  

Ethical concerns about key-logging sensitive data were another reason for restricting the data 

collection process. Data collection was chosen to be done via a separate application, as 

opposed to a keylogger-like manner, because of the security concerns that follow the use of 

keyloggers [159]. Users are more likely to reject getting involved in such an experiment, 

fearing that important information such as IDs/Passwords can be ‘accidentally’ captured. 

Moreover, the application used for data collection is similar to word processing applications 

such as Word and Notepad, therefore the user was able get familiar with the requirements 

very quickly. 

 

$ | 14232027812 | DOWN |  

$ | 14232948024 | UP |  

R | 14232569880 | DOWN |  

R | 14233043428 | UP |  

E | 14234914503 | DOWN |  

E | 14235313349 | UP |  

A | 14235363284 | DOWN |  

A | 14235812108 | UP |  

D | 14236036757 | DOWN |  

D | 14236435939 | UP |  

I | 14237384043 | DOWN |  

I | 14237807844 | UP |  

N | 14238057237 | DOWN |  

N | 14238431265 | UP |  

G | 14239104939 | DOWN |  

G | 14239429151 | UP | 

Figure 3.4: Data collected from typing “Reading”.  

 

The data collection is done by capturing certain attributes for every key action performed on 

the keyboard. These attributes are: the character of the key (produced from the ASCII code of 

the key), the time of the action, whether it was an up or down action. These attributes are then 

used for key-pair identification and features extraction. An example of the data collection 
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process of the text “Reading” is shown in Figure 3.4. Each raw in the figure illustrates the 

information captured for each action performed on the keyboard. The first column is the 

character of the key which the action is performed on, the second column is the exact time the 

action was performed (this time is the number of ticks since the Unix Epoch, which is a fixed 

point in time referring to January 1, 1970 00:00:00 UTC [160]), and the last column indicates 

the action type, i.e. up or down.    

Moreover, every two keys pushed successively yield in a key-pair. For each key-pair, the 

following attributes are identified: key1, key2, H1, H2, DD, UU, UD , the key-pair category 

and whether one of the keys is a special function key such as: Space, Enter, CapsLock, 

NumLock, Shift, Control, etc. Key-pairs including any of the special function keys are not 

classified for reasons discussed in Section 3.2.1.1. An example of the key-pairing process of 

the text “Reading” is shown in Table 3.5. Each raw in the figure illustrates the information 

concluded for each key-pair in the entered text. The first and second columns are the first and 

second characters of the key-pair respectively. The third, fourth, fifth, sixth and seventh 

columns are correspondingly the H1, H2, DD, UU, UD times for this key-pair (the details for 

computing these times are explained in Section 3.2.1.2). The final column indicates the key-

pair category or whether the key-pair contains any special character. 

 

Table 3.5: Key-pairs formed from typing “Reading”.  

First char Second char H1 H2 DD UU UD Key-pair type 

$ R 295.121735 151.871859 30.597073 173.846949 -121.274786 RightShift 

R E 151.871859 127.914137 727.987708 751.945430 600.073571 Adjacent 

E A 127.914137 143.942611 159.957294 143.928820 16.014683 SecondAdjacent 

A D 143.942611 128.021896 200.069209 215.989925 72.047314 SecondAdjacent 

D I 128.021896 135.917470 439.984465 432.088891 304.066995 NonAdjacent 

I N 135.917470 119.954741 199.937718 215.900446 79.982977 SecondAdjacent 

N G 119.954741 103.978222 320.032610 336.009129 216.054387 SecondAdjacent 

 

3.2.2.2 Data Space 

As mentioned earlier, the five timing features were extracted for each key-pair appearance in 

the text. Then, the mean of each timing feature was calculated for all of the key-pair 

appearances. This was done for all five types of key-pairs.  

Nonetheless, by observing users’ behaviours, it was noticed that some users take small pauses 

for different reasons, such as moving their eyes to read the provided text; therefore, any 
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outlier data is discarded. Outlier data is identified as being as much as three standard 

deviations above or below the mean [36]. These particularly very large or very small data 

points were discarded from the final data as they represented noise that might affect the 

overall system performance [48].  

Around 0.01% of the overall data was discarded for being more or less than the specified 

threshold. The amount of discarded data is small enough to not affect the final dataset 

immensely. Experimenting with smaller thresholds were performed, yet a great deal of the 

dataset was omitted which affected the final results in a sense that the delicate differences 

between the individuals’ typing patterns were lost, therefore the error rate was higher. 

In addition, it was seen as preferable to normalize the data before handing it to the machine 

learning technology [161]. Therefore, all the data was normalized to be between [0,1] to add 

a sense of uniformity to the data as attributes in greater numeric ranges might have dominated 

those in smaller numeric ranges [162]. 

The final step involves creating the user’s timing vector and storing it in the database as the 

user’s template. The timing vector (V) includes five sequences (sub-vectors) (i.e. VA, VS, 

VT, VF, VN) consisting of five means each. The sub-vectors represent the means of the five 

timing features for each of the five key-pairs. The following equations show a timing vector 

that describes a user’s typing profile: 

V= {VA, VS, VT, VF, VN}                             (3.1) 

VA= {µA-H1, µA-H2, µA-DD, µA-UU, µA-UD}                 (3.2) 

⋮ 

VN = {µN-H1, µ N-H2, µ N-DD, µ N-UU, µ N-UD}                                                                           (3.3) 

Where: 

µA-h1: denotes the mean of the H1 timing feature for all adjacent key-pairs. 

µA-h2: denotes the mean of the H2 timing feature for all adjacent key-pairs. 

 … and so on. 
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3.2.2.3 Finding Distance 

At the log-in phase, the user is asked to enter a test text that is different from the text entered 

at the enrolment phase. The system then prepares the timing vector for the test data, which 

includes the means of the five timing features extracted from the five types of key-pairs, 

using exactly the same steps that were followed to create the timing vector for the training 

data (user profile). 

Once the timing vector for the test data has been prepared, the Euclidean distance [163] is 

calculated between the log-in vector and the vector stored at the user’s profile in the database. 

This distance is calculated using the following formula: 

, 	 ⋯ ∑            (3.4) 

Where n is the number of components in the timing vector, p and q are the training and 

testing vectors. 

An example is illustrated in Figure 3.5 in which (A) shows the similarity between the train 

and test vectors for one user, while (B) shows the difference between the train vector of one 

user and the test vector of another user. 

The Euclidean distance must be small enough to ensure that a reliable decision can be made 

regarding the identity of the user. However, the distance will never be exactly zero because 

human behavioural characteristics are not always consistent [50]. Therefore, an acceptable 

value for the distance is determined and, if it is not exceeded, the user is accepted as genuine; 

otherwise, the user is denied access. This value, or threshold, is determined based on each 

user’s profile data [36]. After several trials, a threshold described as the mean plus one-and-a-

half standard deviations was chosen [36]. This local threshold is calculated individually for 

each user based solely on the training data used to build the timing vector in that user’s 

profile. 



74 
 

A-H1 A-H2 A-UU A-DD A-UD S-H1 S-H2 S-UU S-DD S-UD T-H1 T-H2 T-UU T-DD T-UD F-H1 F-H2 F-UU F-DD F-UD N-H1 N-H2 N-UU N-DD N-UD

-100

0

100

200

300

400

500

600

700

Features

T
im

e 
(m

s)

(A)

 

 

User1 profile data

User1 test data

A-H1 A-H2 A-UU A-DD A-UD S-H1 S-H2 S-UU S-DD S-UD T-H1 T-H2 T-UU T-DD T-UD F-H1 F-H2 F-UU F-DD F-UD N-H1 N-H2 N-UU N-DD N-UD

-100

0

100

200

300

400

500

600

700

Features

T
im

e 
(m

s)

(B)

 

 

User1 profile data

User2 test data

 

Figure 3.5: (A) The same user’s timing vectors (B) Different users’ timing vectors. 
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3.2.2.4 Experiment and Results  

Each participant was asked, first, to enrol once in the system in which his or her timing 

profile was calculated and stored in the database. This is the only sample that the user 

provides to the system as a training sample. Then, participants were told to provide two 

testing samples which are different to the training sample.  

The system performs key-pair formation and feature extraction which outcomes are stored in 

the timing vector. This is done for both training and testing samples. Euclidian distance is 

then computed between training and testing samples. The result of the Euclidian distance is 

lastly compared against the chosen threshold to decide if the test sample and the training 

sample are from the same individual. The flow in which the enrolment and log-in phases are 

carried-out is illustrated in Figure 3.6. 

 

 

Figure 3.6: Flow of the system. 
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Two error rates, the FAR and the FRR, were used to determine the performance of the 

authentication method. These error rates are explained in detail in Section 2.7. As mentioned 

in Section 2.7, there are various error rates used in the literature to report the system 

performance. The reason for choosing the FAR and FRR is to provide a better understanding 

of the security that the system delivers. In biometric systems, operating at a low FAR, where 

only few imposters get access, and at low FRR, where few genuine users are denied access, is 

of highest priority. Therefore, FAR/FRR conveys more information about the system’s 

security compared with other error rates such as accuracy or EER [164].  

In this study, the testing process was conducted in two ways: 

1) Legitimate user testing: each user’s timing profile is compared to his or her two sets 

of testing data. 

2) Imposter user testing: each user’s timing profile is compared to the two testing data 

samples of another participant, which was randomly selected.  

The results from using the five timing features were analysed separately, and those that used 

a combination of these features were investigated as well. The details of each individual’s 

results are shown in Appendix C.1 

  
 

Table 3.6: Error rates for individual features.  

Features FAR FRR 

H1 0.9 0.167 

H2 0.867 0.1 

UU 0.933 0.1 

DD 0.833 0.167 

UD 0.867 0.067 

 

Table 3.7: Error rates for combination of features. 

Features FAR FRR 

H1 + H2 0.667 0.267 

H1 + UD + H2 0.367 0.5 

DD + UD + UU 0.467 0.533 

H1 + DD + UD + UU + H2 0.033 0.867 
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Table 3.6 clearly states that the use of individual features produces better FRR compared with 

the produced FAR. Nonetheless, latency features and hold features have similar performance 

outcomes (all results are provided in a 0-1 scale).  

The FAR was improved when using a combination of features, as shown in Table 3.7.  More 

so, using a combination of all the features produced the best FAR. Yet, the FRR deteriorated 

in the combined features. The FAR was lower than the FRR in the combined features 

including latency features. Merging the two hold times did not greatly change the error rates 

of each of them individually. 

After examining the results, the trade-off between the FARs and the FRRs was clear, as 

illustrated in Figure 3.7. This trade-off between FAR and FRR is unavoidable. Therefore, 

combining the features results was significant, since the security of the system is of higher 

priority, and a low FAR is more important in this study. This indicates that more imposters 

are detected, yet inescapably genuine users will face more access rejections.  

 

 

Figure 3.7: Original technique error rates. 

3.2.2.5 Discussion   

The results of this research, thus far, are comparable to some free-text studies, such as the 

work done by Hempstalk et al. [80], which resulted in a 0.113 FAR and a 0.204 FRR. 
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However, it is not at the same level as ground-breaking studies such as that done by Gunetti 

and Picardi [8], which produced a 0.00005 FAR and a 0.05 FRR. Nevertheless, both studies 

incorporate a relatively large number of enrolment samples, which are 3,000 samples from 19 

participants and 765 samples from 205 participants, respectively. This can be directly 

compared to this study’s one short sample per participant, i.e. 15 samples from 15 

participants.  

An important factor that enhances the practicality of this system is the text length used for the 

training. The shortness of the text used for training is highly desirable from the users’ 

perspective. This is not delivered by most methods available in the literature which impose 

the collection of long and time-consuming input from the users [79]. This requirement 

interferes with the main goal of this study that focuses on authenticating the user based on the 

smallest amount of text possible, and therefore, relieving the user from the tedious task of 

enrolment, i.e. easier training. 

This technique clearly needs to be refined in order to improve the overall system 

performance. Modifications that involve more precise key-pair classification and more 

advanced classification technology are important to improve this method. This will be 

introduced in the extended technique discussed in the next section.  

3.3  Extended Technique 

In the extended technique, the research continues to consider the keyboard-layout based 

method to compare the timing features of free-text typing samples. A larger feature set is 

deployed in this research for the purpose of trying to find the best representative features of 

the typing patterns in human behaviour whilst continuing to provide users with the easy 

training they long for as the training process involves the user typing only little input. The 

five different key-pairs introduced in the original technique which depended on the position 

of the two keys on the keyboard with relation to each other have been expanded to essentially 

include a sense of hand positioning on the keyboard.  

This extended key-pair based method for extracting features was followed, similar to the 

original scheme, in order to escalate the number of the common key-pairs in the training and 

the testing samples, i.e. di-graphs found in both samples. This will improve the stability of 

the means of the timing features extracted from these key-pairs which corresponds to the 
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main elements of the user’s timing vector. Therefore, the utilization of the least amount of 

text possible in the best way possible is achieved. 

The new, more specific features cater to most typists, who use their two hands in typing. 

Therefore, the speed of which they type two adjacent keys, for example, using their left hands 

differs to that which they type with their right hands [165]. Nonetheless, this addition is not at 

the cost of longer training as the extended key-pair approach is still able to utilize the least 

amount of text in the best way possible. 

Extracting the best feature set for this problem was carried-out using two different 

mechanisms: a wrapper and a filter subset selection techniques. They are: Ant Colony 

Optimization (ACO) and Multivariate Analysis of Variance (MANOVA). Moreover, One-vs-

One and One-vs-Rest Support Vector Machines (SVMs) were used to classify users. 

3.3.1 Improvements on the Original Method 

While observing the subjects during their typing processes, it was noticed that the original 

method works well with those who use only one hand during the typing process. Therefore, a 

more sophisticated key-pair classification, taking into consideration the position of the hand 

on the keyboard, has been applied. This method distinguishes between the key-pairs located 

on the left side of the keyboard, those on the right side of the keyboard and those that are 

scattered between the two sides. This alteration is aimed at producing a better representation 

of the typing patterns for people who use their right hands for pressing keys on the right side 

of the keyboard and their left hands for the keys on the left side of the keyboard. This is due 

to the fact that the typing speed of a particular key-pair may be different across the two hands 

[165].  

Moreover, the clock resolution is a critical part of the process of extracting the keystroke 

timing features. In fact, according to the study in [166], the clock resolution in keystroke 

dynamics systems should not, preferably, exceed 1 millisecond (ms). Another study that was 

conducted in [167] to explore the consequences of the clock resolution on keystroke 

dynamics discovered that the EER increased by around 4.2% when a 1ms resolution clock 

was replaced by a 15ms resolution clock. This is a significant reason why the performance 

produced by the original method was not sufficient. A Java written program was used for 

extracting time features, in which the clock resolution varies between operating systems [35]. 

Java programs running on a Windows operating system, which is the case for this study, have 
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between 10ms and 15ms timing resolution [168]. This made the decision to switch to C++ 

programing language unavoidable. The clock resolution for C++ is 1 microsecond (µs) when 

using the function QueryPerformanceFrequency() [169]. Therefore, converting to C++ yields 

improvement in the timing precision for the timing keystroke features. 

In addition, Java applications need the Java Runtime Environment (JRE) to be present on the 

machine before it can run the application. However, JRE was not available on most of the 

participants’ machines. Therefore, data collection was performed on only one specific 

machine, in one set. The subjects reported that they found this difficult because they were not 

accustomed to this new machine. Using C++ solves this problem as programs written in C++ 

do not have any requirements regarding the machines they run on. This makes it possible to 

send the application to participants by e-mail so they can download and use it in the 

convenience of their own computers and at times that are suitable for them. This should result 

in capturing their realistic typing behaviours and, therefore, increase the level of consistency 

among the typing samples. This also allows for the data collection to be performed on more 

than one set, which will help to capture a broader range of the user’s typing behaviour. 

In addition, the use of advanced technology in both feature subset selection and samples 

classification is bound to improve the overall system performance. The introduction of 

feature subset selection using ACO and MANOVA helps to improve the separablity property 

of the features used for user authentication. Moreover, switching the primitive Euclidian 

distance for the more reliable and highly advanced SVMs also assists in improving the 

overall performance level. 

3.3.2  Feature Definition  

The features used in the extended key-pairing scheme are described in this section. The key-

pair formation and feature extraction are both explained here.  

3.3.2.1 Key-pair Formation 

The extended approach, similar to the original scheme, uses the keystroke features extracted 

between two keys (key-pair) that are pressed consecutively and have a relationship on the 

keyboard layout. This relationship depends mainly on the key position of each character on 

the keyboard with relation to the other character. Moreover, these relationships can vary 

depending on the location of the two keys with respect to the overall keyboard layout.  
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Similar to the original technique, there are five categories for key-pair relationships: 

1) Adjacent: keys located next to each other on the keyboard. 

2) Second adjacent: keys that are one key apart from each other. 

3) Third adjacent: keys that are two keys apart. 

4) Fourth adjacent: keys that are three keys apart. 

5) None adjacent: keys that are more than three keys apart. 

Figure 3.1 (in page 65) illustrates the key relationship concept; while considering the key ‘G’. 

This is exactly the same as the original method introduced in Section 3.2.1.1. 

Each of these relationship categories can fall into one of the following overall locations: 

□ Both keys are on the right hand side of the keyboard. 

□ Both keys are on the left hand side of the keyboard. 

□ The two keys are located on different sides of the keyboard, i.e. the first key is located 

on the right hand side while the second key is on the left or vice versa. 

For further explanation, in Figure 3.8, the green section of the keyboard represents the right 

hand side while the purple keys represent the left hand side. Other keys that are not located in 

the main part of the keyboard, e.g. the num-pad keys, arrows and the function keys were 

excluded from the key-pair formation; they are therefore indicated with white colour. 

 

 

Figure 3.8:  Overall key location. 

 

Based on the previously explained technique, the key-pairs formed from the text “kjbr1,” are: 

 “kj”: Adjacent/RightSide. 

 “jb”: SecondAdjacent/ DifferentSide. 

 “br”: ThirdAdjacent/LeftSide. 
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 “r1”: FourthAdjacent/LeftSide. 

 “1,”: NonAdjacent/DifferentSide 

This process is pursued to break the text down into key-pairs and then classify each key-pair 

typed on the main part of the keyboard. In total, there are fifteen different combinations of 

key-pairs that any two keys can be classified into. 

The extended key-pairing method was used to increase the soundness of the mean of the 

timing features that builds the users’ profiles, without compromising the typing 

characteristics that might differ when a key-pair is typed with the user’s right or left hand.  

3.3.2.2  Feature Extraction 

The five features in the original technique, i.e. H1, H2, UU, DD, UD, described in Section 

3.2.1.2, are also used in the extended method. 

 
Table 3.8: Extended approach feature set. 

Key-pair Category Feature Set 

Adjacent/RightSide AR-H1 AR-H2 AR-DD AR-UU AR-UD 

Adjacent/LeftSide AL-H1 AL-H2 AL-DD AL-UU AL-UD 

Adjacent/DifferentSide AD-H1 AD-H2 AD-DD AD-UU AD-UD 

SecondAdjacent/RightSide SR-H1 SR-H2 SR-DD SR-UU SR-UD 

SecondAdjacent/LeftSide SL-H1 SL-H2 SL-DD SL-UU SL-UD 

SecondAdjacent/DifferentSide SD-H1 SD-H2 SD-DD SD-UU SD-UD 

ThirdAdjacent/RightSide TR-H1 TR-H2 TR-DD TR-UU TR-UD 

ThirdAdjacent/LeftSide TL-H1 TL-H2 TL-DD TL-UU TL-UD 

ThirdAdjacent/DifferentSide TD-H1 TD-H2 TD-DD TD-UU TD-UD 

FourthAdjacent/RightSide FR-H1 FR-H2 FR-DD FR-UU FR-UD 

FourthAdjacent/LeftSide FL-H1 FL-H2 FL-DD FL-UU FL-UD 

FourthAdjacent/DifferentSide FD-H1 FD-H2 FD-DD FD-UU FD-UD 

NonAdjacent/RightSide NR-H1 NR-H2 NR-DD NR-UU NR-UD 

NonAdjacent/LeftSide NL-H1 NL-H2 NL-DD NL-UU NL-UD 

NonAdjacent/DifferentSide ND-H1 ND-H2 ND-DD ND-UU ND-UD 
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In summary, five timing features were defined for each key-pair appearance in the text. This 

was done for all fifteen types of key-pairs. Therefore, the overall number of timing features 

was 75 (5 timing features * 15 key-pairs). The means of these features are calculated and 

stored in the timing vector of each user, i.e. user’s profile. Table 3.8 lists all the 75 features 

extracted from all key-pairs. The features abbreviations listed in the table combine the key-

pair category and the timing feature, for example: “AR-H1” stands for: Adjacent/RightSide-

Hold1 and so on. 

3.3.3 Feature Subset Selection 

Having such a large feature set will add more computational cost in addition to raising the 

complexity of the classification process [170]. Therefore, it is necessary to incorporate a 

feature subset selection mechanism to indicate the features that most represent users’ typing 

behaviour. 

Feature subset selection is considered as an optimization problem, where the space of all 

possible features is scrutinised to recognise the feature or set of features that produce optimal 

or near-optimal performance, i.e. minimize classification error [170]. Feature selection is 

applied to high dimensional datasets as a pre-processing step before classification is 

performed [19]. It counterbalances the lack of quality in the data by removing any irrelevant, 

noisy features. In addition to improving the classification performance and avoiding 

overfitting, feature selection is used to deliver a faster and more cost-effective method [170]. 

Nonetheless, feature subset selection causes overload on the system as the search for a subset 

of significant features adds an extra layer of complexity to the overall process [170].  

Feature subset selection algorithms are categorized into two main approaches based on their 

relation with the classifier. The first is the wrapper approach, in which the features selection 

depends on the learning algorithm [171]. In this approach, a search algorithm is used to 

search through all the possible features and evaluate each subset by running a classifier on the 

subset and then considering the subset with the best performance [171]. Since the space of 

feature subsets normally grows exponentially with the number of features, heuristic search 

techniques are introduced to direct the search to the optimal subset.  

Two classes of search methods are mainly used: deterministic and randomized search 

algorithms [170]. Randomized search techniques, such as: Genetic algorithms [172], are less 

prone to get stuck in a local optimum compared to deterministic algorithms, such as 
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sequential forward selection (SFS) [173] and sequential backward elimination (SBE) [173], 

where both are considered greedy search methods.  

On the other hand, the second approach is the filter; in this scheme the feature selection is 

done independently of the learning algorithm. This approach evaluates the significance of 

features based only on the statistical or probabilistic properties of the data [174]. This is done 

by computing a relevance score and eliminating features with low-scoring. The remaining 

subset of features is then used for further steps relating to the classification algorithm. Figure 

3.9 shows a brief illustration of both the wrapper and the filter approaches. 

The wrapper approach suffers from the computational overhead of evaluating all candidate 

feature subsets using the selected learning algorithm [175]. It also can face a higher risk of 

over-fitting [170]. The filter approach, on the other hand, is computationally more effective 

and easily scalable to higher-dimensional datasets, but, unlike wrapper methods, it overlooks 

the interaction with the classifier which may cause the feature subset space search to differ 

from the hypothesis space search [170]. Moreover, many techniques used in the filter 

approach are univariate, i.e. each feature is evaluated separately, such as t-test [176] and 

analysis of variance (ANOVA) [177]. This is a reason for ignoring feature dependencies 

leading to poorer classification performance. Therefore, more multivariate techniques were 

suggested to integrate feature dependencies to filter approaches, such as correlation-based 

feature selection (CFS) [178] and the Markov blanket filter (MBF) [179]. 

In the keystroke dynamics field, a verity of feature subset selection methods was employed 

over research projects. The Genetic Algorithm (GA) model was used to derive feature subsets 

in [180, 181]. Moreover, Particle Swarm Optimization (PSO) was used in addition to GA for 

feature selection in [169]. Ant Colony Optimization (ACO) was used in addition to PSO and 

GA in the research done in [5, 182]. Based on feature reduction rate and classification 

accuracy, both studies proved that ACO yields better performance than PSO and GA. 

Moreover, in [70] a pre-processing step involving Principle Component Analysis (PCA) was 

used to reduce the dimensions of the feature vectors.  

In this research, both a wrapper and a filter method were designated to act as a feature subset 

selection mechanism. This was decided in order to compare and contrast the two approaches 

and analyse their effect on the overall performance of the system. The technique used to 

represent the wrapper approach is the Ant Colony Optimization (ACO), whereas the method 

chosen to demonstrate the filter approach is the Multivariate Analysis of Variance 
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(MANOVA). Reasons for choosing these schemes are presented in Section 3.3.5.3. The two 

methods are described briefly in the following two sections. 

 

 

 
Figure 3.9:  Wrapper and filter feature subset selection methods. 

3.3.3.1 Ant Colony Optimization (ACO) 

Ant colony optimization is an optimization technique that was introduced in the early 1990’s 

by Dorigo and his colleagues [179, 180]. The technique was inspired by the foraging 
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behaviour of real ants, as shown in Figure 3.10. This behaviour, called stigmergy, was 

discovered by the French biologist Grasse in the late 1950’s [185]. It involves the indirect 

communication between ants using chemical pheromones that they leave on trails, which 

permits them to find the shortest path between the nest and the food supply. This behaviour is 

utilized in Ant Colony Optimization to search for approximate solutions and discrete 

optimization problems [186]. 

ACO is one of the most successful mechanisms of swarm intelligence [187]. Swarm 

intelligence aims to design intelligent multi-agent systems whose inspiring source is the 

collective behaviour of social animals and insects such as birds, fish, ants, bees and wasps 

[188].  

 

 

Figure 3.10: Ants’ behaviour to find paths from a source node to a destination node. 

 

ACO works at first by ants randomly explore the area surrounding their nest. They leave a 

chemical pheromone trail on the ground while moving around which can be smelled by other 

ants. Ants tend to choose paths marked by strong pheromone levels when choosing their way. 

Whenever an ant finds a food source, it evaluates the quantity and the quality of the food and 

changes the amount of the pheromone it leaves on the path back to the nest accordingly. 

Afterwards, these pheromone trails will guide other ants to the food source via the shortest 

path. The pheromone level left on the ground will decrease with time; therefore, only paths 

with strong amounts of pheromone will stay to guide ants [188]. 

One of the problems that the research community has simplified to obtain scientific test cases 

for ACO is the well-known traveling salesman problem (TSP) [189]. The TSP replicates the 

Source 

Destination 
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scenario of a travelling salesman who must pass through a number of cities. The travelling 

salesman intends to navigate between these cities so that the total travelling distance is 

minimal, while visiting each city exactly once. After that, ACO was successfully applied to a 

great number of problems such as the quadratic assignment problem (QAP), routing in 

telecommunication networks, graph colouring problems, scheduling, etc. [190]. 

The first ACO algorithm developed was the Ant System (AS) [183], which Dorigo created 

for his masters dissertation.  Since then, several improvement of the AS have been developed, 

many of which were by Dorigo himself such as: Elitist AS [191], Ant-Q [192] and Ant 

Colony System [193]. Other improvements to the original system were presented by different 

researchers, including: MAX-MINAS [194] and Hyper-Cube AS [195]. 

The ACO algorithm can be applied to any optimization problem that the following aspects 

can be defined for [188]: 

□ Appropriate problem representation: This insures that the problem can be expressed 

as a graph consisting of a set of nodes and edges between them. 

□ Heuristic desirability (ɳ) of edges: It measures the “goodness" of paths from one node 

to another in the graph. 

□ Construction of feasible solutions: A mechanism to ensure that only feasible solutions 

are constructed which needs defining of suitable traversal stopping criteria for 

stopping path construction whenever a solution is achieved. 

□ Pheromone updating rule: A technique for updating the pheromone levels on edges 

which utilizes a corresponding evaporation rule. This involves updating the paths that 

the n best ants chose. 

□ Probabilistic transition rule: This is the rule that controls the probability of an ant 

traversing from one node to another in the graph. 

Constructing a solution initially begins with an empty partial solution and then the solution is 

extended in the following steps by adding a feasible solution component from the set of 

solution components [190]. The transition rule for any ant 'm' that allows it to decide on 

including the ith feature at any time ‘t’ in the solution is influenced by two aspects: the 

heuristic and level of pheromone. Often a classifier performance is used as heuristic 

information for feature selection [188]. 
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The probabilistic transition rule is calculated as follows: 

P t
	

∗	

∑ ∗	
																																					if	i	ϵh

0																																																														otherwise
	              (3.5) 

Where hk is the set of feasible features that can be added to the partial solution; τi is the 

pheromone value and ηi is the heuristic desirability, they are both associated with feature i. 

The two parameters α and β are used to control the relative importance of the pheromone 

value and heuristic information. As mentioned earlier, the value of local heuristic desirability 

ηi for the ith feature is assessed using classifier classification accuracy used in the problem. 

The process of pheromone evaporation on all nodes is activated after all ants have completed 

their solutions. The goal of pheromone evaporation is to escape the state in which all ants 

construct the same solution [188]. This is done by dropping larger pheromone amounts on 

good routes. This is achieved by having ants deposit an amount of pheromones depending on 

the quality of their solution, i.e. classification accuracy. In addition, to increase the usefulness 

of dropping pheromones on routes, a little bit of the pheromones is removed at the end of 

every iteration to emphasize the pheromone reduction on less quality routes. Evaporation rate 

is shown in Equation 3.6 which shows each ant k depositing a specific quantity of pheromone 

on each node i that it has navigated. 

∆τ t φ	 ∗ 	
	

1 φ ∗ 	

0																																																			otherwise	
											if	i	ϵS t             (3.6) 

Where Sk(t) is the feature subset found by ant k at iteration t, and |Sk(t)| is its length while 

C(Sk(t)) is the classifier performance for that ant at that iteration. N is the total number of 

features in the data set. The parameter φ controls the relative weight that controls the 

importance of the classifier performance and the feature subset length.  

At the end of every iteration, the pheromone update is performed on all nodes. This is done 

by depositing the new pheromone which includes the effect of pheromone evaporation. 

Pheromone update is computed as: 

τ t 1 1 ρ ∗ 	τ t 	∑ ∆τ t                           (3.7) 

Where ρ is the pheromone trail decay coefficient which ranges from 0 to 1, m is the number 

of ants and ∆τ t  is the evaporation rate computed in Equation 3.6.  
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The stopping criteria for feature selection has been targeted in numerous ways such as using a 

fixed number of features [196] in which the user defines the minimum and maximum limit 

for the feature subset length. The ants, consequently, stop choosing the next feature if that 

maximum number of features is reached. Another often used stopping criterion is accuracy 

inversions [197] which corresponds to a selection of a feature degrading the performance. It 

works by the ants stopping the feature selection and returning the subset whenever a max 

number of inversions is reached.  

The process of feature selection using ACO starts with generating a number of ants which are 

then placed randomly on the graph. Often, the number of ants is chosen to be equal to the 

number of features; this allows each ant to begin constructing its path at a different feature 

[188]. Then, ants traverse nodes using the probabilistic rule until the stopping criterion is met. 

The resulting subsets are produced by all ants is then gathered and evaluated. This process 

stops if an optimal subset has been obtained or the algorithm has executed a specific number 

of times. The best feature subset encountered is output as the best solution. If these two 

conditions have not been satisfied, the pheromone is updated and a new set of ants are created 

and the process repeats again [190].  The overall process of ACO feature selection is shown 

in Figure 3.11. 

ACO was utilized in keystroke dynamics in several studies. An example of the studies 

utilizing ACO, together with other feature selection techniques, is the one performed in [5].  

In addition to ACO, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) were 

applied to the data before feeding it into a back propagation neural network (BPNN) 

classifier. Based on feature reduction rate and classification accuracy, this study proved that 

ACO yields better performance than PSO and GA. 

Moreover, while ACO, PSO and GA were all used in [182] for feature subset selection, the 

Extreme Learning Machine (ELM) was chosen to be the learning method. Supportive of the 

conclusions found in [5], this work demonstrated that ACO results in the best feature subset 

selection with ELM.  
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Figure 3.11: ACO feature selection process. 

3.3.3.2 Multivariate Analysis of Variance (MANOVA) 

MANOVA is considered as an evolution of the analysis of variance (ANOVA), as they are 

both statistical techniques used to analyse variability in data. ANOVA is used for analysis of 

variance in which there is only one dependent variable whilst MANOVA can be used for 

more than one dependent variable. A description of both techniques is provided in this 

section. 
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3.3.3.2.1 ANOVA 

Analysis of variance (ANOVA), as the name implies, is a statistical technique used to analyse 

the variability in data in order to deduce the inequality among population means [198]. It was 

first introduced by Fisher [199] more than 70 years ago. ANOVA is similar to a t-test but it 

allows the comparison between more than two groups (populations) [200]. Nevertheless, 

using repeated t-tests to compare more than two means will result in a higher Type I error 

rate (or FRR) [200]. The Null hypothesis, in this statistic measure, refers to whether or not 

the different sample means come from the same population: 

	 	 ⋯                   (3.8) 

ANOVA considers the ratio between two types of variances, namely: variance between 

populations and variance within populations [198]. The variance between populations 

represents the distance between each sample mean and the overall population mean. The 

variance within populations refers to the spread of each distribution.   The F statistic is 

calculated by: 

F	 	 	 	 		

	 	 	
                  (3.9) 

This means that if the variance between groups, nominator, is relatively larger than the 

variance within groups, denominator, then the ratio will be much larger than one. Therefore, 

the samples most likely do not come from the same population, i.e. reject the Null hypothesis.   

There are two main types of ANOVA: one-way ANOVA, also called one-factor ANOVA, 

and two-way ANOVA, also called two-factor ANOVA [201]. One-way ANOVA is 

considered the simplest form and it involves only a single factor (variable) in the experiment. 

When two variables are included, two-way ANOVA is used. This study only considers one-

way ANOVA and then MANOVA is used for more than one variable. 

In one-way ANOVA, the overall sum of squares is computed using the following equation: 

Total	sum	of	squares	 SST 	

Between	sum	of	squares	 SSC 	 	Within	sum	of	squares	 SSE            (3.10) 

To calculate the sum of squares, the mean of all responses, regardless of the group is found 

by: 

		
∑

                  (3.11) 
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Moreover, the sample mean of responses from the ith group is found by: 

		
∑

                  (3.12) 

The three sums of squares (in Equation 3.10) are computed as follows: 

∑ ∑                         (3.13) 

∑ 	                                       (3.14) 

                             (3.15) 

Where k is the number of groups or populations, n is the number of samples, ni is the sample 

size of group i, xij is the jth sample from the ith group or population and ,  are defined in 

Equations 3.11 and 3.12, respectively. 

The mean square for each of the above is the division between the sum of squares and the 

degree of freedom as follows: 

Total mean square (MST) =                            (3.16) 

Between mean square (MSC) =                            (3.17) 

Within mean square (MSE) =                            (3.18) 

Where k is the number of groups or populations, n is the number of samples. 

Equations 3.17 and 3.18 are used to calculate the F-ration as illustrated in Equation 3.9. The 
F-ratio is used together with degree of freedoms to determine the p-value and, thus, either 
reject or fail to reject the Null hypothesis.   

ANOVA has three main assumptions: independence, normality and homoscedasticity [201]. 

First, the observations are obtained independently and randomly from the population. Second, 

the population at each group is approximately normally distributed. Lastly, the different 

groups have common variance. 

3.3.3.2.2  MANOVA 

MANOVA, as previously mentioned, is an analysis of variance in which there is more than 

one dependent variable. The logic of MANOVA follows that of ANOVA but the calculations 

include matrix algebra. The independent variables are analysed in combination to provide 

composite variables to test for the effect of the dependent variables [202]. Moreover, an 
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assumption of homogeneity of variance and covariance matrices is also applied in MANOVA 

test statistics in addition to all ANOVA assumptions [203].   

In the MANOVA, the between-groups sum of squares is generalized to an H matrix that 

contains explained covariance related to the hypothesis in hand [202]. The within-group sum 

of squares is generalized to the E matrix that contains unexplained covariance credited to the 

error. The sum of these two matrices is the T matrix which is the generalization of the total 

sum of squares. 

To calculate these matrices: there is m random vectors X1, … , Xm (representing groups). 

Each Xj is a k × 1 column vector of form 

x
…
x

 where each xjp is a random variable. 

For each random vector Xj a sample {Xij, … Xnjj} of size nj is collected. N is defined as 

n ∑ n . Each sample Xij is a k × 1 vector of form	 …   where each xijp is a data element 

not a random variable, where index i refers to the subject in the experiment (1 ≤ i ≤ nj), 

index j refers to the group (1 ≤ j ≤ m) and index p refers to the position within the random 

vector (1 ≤ p ≤ k) 

The definition of the various means is similar to that in the univariate case, except that these 

means become k × 1 vectors. The total (or grand) mean vector is the column vector and it is 

computed as: 

X
̅
…
̅

  Where     ̅ ∑ ∑               (3.19) 

The group mean vector for group j is a column vector and it is calculated as: 

X
̅
…
̅

  Where     ̅ 	∑               (3.20) 

The H matrix is calculated as:  

H ∑ 	n X X X X                  (3.21) 
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Where:	X , 	X  are defined in Equation 3.19 and 3.20, respectively. N is the number of 

samples and j is the group. 

The E matrix is computed as: 

E ∑ ∑ X X X X                (3.22) 

Where: X 	is defined in Equation 3.20, i is the subject , j is the group. 

The matrix T is computed as: 

T = H + E                  (3.23) 

Many statistics have been used to compute MANOVA, such as Wilks’ Lambda, Hotelling’s 

Trace, Roy’s Largest Root and Pillai’s Trace [202].  

Wilks’ Λ (W) is the most commonly used test for MANOVA [204], and therefore used in this 

study. It is the ratio of determinants for the E and T matrices and it is computed as:  

W = 
| |

| |

| |

| |
                 (3.24) 

Where |E|, |H| and |T| are the determinant of matrixes E, H and T, respectively.  

From the above equation, as the explained covariation (H) increases, the error variation (E) 

reduces and the Wilks’ Lambda statistic becomes smaller. Therefore, the samples most likely 

come from the same population, i.e. accept the Null hypothesis. 

Pillai’s Trace test (V) is also commonly used for MANOVA [204]. It is computed from the 

first(s) (non-zero) eigenvalues of the H matrix multiplied by the inverse of the T matrix, as 

follows: 

V= H T-1                  (3.25) 

Some of the early work done in keystroke dynamics used MANOVA to prove that there is 

significant variability with which typists produce digraphs [205, 206]. Moreover, MANOVA 

is used in recent keystroke dynamics studies to find a subset of an original feature set that has 

the biggest separation between individuals. For example, in the study conducted in [207], 

MANOVA was used to select a feature subset from the data that consisted of the participants 
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entering a fixed sentence several times. The nearest neighbour algorithm is, then, used to 

classify the data. 

3.3.4 Support Vector Machines (SVMs) 

Support Vector Machines (SVMs) were introduced as a machine learning method in 1995 by 

Cortes and Vapnik [208]. SVMs’s main goal is to project the data points of a two-class 

training set in a higher dimensional space (if needed) and try to find a maximum-margin 

separating hyperplane between the data points of two classes. This hyperplane is considered 

optimal since it generalizes well to unseen data [209]. The optimal separating hyperplane is 

found by maximizing the margin between the closest points in the two classes. The points 

lying on the boundaries of the margin are called support vectors and the middle of the margin 

is the optimal separating hyperplane, as seen in Figure 3.12.  

 

 

 

 

 

 

 

 

 

Figure 3.12: Optimal hyperplane between two classes. 

 

This is true for linearly separable training sets for which there exists a linear discriminant 

function whose sign matches the class of all training examples [209]. There is usually an 

infinite number of separating hyperplanes when a training set is linearly separable. Choosing 

the separating hyperplane is done by selecting the one that maximizes the margin by leaving 

as much space as possible between the hyperplane and the closest data points. 

Support Vectors

Separating Hyperplain



96 
 

To find the optimum hyperplane for L training points, in which xi are the inputs of 

dimensionality D and each point is from one of two classes yi = -1 or +1. The training data is 

formed as: 

x , y 	 												where									i 1… L, y ∈ 1,1 , x ∈ R                     (3.26) 

The line that can be drawn on the graph to separate the classes, i.e. the hyperplane is defined 

by: 

 w · x + b = 0                   (3.27) 

Where w is normal to the hyperplane and 
|| ||

 is the perpendicular distance from the 

hyperplane to the origin. 

SVM selects the variables w and b so that the training data is defined by: 

xi · w + b ≥ +1  for yi = +1                                                            (3.28) 

xi · w + b ≤ -1   for yi = -1                                                            (3.29) 

These two equations can be combined into: 

yi (xi · w + b) - 1 ≥ 0                 (3.30) 

Finding the optimum hyperplane can be done by optimizing the following:  

min  ||w||2  such that  yi(xi · w + b) - 1 ≥ 0 ∀                        (3.31) 

A full description how to find the value of w and b needed to find the optimal separating 

hyperplane is found in [210]. 

The same principle of the SVMs is then stretched to not-fully-linearly-separable data. In the 

case that there are data points on the wrong side of the discriminant margin, it is called a soft 

margin. This soft margin SVMs introduces the idea of relaxed variables and the trade-off 

between maximizing the margin and minimizing the number of misclassified variables [210]. 

In the case of not-fully-linearly-separable data, the relaxed hyperplane can be found by 

optimizing the following: 

min  ||w||2 + C ∑ 	ξ  such that  yi(xi · w + b) – 1+ ξi ≥ 0 ∀          (3.32) 
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Where ξi is a positive slack variable and C is a parameter for controlling the trade-off 

between the slack variable penalty and the size of the margin [210]. 

Moreover, SVMs are also applied to non-linearly separable data by the use of a family of 

functions called kernel functions. Kernel functions are based on calculating inner products of 

two vectors [211]. As a function can be modified to a higher dimensionality space by 

possibly some non-linear feature mapping function	x	 → 	∅ x , only inner products of the 

mapped inputs in the feature space have to be identified without requiring to explicitly 

calculate ∅	. 

In order to use an SVM to solve a linearly separable, binary classification problem, H is 

created to find the values of w and b, H is generated as follows:  

H 	 	 ∙                  (3.33) 

This can be done in case of non-linearly separable data by applying a Kernel function and 

thus the mapping x	 → 	∅ x  as follows: 

H 	 	∅ ∙ ∅ 	 ,                 (3.34) 

Where	 ,  is the Kernel function.      

The use of Kernel functions is very important as many classification problems have non-

linearly separable data points in the space of the inputs, however, it can be separable in a 

higher dimensionality feature space using a suitable mapping [211]. 

For example, looking at the data set in Figure 3.13 (A), it can be clearly noted that the data 

set is not linearly separable in the two dimensional data space. On the other hand, in Figure 

3.13 (B) the data set is easily separable in the high dimensional feature space defined 

implicitly by a kernel function called Radial Basis Kernel (RBF), which is calculated using 

the following formula: 

k x , x 	 e

	

	
                (3.35) 

Where x 	x is the squared Euclidean distance between the two feature vectors x 	and x  

and σ is a free parameter. 
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Figure 3.13: Non-linear data re-mapped using Radial Basis Kernel (source [210]). 

 
Some other kernels often used for classification are the Linear Kernel, Polynomial Kernel and 

the Sigmoidal Kernel, they are defined in Equations 3.36, 3.37 and 3.38 respectively. 

k x , x 	 x ∙ 	 x                 (3.36) 

k x , x 	 x ∙ 	 x a                 (3.37) 

k x , x 	 tanh a	x ∙ 	 x b                           (3.38) 

Where x 	and x  are vectors and a, b are kernel's behaviour-defining parameters. 

Interestingly, these kernels produce different separating boundaries. In fact, the Radial Basis 

Kernel Function succeeds in separating more complicated datasets, while the Polynomial 

kernel fails to [212]. Therefore, the choice of kernel for a certain problem is very crucial. 

However, using more complex hypotheses usually comes with the inevitable cost of 

increased training time, as these complex kernels need to perform more calculations [211]. 

Although SVMs are binary classifiers, their success in real-world applications motivated 

researchers to investigate extending them to multiclass problems [212]. Based on the research 

conducted by Hsu and Lin [213], the methods for extending SVMs to solve multiclass 

problems have been divided into two categories. The first category considers the whole 

(A) (B)
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dataset with all the classes at once and solves the multiclass problem directly (direct method), 

while the second category partitions the problem by constructing several binary classifiers 

and combining their outputs (indirect method). 

In the direct method, an attempt to find the separating boundaries for all the classes is 

undertaken in one step. For example, Vapnik [214] attempts to define a decision rule similar 

to that of the binary SVMs for each class. And then, during testing, the data point is assigned 

the label of the decision rule that yielded the highest (positive) margin.  

Nonetheless, in direct methods, a large number of variables need to be optimized which poses 

serious numerical difficulties. Due to that, approaches that decompose the problem into 

binary classification have been more preferable to researchers, i.e. indirect methods [213]. 

The first method for this category is the one-vs-rest method [214], also referred to as one-

against-all, in which a binary SVMs classifier is constructed for each class. This is performed 

by segregating the data points of that class from the rest. Testing is very similar to that of the 

direct approaches explained previously. Furthermore, each classifier produces a decision 

value for the test data point and the classifier with the highest positive decision value assigns 

its label to the data point.  

The other method of this category for extending SVMs to solve multiclass problems is the 

one-vs-one method, also referred to as one-against-one. In this method, there are N(N +1)/2 

classifiers built for N classes, one for each pair of classes [210]. There are two schemes 

suggested and tested to obtain a classification from such a group of classifiers: the Max Wins 

algorithm proposed by Krebel [215] and DAGSVM introduced by Platt et al. [216]. The Max 

Wins algorithm implements voting among the classifiers and selects the label which is the 

one with the most votes among the classifiers, while the DAGSVM algorithm places the one-

vs-one classifiers constructed on a Directed Acyclic Graph and derives the decision from it.  

One-vs-one is proven to be faster than one-vs-rest in training [212]. This is due to the fact 

that while it builds more classifiers, each classifier is constructed faster because it includes 

only a portion of the dataset. In addition, comparing the direct methods and the indirect 

methods performance in [213] revealed that the direct methods are far slower to train. 

A great deal of research has incorporated the use of SVMs in the field of keystroke dynamics. 

Two-class (i.e. binary) SVMs were used in research such as [52]. The binary classification 

used in two-class SVMs works by analysing the training samples belonging to the two 
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classes, and then assigning test samples into one class or the other [210]. Moreover, One-

class SVMs were also used in [67] where the support vectors model is trained on data from 

one class only. The model can then identify the properties of that class and predict which test 

samples are not from that class [217]. 

Multi-class SVMs were also applied to keystroke data in a variety of means. One of which is 

the one-vs-rest approach, in which the researchers in [218]  built eight different one-vs-rest 

SVMs classifiers, one for each volunteer. Each classifier was created by treating the data 

from one individual as positive and all data from other participants are considered negative.  

Considering the nature of the keystroke dynamics as an authentication problem in this study, 

non-linear multiclass SVMs are used. Moreover, both one-vs-one and one-vs-rest multiclass 

classification are applied for comparative purposes.  

3.3.5 Experimental Results and Discussion 

This section points to the experiment results and discussion, in which the data collection, data 

space and the experimental results are indicated. A discussion about the results from this 

experiment and some comparisons with previous studies is performed in this section. 

3.3.5.1 Data Collection 

A total of twenty-five users participated in this study’s experimentation, eight of which were 

involved in the original approach experiment. There were participants from both genders and 

all the participants were in the age group between 18 and 66 years old. They had different 

levels of typing skills and they were not all native speakers of English. Included were, for 

example, native Arabic, Czech and Malay speakers. Nonetheless, all participants were very 

familiar with English and were used to typing in English regularly. Only five users were 

located outside of the country where the research was conducted. Table 3.9 describes some of 

the demographic characteristics of the participants.  

 
Table 3.9: Characteristics of the participants in the extended method experiment. 

Gender  Age Native language Typing skills 

Male Female 18-37 38-57 58+ English Non-English Good Moderate Poor 

6 19 17 5 3 8 17 14 11 0 
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Similar to the original approach experiment, all participants were recruited by the researcher 

personally approaching them. Then, they are asked to read and sign a consent form that 

explains the aim of the research, the nature of the collected data and how it is treated, a copy 

of the consent form and the information sheet are found in Appendix A.1 and Appendix A.2, 

respectively. In addition, in this experiment, the users were also handed an instruction sheet 

that explains how to install, use and un-install the application on their machines. A copy of 

the instructions sheet can be found in Appendix A.3. 

After three weeks a follow-up e-mail is sent to each participant to ensure that the participants 

are not facing any difficulties during data collection. Only two individuals agreed to 

participate in the experiment but later decided to withdraw. No reward was offered to the 

participants which might be the reason for the drop outs.   

During data collection, the participants were asked to perform eight typing tasks in eight 

different sessions. Six of the tasks involved copying given text (copied-text) that consisted of 

around 900 characters each. The text included excerpts from the Guardian newspaper and it 

combined both short and well-known English words with other complex and difficult words. 

The text included both upper and lower case letters in addition to numbers and punctuation 

marks.  

In addition, the last two typing tasks allowed users to free type around 900 characters of any 

text that they wished to type (un-copied or free-typing text), for example: previous holiday 

experience, future plans, opinion about a current issue … etc. Although the first six tasks 

included text that was chosen for the users to type, it is still considered free-text as the text 

used for training was different from that used for testing. Therefore, based on the definition 

of free-text [8], all text used in this study was free-text but with a different method for 

sourcing the text. In fact, the results produced by the experiments carried-out in [130] 

illustrates that using either free or copied text has no effect on the results of free-text 

keystroke systems. However, copied text was provided for the participants here to ease the 

process of data collection.  

Moreover, copy-text was chosen to be used in this experiment to make the text consistent 

among users. This makes the feature extraction process among participants uniform as they 

all typed the same text. Yet, un-copied text was also collected in order to compare between 

the two entry modes, i.e. copied and un-copied text (as discussed in the future work section). 
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This collected text was the only data used for training and testing the system. Authenticating 

users based on as little as possible information, i.e. as little training data as possible, is a very 

important feature in this study in order to achieve the maximum level of user comfort.  

Users were directed to enter the samples in the most natural way possible, i.e. the same way 

they usually follow when typing. As participants exhibited different typing skills, the typing 

time for each task varied among volunteers between 5 minutes and 10 minutes per task. 

Moreover, users were allowed to enter carriage returns and backspaces if needed. 

Furthermore, the data was acquired in different sessions as the users were requested to 

complete each of the eight tasks in a separate session. These sessions were spread over 

around four weeks. 

 
 

 

Figure 3.14: A screen-shot of the data collection program for the extended approach. 

 
The data collection was performed on a GUI program implemented using the C++ language, 

the code for the data collection program is found in Appendix B.1. The application was 

downloaded on the users’ personal machines to maximize their comfort as they are more 
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familiar with their own machine and its surroundings. Therefore, they were able to feel more 

at ease, and thus, they will perform the typing tasks in a manner closer to that of their real 

typing behaviour. Figure 3.14 is a screenshot of the data collection program showing the text 

appearing when the first typing task is clicked. 

Moreover, the data acquisition process was not controlled due to the feedback from the 

volunteers who were involved in the original approach experiment, in which the users 

expressed their unease about having to type on a machine different to their own. Different 

machines have keyboards that vary in key size and spacing between keys. Moreover, 

keyboards in different machines have different key pressing sensitivity levels [4]. In addition, 

volunteers have also conveyed their discomfort about having to perform the typing tasks in a 

specific time and place as their anxiety levels elevated when they were asked to type on a 

machine located in a laboratory that they were not familiar with.  

Similar to the original method, the data collection is done by capturing specific attributes for 

every key action performed on the keyboard. A complete description of the data collected for 

every action performed on the keyboard is provided in Section 3.2.2.1.  

3.3.5.2 Data Space 

Although there were 75 timing features captured from each user’s typing stream, there were 

not enough instances that appeared in the used text for some of the key-pairs which made it 

not feasible to include them in the final feature set. The key-pairs with less than 10 instances 

are: Adjacent/DifferentSide, FourthAdjacent/RightSide, NonAdjacent/RightSide and 

NonAdjacent/LeftSide. 

Indeed, this was the reason for excluding four of the key-pair categories from the study. 

Therefore 20 timing features were excluded from the final feature set. Table 3.10 lists the 

final 55 feature sets extracted from all key-pairs. 

The pre-processing step involved creating the timing vector and storing it in the database as 

the user’s profile. This process was carried-out by dividing the data into 20 equal sections 

each of which represented a different typing sample.  

This was done by extracting the feature vector (which included all the instances of that 

feature) for each of the 55 features from each typing task separately (there were eight typing 

tasks as mentioned before). Then, each feature vector from all the tasks are concatenated to 
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produce 55 large vectors, one for each feature. These large vectors were stored in a feature 

matrix for each user. 

 

Table 3.10: Final feature set for the extended approach. 

Key-pair Category Feature Set 

Adjacent/RightSide AR-H1 AR-H2 AR-DD AR-UU AR-UD 

Adjacent/LeftSide AL-H1 AL-H2 AL-DD AL-UU AL-UD 

SecondAdjacent/RightSide SR-H1 SR-H2 SR-DD SR-UU SR-UD 

SecondAdjacent/LeftSide SL-H1 SL-H2 SL-DD SL-UU SL-UD 

SecondAdjacent/DifferentSide SD-H1 SD-H2 SD-DD SD-UU SD-UD 

ThirdAdjacent/RightSide TR-H1 TR-H2 TR-DD TR-UU TR-UD 

ThirdAdjacent/LeftSide TL-H1 TL-H2 TL-DD TL-UU TL-UD 

ThirdAdjacent/DifferentSide TD-H1 TD-H2 TD-DD TD-UU TD-UD 

FourthAdjacent/LeftSide FL-H1 FL-H2 FL-DD FL-UU FL-UD 

FourthAdjacent/DifferentSide FD-H1 FD-H2 FD-DD FD-UU FD-UD 

NonAdjacent/DifferentSide ND-H1 ND-H2 ND-DD ND-UU ND-UD 

 

 
Similar to the original approach, outlier elimination and data scaling was performed exactly 

the same as described in Section 3.2.2.2. Around 0.05% of the overall data was considered 

outliers and therefore discarded from the dataset used for the experiment; this small amount 

of discarded data does not vastly affect the final dataset. 

After that, each of the large vectors was divided equally into 20 parts. The size of each part, 

among different features, varied depending on the number of times the key-pair associated 

with that timing feature appeared in the text. Although the number of each key-pair 

appearance may vary, it is fairly similar between participants as they all typed similar text. 

The mean of each feature among these 20 divisions is computed and then stored in the 

corresponding user’s timing vector (V). There are twenty timing vectors (Vs) for each user 

which were employed as the user’s typing samples.  

Creating the timing vector (V) for a single sample and storing it in the database of a user is 

the same as the original method. Yet, the vectors in the extended technique consist of eleven 
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sub-vectors instead of five sub-vectors in the case of the original scheme.  It is eleven sub-

vectors rather than fifteen due to four key-pairs not being included in the final feature set as 

they had insufficient number of appearances in the text as discussed earlier in this section. 

Thus, the following equations show a timing vector that describes a user’s single typing 

sample: 

V= {VAR, VAL, VSR, VSL, VSD, VTR, VTL, VTD, VFL, VFD, VND}                       (3.39) 

VAR= {µAR-H1, µAR-H2, µAR-DD, µAR-UU, µAR-UD}              (3.40) 

⋮ 

VND = {µND-H1, µ ND-H2, µ ND-DD, µ ND-UU, µ ND-UD}                                                             (3.41) 

Where: 

µAR-H1: denotes the mean of the H1 timing feature for all adjacent key-pairs on the right side 

of the keyboard in that sample. 

µAR-H2: denotes the mean of the H2 timing feature for all adjacent key-pairs on the right side 

of the keyboard in that sample. 

 … and so on.  

The code for performing outlier discarding, data scaling and timing vectors formation is 

presented in Appendix B.2. 

The data base consisted of twenty-five users’ profiles. Each user’s profile included twenty 

vectors similar to the one in Equation 3.39 representing each of the twenty samples for each 

individual.  

The 20 typing samples extracted from each participant were partitioned into 15 samples for 

training the system and 5 for testing. There was no particular rule for choosing these samples, 

thus, the first 15 samples were designated to be the training samples and the last five were 

selected to be the testing samples. As mentioned earlier, the data used for training was 

acquired in sessions different from that used for testing. 
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3.3.5.3 Experiment and Results 

After the key-pair based feature extraction is complete, feature selection is performed using 

ACO and MANOVA. The selected feature set is then fed into the SVMs classifier where the 

training and testing procedures are done. Figure 3.15 illustrates the framework followed in 

this study. 

 

 

Figure 3.15: Framework for the keystroke system. 

 

The data was analysed in two different ways to select the best features representing human 

typing behaviour: a wrapper and a filter. First of which, the ACO technique was chosen over 

other wrapper feature selection techniques such as Particle Swarm Optimization (PSO) and 

Genetic Algorithms (GA) based on the study performed in [182]. This study concluded that 

using ACO with the Extreme Learning Machine (ELM) classifier yielded the best results 

compared with the two other previously mentioned techniques. A similar conclusion was 

produced in another study where a Back Propagation Neural Network (BPNN) was used as a 
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classifier [5]. ACO again proved its superiority over the other feature selection techniques in 

this study. Furthermore, the technology behind ACO fits into this research as the 

classification performance of each of the keystroke features is used to evaluate the quality of 

that feature and then influence the ant’s choice of which feature to use for constructing its 

final features subset [219]. 

Moreover, a total of 55 ants, which is equal to the number of features used, were generated in 

each of the 100 iterations performed in the ACO system [197]. In addition, an initial 

pheromone of 1.0 was used and as the importance of the heuristic information, i.e. 

classification rate, was more than that of the pheromone level in the transition rule, it has 

been decided to used α=1.0 and β=0.1 [197]. All the programing for the ACO procedure, 

illustrated in Figure 3.11, was performed on MATLAB, the code for ACO is found in 

Appendix B.3.   

Nonetheless, MANOVA was also chosen as a statistical based filter feature subset selection 

method over other similar methods. Although dimensional reduction techniques such as 

Principal Component Analysis (PCA) permit finding a lower dimension transformed space 

based on data variance, they do not take into account any information about the separability 

between classes. The direction of highest variance does not always correspond to the 

direction of highest separability [220]. This is because PCA doesn’t consider the grouping 

class variable [221]. Moreover, MANOVA studies the interactions among independent 

variables more closely, thus it allows for better understanding of how different features can 

work together to produce better discrimination between users [203].  

The algorithm followed to select a feature subset using MANOVA was similar to the 

progressive algorithm used in the study conducted in [220]. MANOVA is utilized to find a 

feature subset from the original feature set that has the biggest separation between 

individuals. This is done gradually by adding the feature with the highest separation to the 

subset first, and then, finding the combination of features that includes that feature and 

produce the highest separation, and so on. 
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Figure 3.16: Algorithm for applying MANOVA. 

 

The algorithm used to apply MANOVA progresses as the following (as illustrated in Figure 

3.16): 

1. The F-statistic is calculated, i.e. ANOVA test, for one-feature subsets and the feature 

with the largest F-statistic is selected.  

2. Two-dimensional subsets, combining the feature selected in the first step with the 

remaining features, are constructed.  

3. Each of these subsets is evaluated using the MANOVA’s Wilks’ Λ test, and its 

corresponding F-statistic is calculated.  

4. The 2-dimensional subset with the largest F-statistic is chosen.  
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5. Three-dimensional feature subsets are constructed by combining the remaining 

features with the previously selected subset. 

6. This is repeated until the preferred number of features was reached.  

The F-statistic and Wilks’ Λ test were calculated using the SPSS Statistics software. 

Moreover, some features did not satisfy the test of homogeneity of variances and covariance 

[201].  Therefore, they were excluded from the search process. The excluded features are: 

AR-DD, AR-UD, AL-H1, SL-DD, SL-UD, TD-DD, TD-UD, FL-H1, FL-UU, FL-DD, FL-

UD, FD-UD. 

The number of selected features was set to be five in both ACO and MANOVA in order to 

compare and contrast between the selected feature sets without worrying about the feature set 

length. Moreover, the Curse of Dimensionality corresponds to the problem that the amount of 

training needed grows exponentially with the number of features [222]. Since the experiment 

only had 20 samples per person, it was necessary to cut down the features to the least amount 

possible while conserving the maximum benefit provided to the classification process. 

Therefore, selecting five features will eliminate the drawbacks of the Curse of 

Dimensionality whilst preserving the preferred small amount of data required for training.  

 
 

Table 3.11: Selected features subset. 

 Selected Features 

ACO SR-H2 FL-H2 FD-H2 ND-H1 ND-UD 

MANOVA AL-H1 SR-H2 ND-H1 ND-DD ND-UD 

 

Table 3.11 lists the selected features subsets that were derived using both methods. It is clear 

that the hold time appears slightly more important compared with the other timing features as 

four out of the five selected features in the case of ACO and three of the five selected by 

MANOVA are hold times extracted from different key-pairs. This agrees with the 

conclusions produced by a number of studies conducted in the keystroke dynamics area such 

as the ones published in [107, 119]. 

Moreover, a variety of key-pairs was included in the selected features subsets. Nonetheless 

the NonAdjacent/DifferentSide (ND) key-pair was incorporated in two of the ACO selected 

features and three of the MANOVA selected features. This can be interestingly explained by 
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the brain’s capability, that allows for unconscious typing consistency when typing a key pair 

that involves the use of two hands [223]. 

Another interesting aspect of the two feature subsets is that they are similar in three of the 

five selected features which corresponds to the unexpected similarity between the ACO and 

MANOVA methods, although they follow completely different procedures to select features. 

These features are: SecondAdjacent/RightSide-Hold2 (SR-H2), NonAdjacent/DifferentSide-

Hold1 (ND-H1) and NonAdjacent/DifferentSide-UD (ND-UD); they appear in bold green in 

Table 3.11. 

Support Vector Machines (SVMs) were chosen to be used in this experiment as it is one of 

the most successful classification techniques [209] in addition to its capability of combining 

low computational costs with adequate performance [224]. Specifically, it works with non-

linear problems, such as the one presented by the keystrokes dynamics problem, by capturing 

much more complex relationships between the data points. This allows for less difficult 

transformations to be performed to achieve the desired classification [225]. Furthermore, due 

to the nature of this study and the aim of using the least amount of training possible, SVMs is 

used as it tends to resist over-fitting when its parameters are well-tuned [226]. 

Furthermore, a Radial Basis Function (RBF) kernel was used in this study as it succeeds in 

separating more complicated datasets compared with other kernels [212]. In addition, a large 

number of studies suggests the use of the RBF as it nonlinearly maps samples into a higher 

dimensional space when there is a complicated relationship between the class labels and its 

attributes which fits to the keystroke dynamics problem [161]. 

Moreover, as mentioned earlier, two multiclass classification SVMs techniques were used, 

namely: one-vs-one and one-vs-rest. Multiclass classification is required as SVMs are used to 

decide which test samples belong to which of the twenty-five individuals involved in the 

study. Performance comparison was carried-out between these techniques as shown later in 

this section.  

The classification process was implemented on MATLAB with the aid of the LIBSVM 

library which is a popular open source machine learning library developed by Chang and 

Lin in 2000 [227]. The library was programed using both C and C++ languages for the 

purpose of helping users to easily apply SVMs to their applications. LIBSVM is considered 
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one of the most used SVMs software in machine learning and many other areas as there were 

more than 250,000 downloads of the package between the years 2000 and 2010 [227].  

Prior to the use of LIBSVM for training and testing, the keystroke data has to be transformed 

to the LIBSVM package format. LIBSVM uses a format called "sparse" format; in which the 

zero values are not stored. Therefore, for example, the data 1 0 2 0 is represented as 1:1 3:2 

[161]. The utilization of LIBSVM in user classification is shown in the code presented at 

Appendix B.4. 

There are two parameters affecting RBF SVMs; namely: C and gamma [161]. 

The C parameter represents the trades off between the misclassification of training samples 

and the simplicity of the decision surface. Thus, choosing a small C allows for a smooth 

decision surface, whilst choosing a large C yields in correctly classifying all training samples 

by permitting the model to select more samples as support vectors. This will consequently 

result in a rough decision surface and cause over-fitting [228].  

Additionally, gamma is the RBF freedom parameter. It signifies the influence of a single 

training example. Choosing a large gamma value causes the radius of the area of influence of 

the support vectors to only include the support vector itself whilst choosing a small gamma 

causes the region of influence of the support vector to incorporate the whole training set, 

resulting in a model behaving like a linear model [161]. 

Parameters C and gamma were chosen using grid search and cross-validation [161]. A range 

from 10-3 to 103 was set for both C and gamma values as recommended by the research done 

in [161]. All combinations of C and gamma were tested using a 10-fold cross-validation. The 

main reason for using cross-validation was avoiding the over-fitting problem [161]. 

In 10-fold cross-validation, the training set is split into 10 equal-size-subsets. Each subset is 

tested using the classifier trained on the remaining nine subsets. The cross-validation 

accuracy of a C and gamma pair is denoted by the average accuracy of these 10 tests. The 

best performing value pair for C and gamma was chosen. The C & gamma pair chosen for 

this study was: C= 101, gamma=100.  

It is worth mentioning here that LIBSVM uses the "one-vs-one" method for multi-class 

classification. The one-vs-one technique constructs one classifier per pair of classes and, 

then, the class which received the most votes is selected at prediction time. Therefore, it 

requires training of n * (n - 1) / 2 classifiers, where n is the number of classes. In addition to 
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that, the "one-vs-rest" method was also implemented on MATLAB. Twenty-five one-vs-rest 

SVMs classifiers were created, one for each volunteer. It involves training a single classifier 

per class, with the samples of that class as positive samples and all other samples as 

negatives.  

Two error rates were used to analyse the performance of the one-vs-one and one-vs-rest 

SVMs, namely: FAR and FRR [4]. These two error rates were considered in order to 

precisely measure the imposter pass rate using FAR and the genuine users’ rejection rate 

using FRR. This will grant more understanding of the security provided by the system. The 

complete explanation of these error rates is found in Section 2.7. The FAR and FRR derived 

from the one-vs-one and one-vs-rest SVMs classification process are listed in Table 3.12. The 

complete results for each participant can be found in Appendix C.2. 

 

Table 3.12: Classification performance for SVMs 

 One-vs-One One-vs-Rest 

FAR FRR FAR FRR 

ACO 0.013 0.384 0.021 0.512 

MANOVA 0.017 0.408 0.026 0.624 

 

It can be established from these results that the features subset selected using ACO yields 

slightly better error rates. The ACO being a wrapper feature selection method looks into the 

interaction with the classifier which causes the feature subset space search to be closer to the 

hypothesis space search [170].  

Moreover, the one-vs-one method produced, in this study, lower error rates when compared 

with the one-vs-rest method. The reason for one-vs-one performing better here might be due 

to the fact that it employs voting between all binary classifiers prediction. This is not the case 

in one-vs-rest in which all binary classifiers must have correct predictions to produce an 

overall correct decision [212]. However, the performance of the two multiclass classification 

approaches is case-based as the two methods perform differently for different problems [229, 

230]. Yet the superiority of the one-vs-one SVMs classification was also recognized in [231]. 

In addition, one-vs-one is used to speed up the decision making process as it requires less 

time for classifying samples compared with one-vs-rest [229].  

It can also be remarked that the FAR is considerably lower, i.e. better than the FRR. This 

corresponds to the system being largely immune against imposters’ access. On the other 
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hand, the FRR is not considered an accepted value because the system denies access to a 

considerable amount of legitimate users tries. 

Biased results are noticeable here due to the fact that the positive samples are much less than 

the negative samples. This phenomena normally happens in unbalanced datasets similar to 

the one used in this study [232]. This occurs as the number of support vectors in the positive 

class is less than in the negative class, which causes samples from the positive class to reside 

farther from the real decision boundary compared with those from the negative class. 

Consequently, the predicted decision boundary is pushed towards the infrequent class [233] 

which causes the large difference between the FAR and FRR figures as new data points are 

classified more frequently as the class with the larger number of samples, i.e. negative class. 

Solutions for this bias problem are introduced in the “future work” section. 

3.3.5.4 Discussion  

The extended version of the previously introduced original key-pairing scheme has clearly 

improved the authentication performance.  Using five timing features in the original key-

pairing system yielded in a 0.033 FAR and 0.867 FRR. This has been reduced in the extended 

version as the FAR was found to be 0.013 in the case of ACO’s selected features subset and 

0.017 in MANOVA’s. Moreover, the FRR was found to be 0.512 in the case of ACO’s 

selected features subset and 0.624 in MANOVA’s. Even though, these are not satisfactory 

figures, the extended technique succeeded in achieving improved FAR and FRR. The 

advancement in both FAR and FRR has been achieved due to various reasons.  

First, the timing features were extended to include the positioning of the hands on the 

keyboard which contributed to capturing the user’s typing behaviour in a better fashion.  

Second, using an advanced feature selection such as ACO and MANOVA aided in the 

process of selecting the best features that best differentiate between individuals. Third, the 

use of a classification technique, i.e. SVMs, which is well known for its capabilities of 

differentiating between classes even in complex situations, have considerably improved the 

overall performance level; as opposed to the simple Euclidian distance approach employed in 

the original scheme study.  

Fourth, the test and training samples in the extended technique are of the same length while 

the test samples are much smaller than the training samples in the original approach. The 

variation of text lengths between training and testing samples were proven to affect the error 
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rates negatively in the work done in [79]. Therefore, standardizing the text length in the 

extended technique assisted in improving the training and testing process. Lastly, the 

experimentation surroundings changed in the extended approach study to accommodate each 

user’s preferences. As the data collection program was downloaded into the user’s own 

machine, they were more familiar with their own keyboards and the environmental 

surroundings as opposed to being asked to type on a different machine which might have a 

different layout or different key resistance in addition to being located in an unusual 

environment. 

Nonetheless, the produced FRR was not as significant as the FAR. This is expected in such a 

system where there is an unavoidable trade-off between the FAR and FRR. The critical part 

of such a highly secure system is boosting the number of detected imposters; which 

(unfortunately) might cause some legitimate users to be denied access too. Even though this 

might cause some inconvenience to the users, it will help to ensure the privacy and security 

of the system. 

Furthermore, Figure 3.18 illustrates the error rate produced by the original method and the 

extended method in two cases: using MANOVA feature selection and using ACO feature 

selection. It is clear that the results from the original technique improved considerably using 

the extended approach. Furthermore, Error rates produced by ACO were slightly lower than 

those produced by MANOVA. 

 

 

Figure 3.18: Comparison between error rates produced by different methods.   
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Comparing the results of this study with those from previous free-text studies showed that the 

FAR rates in this research are pretty similar, indeed in some cases even better, despite the 

requirement for far less training and the much more practical nature of the study. However, it 

is acknowledged that FRR rates are better in some other studies. Moreover, the same trade-

off accrued between very good FAR rates and somewhat moderate FRR’s.  

An example of such studies is that conducted by Davoudi and Kabir in [117], where they 

attained a 0.0008 FAR and a 0.188 FRR using around 60 samples per person. This example 

shows the same trade-off between FAR and FRR. Furthermore, the FAR and FRR produced 

by this study is higher than that produced by Davoudi and Kabir, which does not involve any 

key-pairs. It must be stressed, however, that the method cited used much more training and 

therefore caused more imposing on the user. Davoudi and Kabir used input of around 11700- 

13500 characters while the key-pairing method made use of only 7200 characters long input. 

Moreover, a key-pairing technique was introduced in the research conducted by Sing and 

Arya [50], in which key-pairs were classified based on their location on the keyboard. The 

keyboard was divided into 8 sections; two left and right halves and then each half was 

divided into 4 lines representing the rows of the keyboard. For example “wm” is represented 

as Left2-Right4. The overall performance reached 0.02 FAR and 0.04 FRR. The fact that it is 

a fixed-text study, in which a short password was used for login, have helped significantly in 

lowering the FRR compared with the study conducted in this research where free-text is used 

for training and testing. 

The only research that was found in literature that employed a key-pairing technique slightly 

close to the one used in this research is the one conducted by Zahid et al. [46]. Four key-pairs 

were extracted in that study:  horizontal digraph (i.e. adjacent keys in the same horizontal 

line), vertical digraph (i.e. adjacent keys in the same vertical line), non-adjacent horizontal 

digraph (i.e. non-adjacent keys in the same horizontal line), and non-adjacent vertical digraph 

(i.e. non-adjacent keys in the same vertical line). The best achieved FAR and FRR were 

0.292 and 0.308, respectively. This study fails to capture the user’s distinctive typing 

characteristics when typing key-pairs other than the ones utilized in the study. For example 

second-adjacent and third-adjacent key-pairs might have significant properties that can differ 

from the general non-adjacent keys. Furthermore, the key-pair classification introduced in 

that study ignores key-pairs that are diagonally adjacent. This study was conducted on smart 

phones which makes it difficult to compare with the technique applied in this study.       



116 
 

In addition, the studies conducted by Sing & Arya and Zahid et al., mentioned above, suffer 

from the fact that they only considered one timing feature in their experiments. The up-down 

time was the only feature used in the first study while the second study merely analysed the 

down-down timing feature. Extracting only one timing feature from each key-pair seems to 

cause a loss of some important information from the key-pair as it may ignore some of the 

significant aspects of the key-pair. Therefore, five different timing features varying between 

duration and latency times are used in this study in order to capture most of the substantial 

characteristics that each key-pair holds.  

Although the key-pairing method was introduced in this research in order to reduce the 

amount of text used for training, it has not achieved a performance similar to that of some 

studies that don’t incorporate key-pairs. The milestone study conducted by Gunetti and 

Picardi [8], for example, involved comparing two samples based on the duration of the n-

graphs (i.e. di-graphs, tri-graphs and n-graphs) shared between samples. These n-graphs are 

specific two characters typed after each other with no concern about the key-pair group they 

belong to, i.e. example of some di-graphs: “em”, “et”, “as”… etc. A ground-breaking FAR of 

0.00005 and FRR of 0.05 was produced. Yet using such n-graphs in free-text input is 

challenged by the need to collect the same n-graphs from training and testing samples to 

carry-out the comparison task. Therefore, it is hampered by using a large amount of text. In 

addition, the algorithm followed by Gunetti and Picardi is tailored for the English language 

(or languages with the same alphabet as English) and cannot be applied to languages with a 

different alphabet. This is due to the fact that it computes the similarity between two samples 

based on the timing of certain letter pairs in the language. In contrast, the key-pairing method, 

introduced here, computes the similarity between two samples based on the timing of key-

pairs that were constructed based on the position of each of the two characters’ keys not on 

the actual characters forming the key-pair.  

Nonetheless, the key-pairing algorithm introduced here needs more polishing to achieve a 

system performance close to that of some non-key-pairing methods. This will be carried-out 

in the next section by introducing more non-conventional features that can be extracted from 

free-text keystrokes. 
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3.4  Summary 

This chapter examines the effectiveness of using a novel method, based on the keyboard key-

layout, for free-text keystroke dynamics authentication. The main reason for using key-pairs 

is to reduce the amount of training data delivered by the user at the enrolment phase because 

the need for huge training data is a crucial drawback of keystroke systems.  

The initial experimentation examined an original version of the key-pairing method. The 

original method extracted typing features from key-pairs that have a relation on the 

keyboard’s layout. Euclidian distance was used for classification in the experiment involving 

the original technique. It produced moderate results, yet considering the fact that it uses free-

text for authentication, it achieved a good balance between the system’s security and the 

user’s comfort. Single features did not perform well on their own and better performance was 

obtained using a combination of more than one feature. 

It is hardly surprising that the authentication performance is not perfect, given the nature of 

this experiment and the fact that its priority is the user’s comfort. However, this study, which 

used only one short training sample, resulted in an error rate (in case of using a combination 

all five features) that was quite close to other studies that required many more training 

samples. Nevertheless, more sophisticated techniques were needed to further improve these 

error rates.  

A number of modifications were applied to the original keyboard’s key-layout based method. 

These modifications included more sophisticated key-pair formation which takes into 

consideration the position of the hand on the keyboard. The extended key-pairing approach 

works in each case by classifying every two characters typed consecutively based on their 

relation to each other and their overall location on the keyboard. For each key-pair, five 

timing features were extracted to be used in the user’s features vector.  

In an attempt to select features that best represent the user’s typing behaviour, ACO proved to 

aid the features subset selection slightly more than the MANOVA mechanism. Moreover 

one-vs-one multiclass SVMs helped to reduce the number of misclassified samples more than 

one-vs-rest. The FAR rates were satisfactory as the number of imposters who were accepted 

as legitimate users were very few. On the other hand, the compromise between the FAR and 

FRR rates in the system was a clear reason for the moderate FRR rates.  
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The extended approach succeeded in improving the results produced by the original scheme. 

Yet it did not come at the cost of more training. User relaxation was still achieved as the least 

amount of text is used for authentication. Furthermore, additional features will be used in the 

next section in order to further improve the system performance.  

Moreover, the key-pairing method is language-independent. This is due to the features being 

extracted not based on the actual characters of the typed di-graph but on the key-location of 

the each character in the typed di-graph on the keyboard’s layout. It can compute the timing 

features extracted from the different key-pairs regardless of the language of the text. 

Therefore, it can be used to authenticate users typing in any language. This will be tested in a 

later section of this thesis. 
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Chapter 4 

 

Non-Conventional Keystroke Features  

4.1 Introduction  

This chapter introduces an approach for user authentication using free-text keystroke 

dynamics which incorporates the use of non-conventional keystroke features.  These features 

include semi-timing features along with editing features that were extracted from the users’ 

typing stream. 

Keystroke dynamics is conventionally based on timing features that compute time lapses 

between two actions on the keyboard such as key press and key release [4]. In this part of the 

thesis, however, the use of non-conventional keystroke features in the authentication of users 

is investigated. Features such as typing speed, error rate, and shift key usage are utilized to 

find typing patterns that can be used to distinguish between individuals.  

Non-conventional features are considered during free-text input in a way that they are 

extracted from the whole piece of text. They represent the percentage of specific actions that 

are committed when typing a piece of text. This will not compromise the main objective 

which this thesis is attempting to achieve. This is because the text used to collect non-

conventional features is of reasonable length and will not cause any more burden on the user 

compared with the key-pairing method discussed earlier. In fact, the same experiment was 

conducted to gather the data for both the key-pair method and the non-conventional features 

from the participants at the same time, as will be explained in Section 4.4.1.  

The non-conventional features are important due to the limited measurements that 

conventional keystroke dynamics present. Conventional keystroke data, in a very different 

way to other biometrics (e.g. image processing), captures very little information [49]. This 

information consists of time lapses between actions performed on two keys (latency), and on 

one key (duration) [33].  
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To enlarge the amount of information that can be extracted from a user input and therefore 

assemble better indications about his or her typing behaviour, this part of the thesis focuses 

on non-conventional typing features. Non-conventional features can be extracted collectively 

during the whole text input, in which more information is available.  

Most of the work done in the field of keystroke dynamics authentication focuses primarily on 

timing features while ignoring other typing behaviour such as input and editing patterns. 

Even previous studies that have included some non-timing features have not delivered the 

significance of these features in the way that they still focused on the importance of the 

conventional timing features, and fail to realize the potential of non-conventional features in 

the authentication process [70, 45]. For that reason, a high motivation is sustained in this 

research to explore the area of non-conventional typing features in order to concentrate on 

their distinctive ability to distinguish between individuals using little training. A comparison 

between conventional and non-conventional features is in place as well. 

A total of nine non-conventional features were extracted from the users’ typing stream. These 

features vary between semi-timing features and editing features. Moreover, an in depth study 

on the effect of using various non-conventional feature subset sizes has also been conducted.  

Decision trees (DTs) were exploited to classify each of the users’ data. In parallel for 

comparison, Support Vector Machines (SVMs) were also used for classification in 

association with the Ant Colony Optimization (ACO) feature selection technique.  

4.2 Feature Definition 

A great deal of the research done in the keystroke dynamics field has been focused mainly on 

the timing features extracted from the user’s typing stream. These features compute the time 

lapses between performing two actions on the keyboard such as calculating the time it takes a 

person to press a certain key, i.e. the hold time [4]. Latency time is computed in a similar way 

but the two actions are performed on two different keys pressed successively rather than both 

actions being performed on one key as in the case of the hold time [19]. 

In this section, new features are explored. These non-conventional features avoid the 

conventional way of computing the time lapses between two actions on the keyboard. 

Instead, non-conventional features focus on the overall typing patterns that a user follows 

during input that extends over a period of time. It considers the percentage of performing 
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certain actions (in relation to the total number of actions), i.e. general typing actions or 

editing actions, which leads to understanding more aspects of the user’s typing behaviour. A 

better perception of human typing patterns is particularly easier to capture while typing a 

whole piece of free-text in which more information can be extracted [49].  

From the nine features exploited in this section, three were used in earlier research. The 

features used in previous research are WPM [70], error rate [80], capslock usage [49]. The 

remaining six features are original to this research as there is no prior use for them, in the 

same way reported in this research, in the available keystroke dynamics literature (at the time 

of writing this thesis). The decision to use non-conventional features (both novel features and 

ones used in previous research) was based on the fact that assembling a good indication about 

the user typing behaviour is enabled by the large amount of information available collectively 

during the whole text input. This is obtainable by using non-conventional features which are 

able to capture a variety of attributes that defines the users typing behaviour during the entire 

period of the typing process.  

Furthermore, the power of the non-conventional features was experienced in the experiments 

conducted in Chapter 3 in which these features appeared to be having distinctive qualities that 

can be used to differentiate between users. Thus, the work done in this chapter is performed 

to verify these initial observations and provide evidence that non-conventional features can 

be used as a good verifier of a person’s identity.  

Two types of non-conventional typing features are considered: namely: semi-timing features 

and editing features. A brief description of each category is presented in this section as 

follows:  

4.2.1 Semi-Timing Features 

Features that have been extracted using some form of time calculation are incorporated in this 

research which is different from the standard timing features used in most of the literature. 

The time calculation followed in this category however, is slightly different from that of the 

regular timing features. Semi-timing features have a collective property to them, as they are 

calculated during the typing of a whole piece of text, i.e. paragraph(s).  

The first feature is the word-per-minute (WPM) feature which, as the name suggests, 

measures the user’s average typing speed [80]. The total typing time is calculated from the 
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very first key press until the very last key release and this is used in the final calculation of 

the WPM. The number of words are totalled and then divided by the total typing time in 

minutes; this is shown in Equation 4.1. Of course, this feature will easily distinguish between 

slow and fast typists. Nonetheless, it is not enough to find the difference between individuals 

who are close in typing speed [49].  

WPM 	 	

	 	 	 	
	                 (4.1) 

 
An interesting characteristic that can be found in some user’s typing behaviour is the number 

of negative up-down (negUD) actions detected in their typing stream. The negative up-down 

is due to an overlap happening between two successive keys being typed. This particular 

typing behaviour is found in the typing stream of users who have the tendency to press the 

second key before releasing the first one. While most timing features are always positive 

because they represent the sequence determining the keyboard output, the up-down feature 

can be negative in some cases that might involve fast typists [49].  

Figure 4.1 illustrates two different two-key sequences showing the up-down time in a non-

overlapping situation and in an overlapping one. A keystroke is represented as a horizontal 

line with the down arrow marking the press and the up arrow indicating the release time.  In 

part (A), a positive up-down time was produced from non-overlapping keystroke events and 

in part (B), a negative up-down time was produced from overlapping keystroke events where 

the first key was released after the second was pressed. 

 

 

 

 

 

 

 

 

 

Figure 4.1: Negative UD caused by overlapping keystroke events. 
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Some studies found it challenging to deal with negative UD time [234]. Here it is used to the 

advantage of the research by finding the percentage of negative up-down instances for each 

user. As mentioned in [136], a negative value of UD implies time reduction or faster pressing 

while positive values imply time addition or slower pressing between two sequences of 

keystrokes. It has been found in the experimentation undertaken in this section that some 

users have absolutely no negative UDs whilst others have a fair amount, which was 

consistent in all the typing tasks they produced. This gives a good indication that comparing 

the percentage of negative UDs can be a good method to assist in user recognition. NegUD is 

computed as the percentage of the number of negative UD appearances and the total number 

of key-pairs, i.e. two keys typed consecutively. This is shown in the following equation: 

NegUD	 	 	 	 	

	 	 	
	                            (4.2) 

A very similar typing behaviour that has rarely been referred to in the literature up-to the time 

of writing this thesis, is the negative up-up (negUU) time, which occurs when the typist tends 

to release the second key before releasing the first key. This characteristic happened with a 

few of the volunteers who participated in the data collection. Moreover, a negative UU only 

happens when there is a negative UD between the two successive keys. However, if there 

happens to be a negative UD, this does not mean that there is definitely a negative UU as 

shown in Figure 4.2.  

 

 

Figure 4.2: Cases of negative UD only and negative UD and negative UU. 
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Having said that, a negative UU has the property of occurring less frequently, but if it does, 

there is a high possibility that it is a specific characteristic that an individual possesses 

intuitively. Thus, there is a very good chance that it can be a good measure to employ in order 

to recognize that particular typist.  Similar to the previous feature, negUU is calculated as: 

NegUU	 	 	 	 	

	 	 	
                 (4.3) 

4.2.2 Editing Features 

The second category of features does not give any attention to the time a user spends typing, 

rather it considers the way a user goes about the process of typing. Characteristics such as 

how frequently a user commits typing errors and how he or she edits text are studied here.  

The error rate is the first feature in this category and it captures the percentage of times a user 

performs a typing error and corrects it [80]. This is simply calculated by dividing the number 

of times that a user commits an error, i.e. presses the backspace button, by the total number of 

characters typed, as follows: 

Error	rate	 	 	 	

	 	 	 	
	                (4.4) 

The next five features are closely related as they are all associated with the way a user 

incorporates capital letters and special characters in typing. Including a capital letter is done 

either by using the CapsLock key on the keyboard or by using a shift key together with the 

letter intended to be capitalized. It has been noted that if a user normally uses the CapsLock 

key, then he or she will hardly ever use the shift key for capitalizing letters, and vice versa. 

Therefore, using these two attributes simultaneously might be a good clue to understand the 

user’s editing habits. 

The first measure is CapsLock key usage which calculates the percentage of the CapsLock 

keys being used to produce capital letters in a given typing task [49]. This is simply 

computed using the following equation: 

CapsLock	usage 	 	 	

	 	 	
	                 (4.5) 

The shift key usage is a bit more complicated than it might appear to be as there are two 

different aspects where users differ when it comes to shift key usage. The first shift key usage 

attribute is the right/left shift key choice. Some users use strictly the right shift or strictly the 
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left shift whilst others alternate between the two [45]. The second attribute is the order in 

which the shift/letter keys are released. The shift key is always pressed before the letter key if 

the user is intending to produce a capital version of that letter. However, there are two orders 

that users go about when releasing those keys. They either release the letter key before 

releasing the shift key or they release the letter key after releasing the shift key [80]. This 

behaviour proved to be quite consistent throughout the different typing tasks for most users.  

Based on the previous observations, four different features that combine the two aspects of 

shift key usage were suggested. The percentage of each of the following was utilized: for the 

right shift key: right shift released after letter (RSA), right shift released before letter (RSB); 

and for the left shift key: left shift released after letter (LSA), left shift released before letter 

(LSB). They are calculated using Equation 4.6.  

S 	 	 	

	 	 	
			                  (4.6) 

Where:  x= right shifts released after letter, in case S=RSA; 

  x= right shifts released before letter, in case S= RSB; 

  x = left shifts released after letter, in case S= LSA; 

  x = left shifts released before letter, in case S= LSB. 

Table 4.1 gives an overview of all the nine typing features used in the non-conventional 

features study.  

 
Table 4.1: Overview of the non-conventional typing features. 

Category Features 

Semi-Timing Features 

WPM 

NegUD 

NegUU 

Editing Features 

Error Rate 

CapsLock Usage 

RSA 

RSB 

LSA 

LSB 
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4.3 Decision Trees (DTs) 

There are several types of "trees" that can be found in the literature. Of these, two types are 

perhaps the most significant. The first type is a classification tree, also referred to as a 

decision tree by default. The other commonly used basic decision tree is the regression tree. 

Classification trees, as the name implies, are used to divide the dataset into classes belonging 

to the response variable [235]. The response variable usually has two classes: Yes or No (1 or 

0). The standard CART procedure [236] is used for these binary splits. However, if the 

response variable has more than 2 categories, then the algorithm C4.5 is used [236]. Thus, 

classification trees are used when the response or target variable is categorical in nature 

[237].  

Regression trees, on the other hand, are used when the response variable is numeric or 

continuous. Predicting the price of a consumer good based on several input factors is an 

example of this [237]. Thus, regression trees are applicable for prediction type of problems as 

opposed to classification problems [235]. This section of the thesis is only concerned with the 

first type which is simply referred to as decision trees (DTs).  

A decision tree is a classifier expressed as a recursive partition of the instance space [2]. The 

decision tree consists of nodes that form a rooted tree. This means that it is a directed tree 

with a “root” node that has no incoming edges. All other nodes have exactly one incoming 

edge. A node with outgoing edges is called an internal or test node. All other nodes are called 

leaves, and are also known as terminal or decision nodes. In a decision tree, each internal 

node splits the instance space into two or more sub-spaces according to a certain discrete 

function of the input attributes values. Commonly, each test considers a single attribute, such 

that the instance space is partitioned according to that attribute’s value. In the case of numeric 

attributes, the condition refers to a range of numbers [237].  

Each leaf is assigned to one class representing the most appropriate target value. Instead, the 

leaf may hold a probability vector indicating the probability of the target attribute having a 

certain value. Instances are classified by navigating them from the root of the tree down to a 

leaf, according to the outcome of the tests along the path [237]. Figure 4.3 describes a 

decision tree and the layout of its nodes. 
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Figure 4.3: Decision tree layout. 

 

In decision trees, each node is labelled with the attribute it tests, and its branches are labelled 

with its corresponding values. Each path from the root of a decision tree to one of its leaves 

can be transformed into a rule simply by joining the tests along the path and taking the leaf’s 

class prediction as the class value [238].  

Decision trees can be geometrically interpreted as a collection of hyperplanes which are 

orthogonal to one of the axes, in case of numeric attributes [239]. Consequently, decision-

makers prefer less complex decision trees as they are more comprehensible. The tree 

complexity, which has a crucial effect on its accuracy, is explicitly controlled by the stopping 

criteria used and the pruning method employed [239]. Tree complexity is measured by one of 

the following metrics: the total number of nodes, tree depth and number of attributes used 

[239].  

Thus, decision trees are algorithms that build a decision tree from a given dataset for the 

purpose of finding the optimal decision tree which can be achieved by minimizing the 

generalization error. Nevertheless, other goals can be also defined, such as minimizing the 

number of nodes or the average depth [238]. 

The growing phase of the tree continues until a stopping criterion is activated. Examples of 

common stopping rules are: all instances in the training set belong to a single target value, the 

maximum tree depth has been reached and the best splitting criteria is not greater than a 

certain threshold [238]. 

Root 

Internal Internal 

Leaf Leaf Leaf Leaf 
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The various heuristic techniques for constructing decision trees can be divided into two 

categories: the bottom-up approach and the top-down approach [239]. In a bottom-up 

approach, a binary tree is constructed using the training set. A distance measure, such as 

Mahalanobis-distance, is used to perform pair-wise distances between prior defined classes 

and in each step the two classes with the smaller distance are merged to form a new group. 

The process is repeated until one class is left with one group at the root [239]. 

In the top-down approach, sets of classes are successively decomposed into smaller subsets of 

classes. There are various top-down decision trees inducers such as: ID3, C4.5 and CART. 

Some involve two conceptual stages: growing and pruning while other inducers perform only 

the growing phase [238]. 

In tree building, the top-down decision tree model (i.e. the most common) is built by 

recursively dividing the training data set based on a locally optimal criterion until all or most 

of the records belonging to each of the partitions carry the same class label. Tree pruning is 

used to enhance the generalization of a decision tree by pruning the leaves and branches 

responsible for classification of single or very few data vectors. Both phases will be briefly 

described here. 

First, building a decision tree depends on choosing which attribute to test at each node in the 

tree. A measure called information gain is used to decide which attribute to test at each node. 

Information gain is itself calculated using a measure called entropy.  

Entropy is an impurity measure, thus it is a measure of the homogeneity of the set of 

examples [238]. It is computed as: 

Entropy S p log p 	p log p                 (4.7) 

Where C is a given binary categorisation and S is a set of examples for which the proportion 

of examples categorised as positive by C is p+ and the proportion of examples categorised as 

negative by C is p-. 

The entropy is equal to 0 if the outcome is “certain” or completely homogeneous while the 

entropy is maximum, i.e. equal to 1, if there is no knowledge of the system or any outcome is 

equally possible. The entropy function for binary classification is shown in Figure 4.4 as the 

proportion of positive examples p+ varies between 0 and 1. 

 



129 
 

 

Figure 4.4: Entropy function for binary classification. 

 

The information gain of an attribute can, on the other hand, be defined as the expected 

reduction in entropy after a dataset is split on an attribute. Constructing a decision tree is all 

about finding an attribute that returns the highest information gain i.e., the most 

homogeneous branches [238]. It is calculated as: 

Gain S, A Entropy S 	∑
| |

| |
	Entropy S∈                          (4.8) 

The above measure calculates a numerical value for a given attribute, A, with respect to a set 

of examples, S. Values of attribute A range over a set of possibilities which is called 

Values(A). Moreover, for a particular value from that set, v, there is Sv for the set of 

examples which have value v for attribute A. 

Applying a tight stopping criterion has a tendency to create small and under-fitted decision 

trees, while utilizing a loose stopping criterion leans towards generating large decision trees 

that are over-fitted to the training set. Pruning methods, however, were created for solving 

this problem by applying loose stopping and allowing the decision tree to over-fit the training 

set and then the over-fitted tree is reduced into a smaller tree by eliminating sub-branches that 

are not contributing to the generalization accuracy [240]. 
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Pruning is described as “trading accuracy for simplicity” as stated in [241]. It is used to 

produce a sufficiently accurate compact tree, where the initial decision tree is perceived as a 

completely accurate one. Therefore, the accuracy of a pruned decision tree shows how close 

it is to the initial tree. 

There are various techniques for pruning decision trees. Cost-complexity pruning is one of 

them and it goes through two stages [240]. In the first phase, a series of trees T0, T1, . . . , Tk 

are created using the training data where T0 is the original tree before pruning and Tk is the 

root tree. In the second phase, one of the trees created in the first stage is chosen as the 

pruned tree, based on its generalization error estimation. The tree Ti+1 is acquired by 

substituting one or more of the sub-trees in the predecessor tree Ti with suitable leaves. The 

sub-trees that are pruned are those that obtain the lowest increase in apparent error rate per 

pruned leaf. 

Another pruning technique is the reduced error pruning which works by traversing over the 

internal nodes from the bottom to the top and checking that the tree’s accuracy is not affected 

negatively if each internal node is swapped with the most frequent class. If the accuracy is 

not compromised, then the node is pruned. This continues until any further pruning would 

cause the tree’s accuracy to deteriorate [242]. 

These methods, among others, produce different performance levels. For example, cost-

complexity pruning and reduced error pruning both tend to cause over-pruning, i.e. create 

smaller but less accurate decision trees. Other methods, such as: error-based pruning, 

pessimistic error pruning and minimum error pruning (which haven’t been described here) all 

bias toward under-pruning [238]. 

4.4 Experimental Results and Discussion 

This section presents the experiment results and discussion, in which the data collection, data 

space and the experimental results are indicated. A discussion about the experiment results 

and some comparisons with previous studies is performed in this section as well. 

4.4.1 Data Collection 

The data used in this experiment was collected from the same twenty-five participants 

involved in the extended key-pairing experiment discussed in Section 3.3.5.1. Moreover, the 
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data was extracted at the same time that the data for the extended key-pairing algorithm was 

retrieved, i.e. whilst the participants were typing the same eight tasks, as described in Section 

3.3.5.1.   

In addition to extracting the time of each key being clicked and released (to be used for the 

key-pairing method experiment), a number of additional typing attributes were gathered in 

each task. These additional attributes included: number of words per minute, number of 

errors, number of Caps-Lock, number of negative DU, number of negative DU, number of 

right and left shifts released before and after letters. An example of the data extracted from 

one typing task for this experiment is shown in Figure 4.5. 

 

 
Words per Minute: 43.528 

Total number of errors: 19, Percentage: 1.78236% 

Number of Caps Lock used: 0, Percentage: 0.0% 

Total number of minus DU: 394, Percentage: 36.9953% 

Total number of minus UU: 8, Percentage: 0.751174% 

Total number of times shift was released BEFORE letter (right shift): 0, Percentage: 0.0% 

Total number of times shift was released AFTER letter (right shift): 0, Percentage: 0.0% 

Total number of times shift was released BEFORE letter (left shift): 7, Percentage: 0.636% 

Total number of times shift was released AFTER letter (left shift): 4, Percentage: 0.363% 

    

Figure 4.5: Example of the non-conventional data collected from a typing task. 

4.4.2 Data Space 

A feature vector containing the nine features used in this study was created and stored in the 

database as the user’s profile. This process was carried-out by considering each one of the 

eight typing tasks as a single typing sample, the features from which were extracted 

separately. Therefore, eight samples per subject were included in the analysis phase for 

classifier training and testing. 

The following equations show a feature vector (V) that describes a user’s single typing 

sample: 

V= {WPM, NegUD, NegUU, Error Rate, CapsLock Usage, RSA, RSB, LSA, LSB}        (4.9) 

Where: 



132 
 

WPM: is the number of words per minute, NegUD: is the percentage of negative DUs, 

NegUU: is the percentage of negative UUs, RSA: is the percentage of right shifts released 

after letter, RSB: is the percentage of right shifts released before letter, LSA: is the 

percentage of left shifts released after letter, LSB: is the percentage of left shifts released 

before letter.  

Moreover, there was no need for discarding outliers as the non-conventional features did not 

rely on a time factor that might add noise in the form of too large or too small time lags. In 

addition, no scaling was needed as the non-conventional features are all quantities that 

represent percentages which vary between 0 and 1. 

4.4.3 Experiment and Results 

Cross-validation was used for classification with the consideration of the limited sample size 

in this study [243]. Cross-validation is a statistical sampling technique that aims to ensure 

that every example from the original dataset has the same chance of appearing in the training 

and testing set [244]. The leave-one-out cross-validation protocol, which is a special case of 

the well-known n-fold cross-validation, was followed [243].   

N-fold cross-validation divides the data up into n chunks and trains n times, treating a 

different chunk as the test sample each time; such that for each of n experiments, it uses n-1 

folds for training and the remaining one for testing. Leave-one-out cross-validation is exactly 

the same except that all chunks contain only a single sample [245].  

In this experiment, eight samples were used to perform eight cross-validation experiments. 

Seven of the samples were treated as the training sample set and the remaining sample was 

regarded as the testing sample. In each experiment, a different sample was selected to act as 

the test data.  

Decision trees were chosen as a classifier in this part of the research as they are strictly 

nonparametric and do not require assumptions regarding the distributions of the input data 

[246]. Moreover, it is considered a fast and scalable classification technique [247]. 

Furthermore, decision trees handle nonlinear relations between features and classes [235] 

which applies to the keystroke data. 
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Figure 4.6: Example of a decision tree built for classification. 

 

The Statistics toolbox [248] in MATLAB was used to fit the tree and predict the class of each 

of the test samples; the code used is provided in Appendix B.5. MATLAB’s Statistics toolbox 

uses the CART algorithm to build classification trees [249]. Moreover, the tree structure, i.e. 

the order in which attributes were chosen to be tested at each node, varies each time when a 

different training set was selected. An example of a tree built by MATLAB for classifying the 

data in one of the cross-validation experiments is illustrated in Figure 4.6.  The variables x1 

… x9 denote to the features used to build the tree (refer to Section 4.2 for the full list of 

features).  

 Furthermore, two error rates were used to infer the performance, namely: FAR and FRR. 

They are both defined in Section 2.7 and they were chosen to be used here for reasons 

discussed in Section 3.2.2.4. Low error rates were produced by this study. The FAR and FRR 

derived by the decision tree classification process are listed in Table 4.2. Furthermore, the 

detailed results produced by each individual are provided in Appendix C.3. 

 
Table 4.2: System performance of the non-conventional features. 

 FAR FRR 

SVMs/ACO 0.0181 0.435 

DTs 0.0104 0.25 
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The trade-off between FRR and FAR values [250] has also been noticed in this study. 

Nevertheless, the FAR being the lower of the two coincides with the aim of this research to 

protect the user against millions of potential impostors in a highly secured system.  

Using these nine features simultaneously had a positive impact on the overall classification 

performance. This is due to the fact that DTs performs a form of feature selection in which 

only features that contribute to the overall-system decision are involved after building the tree 

and pruning it [251]. This is not the case when using only one or two features separately. This 

is due to the individual characteristics that each feature holds and that contribute collectively 

to the system performance [252]. 

For comparison purposes, Support Vector Machines (SVMs) were also used in this 

experiment as it is one of the most successful classification techniques [209]. SVMs were 

chosen as a rival classifier because it follows a completely different mechanism to that of 

decision trees [253]. In SVMs, the classification is performed by finding the optimum 

separating hyperplane [210], whereas classification in decision trees is purely based on 

decision rules [239]. Moreover, the one-vs-one method for multi-class classification was 

followed as it is faster than one-vs-rest in training. Although one-vs-one builds more 

classifiers than one-vs-rest, each classifier is built faster since one-vs-one includes only a part 

of the dataset [212]. Additionally, one-vs-one proved to outperform one-vs-rest in the key-

pairing method experiment, carried-out in Section 3.3. 

When using SVMs in classification, a feature subset selection is in place. This is because a 

number of the non-conventional features are correlated. Therefore, it is necessary to 

incorporate a feature subset selection mechanism when utilizing these features in order to 

reduce the dependencies between features [182]. Feature subset selection is also included in 

the building and pruning process of the decision tree where all redundant features are 

removed [251].  

Feature subset selection is considered as an optimization problem, in which the space of all 

possible features is scrutinized to recognize the feature or set of features that produce optimal 

or near-optimal performance, i.e. those that minimize classification error [183]. Ant Colony 

Optimization (ACO) proved to be a good candidate for achieving that goal as proven in [182, 

5].  
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The features selected by ACO were passed to the SVMs machine learning mechanism in 

order to be used as the basic data for differentiating between classes. Leave-one-out cross-

validation was also used to treat seven of the samples as the training sample set and the 

remaining one as the testing sample, in each cross-validation experiment. The classification 

process was implemented on MATLAB with the aid of the LIBSVM library [227].  

Feeding the classifier with features was done gradually by selecting one feature, using ACO, 

and then increasing the size of the features subset until all the features were included in the 

subset. Using only one or a small number of features produced substandard error rates. 

Similarly, using all or most of the nine features caused minor performance deterioration. The 

ideal size of the features subset was five features which produced a 0.0181 FAR and a 0.435 

FRR. Table 4.3 illustrates the influence of increasing the feature set size on the overall 

system performance. 

  
Table 4.3: Error rates using different feature subset sizes. 

Number of Features 1 2 3 4 5 6 7 8 9 

FAR 0.0373 0.0265 0.0229 0.0202 0.0181 0.0185 0.0188 0.0192 0.0221 

FRR 0.895 0.635 0.55 0.485 0.435 0.445 0.45 0.46 0.53 

 

Having the best features subset size to be only five features refers directly to the Curse of 

Dimensionality [222] (described in Section 3.3.5.3). Since there were limited number of 

samples per person in this experiment, there has to be a reduction in the number of features 

used for classification to the least amount possible. This guarantees that the large number of 

features is not affecting the classification process negatively. 

Using ACO, the features that contribute the most to the system performance in the 

experimentation were: NegUD, Error Rate, RSB, LSA and LSB. Only using these features in 

the classification process eliminated the redundancy caused by using all nine features [254]. 

That clearly contributes to improving the overall system performance. Furthermore, as 

mentioned earlier, using only one or two of these features is not enough to find the fine 

differences between the typing behaviour of individuals in free-text keystroke dynamics 

[252]. 

As Figure 4.7 illustrates, FRR decreases dramatically until it reaches five features. After that, 

it increases but not as rapidly. Moreover, FAR decreases only slightly until it reaches five 
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features and it increases very slightly after that. Furthermore, FRR shows more variation of 

the two error rates when using different feature subset sizes.  

 

Figure 4.7: Error rates using different feature subset sizes. 

 
Moreover, decision trees operate by automatically performing feature subset selection in 

which the non-important or redundant features are not involved after the tree building and 

pruning process [251]. Features: WPM, NegUD, Error rate, LSA and RSB contributed the 

most in building the decision tree as they formed the first levels of the tree structure. Thus, 

they have a high capability to split the targets [238], which allows for better differentiation 

between individuals.  Therefore, these features correspond to the features with higher impact 

on the performance of the authentication system.  

This partly matches the features extracted using ACO; as four of the five features extracted 

by ACO are common with the ones in the subset selected by the DTs (i.e. NegUD, Error rate, 

LSA and RSB). Thus, these features were found to have a considerable effect on system 

performance in both DTs and SVMs/ACO classification cases. Moreover, based on the 

features subsets selected by both ACO and DTs, the editing features appear to have a slightly 

higher influence on the system performance compared with semi-timing features. This is due 
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to the fact that the majority of the features extracted by ACO and DTs are from the editing 

features sub category. 

Conclusively, DTs have a slight performance advantage over SVMs (as shown in Figure 4.8). 

DTs produced a higher accuracy system as the ROC is plotted closer to the upper left corner 

of the diagram in Figure 4.8.  

Even though both DTs and SVMs are capable of handling non- linearly separable data [247], 

DTs performed slightly better in this experiment. This could be due to the nature of the data 

and the fact that it can be easily converted into rules that decision trees can apply to separate 

the data. As revealed in [247], the best classifier for a particular task is considered task-

dependent.  

Similar to the error rates produced by the key-pairing method, biased results are noticeable as 

there is a large difference between the FAR and the FRR values in the results produced by 

both SVMs/ACO and DT. This is because there were more negative samples used in training 

than positive samples [232]. 

 

Figure 4.8: DTs and SVMs ROC curves. 
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4.4.4 Discussion 

This study was performed using the data collected in the extended key-pairing approach 

experiment (described in Section 3.3) in which user classification based only on timing 

features was considered. These features included the hold time, up-up, down-down and up-

down of specific key-pairs. Although the performance of that system was acceptable (FAR: 

0.013, FRR: 0.384), there was a larger than desired FRR.  

By using non-conventional features, the FRR has been dramatically improved with a value of 

0.25 in this study. While this figure is still not ultimate, it is quite good when considering the 

small amount of text used to authenticate individuals. Moreover, a lower FAR was also 

produced by non-conventional features. The FAR, being as small as 0.0104, leads to high 

expectations for further research in this area.  

Comparing the two error rates produced by the timing features and the non-conventional 

features demonstrates that the FRR is considerably lower in non-conventional features. 

However, the FAR produced by the non-conventional features is very slightly lower. It also 

has to be noted that the number of training samples used in the timing features experiments 

was significantly higher. There were twenty samples per person in the timing features 

experiment, fifteen of which were used for training. Meanwhile, the non-conventional 

features experiment made use of only eight samples per person, seven of which were used for 

training. The fact that the error rates produced by non-conventional features are lower than 

those produced by timing features, as shown in Figure 4.9, proves the superiority of non-

conventional typing features over conventional timing ones, in user authentication. 

 

 

Figure 4.9: Comparison between the error rates produced by the timing features and the non-

conventional features. 
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The use of non-conventional features proposed in this chapter has succeeded in providing a 

reliable medium for user authentication because employing these features broadens the 

amount of information that can be extracted from a user’s input.  This is because non-

conventional typing features are extracted collectively during the whole time a text is being 

typed by the user. In this input more information is available, such as: words-per-minute, 

error rate, percentage of negative UDs … etc. Therefore, using this wide range of information 

that is available about the user’s typing stream, the system is able to assemble better 

indication about the user’s typing behaviour, thus effectively distinguish between individuals.  

Similar research was conducted by Curtin et al. [79] in which 58 features were extracted. The 

features varied between conventional timing ones and non-conventional ones such as total 

time to enter the text, total number of key presses for Space, Backspace, Delete, Insert, 

Home, End, Enter, Ctrl, all four arrow keys, left and right shift keys and the number of left, 

right and double mouse clicks. Recognition accuracy of 98.5% resulted from data collected 

from eight subjects typing ten 600-characters long training samples and ten 300-characters 

long testing samples. This would have been a very encouraging result if the number of 

subjects was larger and/or the length of text was shorter.   

Moreover, a dataset of 15 emails for each of 10 participants was created in the study 

conducted by Hempstalk et al. [80]. In their experiment, eight features were extracted, some 

of which were based around the typist’s speed:  (average words-per-minute (WPM) rate, peak 

WPM, trough WPM), error rate: (backspaces, paired backspaces, average backspace block 

length) or slurring of key press and release events: (press/release ordering, press/release rate). 

Using one-class SVMs an FAR of 0.331and an FRR of 0.113 were achieved. This shows a 

similar FRR to the one produced in this study yet this research proved to realize a better FAR.  

Using a larger dataset and incorporating data from a greater number of participants will likely 

produce more reliable results. Therefore, to investigate the scalability of the non-conventional 

features method, an experiment was conducted to compare the error rates produced by 

different number of participants. To understand how increasing the sample size will affect the 

system performance, both DTs and SVMs/ACO experiments were performed on data from 

fifteen and thirty users in addition to the original twenty-five users experiment.  

Using datasets of participant numbers varying between 15, 25 and 30 users delivered a 

noticeable reduction in the system performance when increasing the number of participants 
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from 15 to 25 (as shown in Table 4.4). Nonetheless, the increase from 25 users to 30 have 

produced very similar FAR and FRR. This demonstrates that the system can reach a stable 

level when enlarging the number of participants which proves the scalability of this method 

and its ability to cope with larger sample size [255]. 

 

Table 4.4: System performance using different number of participants. 

 FAR FRR 

Participants no. 15 25 30 15 25 30 

DTs 0.007 0.0104 0.0109 0.1 0.25 0.28 

SVMs 0.0125 0.0181 0.0183 0.175 0.435 0.444 

 

4.5 Summary 

In this part of the thesis, the usefulness of incorporating non-conventional keystroke features 

in the user authentication process was examined. Unlike conventional timing features, non-

conventional features benefit from the extra information that can be extracted from the typing 

of a piece of free-text input. Features that have semi-timing properties such as words-per-

minute, percentage of negative up-down time and percentage of negative up-up time were 

used. Moreover, features that explain the user’s editing behaviour were also used. These 

included the error rate, percentage of CapsLock usage, and percentage of both right and left 

shift keys usage. DTs and SVMs were used to classify the typing samples collected from 

participants. In the case of SVMs, ACO was utilized to select features that contribute more to 

the system. 

Non-conventional features such as those used in this study appear to be highly significant in 

keystroke dynamics applications such as user authentication. Moreover, decision tree 

classifiers demonstrated a high level of success in such cases. In addition, based on the 

features selected by ACO and DTs, the editing features seem to have a more positive effect 

on the system performance compared with semi-timing features.  

The results obtained from this study are encouraging as low FAR and FRR were achieved in 

the experimentation phase; with the FAR being the slightly better of the two. This signifies 

that satisfactory overall system performance was achieved by using the non-conventional 

attributes proposed in this study. Thus, the use of non-conventional typing features improves 

the understanding of human typing behaviour and therefore, provides significant contribution 

to the authentication system when using little training data.  
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Non-conventional features succeeded in reducing the FRR produced by timing features. Yet 

the FAR produced by timing features was lower. This designates the opportunity of using 

both types of features in conjunction with each other (fused features) to produce even better 

system performance. 

Lastly, due to their nature, non-conventional features have the quality of being language-

independent, similar to the key-pairing method. This can be tested, as stated in the future 

work section, by applying these features to a language different than English. 

 

 

 

 

 

 

 

 

 

 

 



142 
 

Chapter 5 

 

Performance Improvement by Fusion 

5. 1 Introduction  

This chapter is concerned with improving the methods introduced previously in order to 

produce better system performance. This is done by performing fusion of the key-pair timing 

features, referred to simply as “timing features”, and the non-conventional features 

(introduced in Section 3.3 and Section 4 respectively) at different levels, i.e. feature-level and 

decision-level fusion. Moreover, the fusion is performed to overcome the limitations that 

each method suffers from when used separately. That will aid in reducing the error rates 

produced by the new and advanced system [256]. 

The feature-level fusion is done by joining the timing features and the non-conventional 

typing features and testing the system performance based on the concatenated data. 

Meanwhile, the decision-level fusion is performed by combining the outputs of two methods. 

They are: the method that involves classifying timing features using SVMs/ACO and the 

method utilizing non-conventional features in a DTs classification.  

Moreover, a comparison is made between the two fusion schemes that were applied to free-

text keystroke data, in this study. This is motivated by the demand of an improved 

authentication system which is able to provide users with the highest security using as little 

typing input as possible.    

A number of research in the current literature has considered fusion in keystroke dynamics. 

The work in [72] proposed a decision-level fusion between two methods. The first being the 

Gaussian similarity score between a reference template and a test data template. The second 

being the Direction Similarity Measure (DSM) for comparing the typing patterns of a user. 

The two scores were fused by using a weighted sum rule. Fifty participants were requested to 

type-in their username, password and a special fixed phrase repeatedly ten times. The 
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performance achieved using only the Gaussian probability density function yielded an EER 

of 11.6897%, while the performance using only the DSM produced an EER of 19.74%. 

Combining the two methods delivered the best result of an EER of 6.36%. 

Hocquet et al. [134] performed a study for authenticating users using a decision-level fusion 

of three methods. The first method used the mean and the variance of each latency time and 

compared it to a threshold. The second method used a measure of typing rhythm disorder 

where the time was classified into five different classes according to the speed. The 

difference between the numbers of the classes in the profile data and in the test data was 

calculated and then the sum of all these differences was compared to a threshold. The third 

and last method was based on the ranks of the latencies; this was performed by ordering the 

latencies based on their speed. The latency time of each observation was ordered from the 

slowest to the fastest for each user’s profile. The Euclidean distance between the user’s 

profile and the new data was then used to guess if the new observation belonged to that user. 

Even though  these methods work well on their own, Hocquet et al. studied the possibility of 

combining all three with the help of a fusion rule after normalizing the scores from each 

method. For testing these methods, 15 users were asked to give a login password ten times, 

followed by 30-to-100 log-in attempts over a six months period. The results of using each of 

these techniques separately gave a best performance of 3.70% EER. The fusion of all three 

methods, on the other hand, significantly improved the performance to an EER of 

approximately 1.8%. 

Work conducted in [257] employed feature-level fusion, in which the authors combined a 

pressure sequence and traditional keystroke dynamics in user authentication. In addition, 

three methods were combined for the authentication task using a decision-level fusion 

technique. They were: (1) global features of pressure sequences, (2) dynamic time warping, 

and (3) traditional keystroke dynamics. A total of 5000 password samples were obtained from 

100 individuals for this study. All experiments utilized a dataset that combined both a 

pressure sequence and traditional keystroke dynamics. Utilizing all methods, an EER of 

1.41% was achieved compared with a 2.32% EER for method (1), a 1.92% EER for method 

(2) and a 2.04% EER for method (3), on their own. Moreover, an EER of 2.04% was 

achieved using only traditional keystroke dynamics. 

Based on the literature, not many studies have shown an interest in understanding the 

differences between using decision-level and feature-level fusion in the area of free-text 
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keystroke dynamics authentication. In this study, therefore, the two fusion techniques were 

explored with the aim of finding which of the two is more suitable for the task of uniquely 

recognizing the typist involved based on a reduced amount of free-text input. 

5. 2 Fusion Overview 

Decision support systems (DSS) are schemes to create a model that is able to produce correct 

decisions given a minimum amount of input data. DSS follows two different schemes [258]. 

The first of which suggests that the progress of DSS should be based on continuous 

improvement of existing methods and establishing new ones, and the second approach 

recommends combining existing well performing methods, anticipating that better results will 

be achieved as the limits of the existing individual method are reached and it is not possible 

to develop a better one. Such fusion of information seems to be worth applying in terms of 

reducing uncertainty [259]. As each of the individual methods produces some errors, different 

methods performed on different data may produce different errors. Assuming that all 

individual methods perform considerably well, the combination of such methods should 

reduce the overall classification error [258]. 

Fusion of data/information can be carried-out on three levels: data-level fusion, feature-level 

fusion, and decision-level fusion [260]. A brief description of each of these types is presented 

in this section. 

5.2.1 Data-level Fusion 

Data-level fusion combines multiple sensor data that measure correlated parameters [261]. 

Using multiple sensor systems has many advantages including: higher signal-to-noise ratio, 

increased robustness and reliability in the event of sensor failure, reduced uncertainty and 

increased confidence [261]. Thus, the integration of data from a multiple sensor system, i.e. 

data fusion, is important to improve decisions. 

A number of data fusion frameworks have been developed, and these include, among others: 

Thomopoulos architecture [262], behavioural knowledge based data fusion [263] and the 

waterfall model [264]. 

One of the well-known frameworks for data-level fusion is the Thomopoulos [262], in which 

three-level architecture was proposed for data fusion. Each of which is integrating data at 
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different levels. These levels are: (1) signal level fusion: where data correlation takes place 

through learning due to the lack of a mathematical model describing the phenomenon being 

measured, (2) evidence level fusion: where data is combined at different levels of inference 

based on a statistical model and the assessment required by the user and (3) dynamics level 

fusion: where the fusion of data is done with the aid of an existing mathematical model. 

These levels of fusion are implemented sequentially or interchangeably based on the 

application in hand. 

5.2.2 Feature-level Fusion 

Feature sets obtained from several data sources can be fused to create a new feature set 

representing a single object. Compared with data-level fusion, feature-level fusion is more 

concerned with the meaningful features that were extracted from raw data. An example of 

feature-level fusion is illustrated in the following scenario (as described in [265]): the 

geometric features of the hand may be augmented with the eigen-coefficients of the face in 

order to build a new high-dimension feature vector. The concatenated feature set 

demonstrates better discrimination capability compared with the individual feature vectors 

obtained from hand geometry and face biometrics separately. Subsequently, a feature subset 

selection technique may be implemented to choose a minimal feature set from the high-

dimensional feature vector [266]. 

The most common way to accomplish feature-level fusion is by a simple concatenation of the 

feature sets obtained from multiple information sources [265]. Let X = {x1, x2, ..., xm} and Y 

= {y1, y2, …, yn} denote feature vectors (X ∈ Rm and Y ∈ Rn) representing the features 

extracted via two different sources. Combining these two feature sets in order to yield a new 

feature vector, Z, that would better represent the individual is the way followed in feature 

fusion. The vector Z is produced by first concatenating vectors X and Y, and then performing 

feature selection on the resulting features vector.  

Another popular approach is image blending [267] which creates a single fused image stream 

by blending images from each of the used instruments. Object location and shape are then 

extracted by applying appropriate detection and segmentation algorithms to the fused image 

stream.  

Union of features [268] is another popular method that postpones the fusion of information to 

a later stage in the pipeline. Such approaches normally involve complete image segmentation 
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routines in each image stream and then combining the segmentation results across the sensing 

domains. 

5.2.3 Decision-level Fusion 

It is also referred to as classifier-level fusion. A number of decision-level fusion methods 

have been introduced to find an alternative approach leading to potential improvement in the 

classification performance. There are two categories of decision-level fusion techniques. 

They are methods operating on classifiers and methods operating on outputs. Both categories 

are briefly described here. 

5.2.3.1 Methods Operating on Classifiers 

The methods in this category generally operate on classifiers and emphasise the development 

of the classifier structure. They do not consider classifier outputs until the combination 

process finds a single best classifier or a selected group of classifiers and only then are their 

outputs taken as a final decision or for further processing. There are three subcategories 

included here: Dynamic Classifier Selection (DCS), Classifier Structuring and Grouping and 

Hierarchical mixture of experts (HME).  

Dynamic Classifier Selection (DCS) attempts to determine a single classifier, as opposed to a 

group of classifiers, which is the most likely to produce the correct classification label for an 

input sample [269]. As result, only the output of the selected classifier is taken as a final 

decision. Moreover, it includes partitioning of the input samples. All DCS methods heavily 

depend on training data and by only choosing the locally best classifier, they seem to lose 

some useful information available from other well performing local classifiers [269].  

Classifier Structuring and Grouping, on the other hand, works by organising classifier 

combination. Classifiers and their combination functions may be organized in many different 

ways [269]. Usually it is done by organising them in parallel, and then use their outputs 

simultaneously and separately as an input for a combination function. Alternatively, apply 

several combination functions sequentially. A less frequently used strategy is to organise all 

classifiers into groups and to apply different fusion methods for each group. In general, 

classifiers may be arranged in a multistage structure. At each stage, different fusion methods 

are applied for different groups of classifiers. 
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A Hierarchical mixture of experts (HME) represents a supervised learning technique based on 

the divide-and-conquer principle [258]. The HME is organised in a tree-like structure of 

leaves. Each leaf represents an individual expert network, which given the input, vector x, 

tries to solve local supervised learning problem [258]. 

5.2.3.2 Methods Operating on Outputs  

This category of methods operates mainly on the classifiers’ outputs, and effectively the 

combination of classifiers’ outputs is calculated [270]. This category is further divided 

according to the type of the output produced by individual classifiers.  This category can be 

divided into three subcategories, namely: crisp labels, class rankings and soft/fuzzy outputs. 

A brief description of each type is provided here. 

5.2.3.2.1 Crisp Labels 

Classifiers producing crisp, single class labels (SCL) provide the least amount of useful 

information for the combination process [258]. However, they are still applied to a variety of 

real-life problems with well-produced performance. There are a number of methods for crisp 

labels. Two of the most representative methods for fusing SCL classifiers are generalised 

voting method and the Knowledge-Behaviour Space (BKS) method. 

First, voting strategies can be applied to a multiple-classifier system assuming that each 

classifier gives a single class label as an output. Let the output of the classifiers form the 

decision vector d, defined as:  

d d , d , … , d  where d ∈ c , c , … , c , r , ci denotes the label of the i-th class and r 

is the rejection of assigning the input sample to any class. Let the binary characteristic 

function be defined as follows: 

	
1	 	 	
0	 	                   (5.1) 

Then the general voting routine can be defined as: 

	
		 	∀ ∈ ,…, 	∑ ∑ .
																																																																													

            (5.2) 
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Where α is a parameter and k(d) is a function that provides additional voting constraints. The 

case where α= 0.5 is commonly known as the majority vote [258].  

The Behaviour-Knowledge Space method (BKS) does not assume independence of the 

decisions made by individual classifiers, as opposite to other fusion methods [271]. It delivers 

a knowledge space by collecting the records of the decisions of all classifiers for each learned 

sample. If the decision fusion problem is defined as a mapping of K classifiers:  e1, ..., eK into 

M classes: c1, ..., cM , BKS operates on the K-dimensional space where each dimension 

corresponds to an individual classifier, which can produce M+1 crisp decisions, M class 

labels and one rejection decision. The final decision represents a balance between the current 

classifiers’ decisions and the recorded behaviour information.  

5.2.3.2.2 Class Rankings 

Some additional useful information can be gained from classification methods generating 

outputs in a form of class rankings [258]. There are many fusion methods operating on class 

rankings, two of the most commonly used are listed here.  

The first approach is the Class Set Reduction (CSR). Its objective is to reduce the set of 

considered classes to as small a number as possible while guaranteeing that the correct class 

is still represented in the reduced set. CSR is very appropriate for the early stage of 

combining multiple classifiers. The main goal of the class set reduction method is to find the 

trade-off between the minimising of the class set and the maximising of the probability of 

inclusion of the true class. 

The second approach is the Class Set Reordering (CSRR). It strives to class set reordering in 

order to improve overall rank of the true class. The CSRR method is considered to be 

successful if it ranks the true class higher than any individual classifier.  

5.2.3.2.3 Soft/Fuzzy Output  

Fusion methods operating on classifiers with soft/fuzzy outputs are the largest group of 

decision-level fusion methods and can be expected to produce the greatest improvement in 

classification performance [272]. The outputs in this category refer to the real values in the 

range [0, 1]. These values are referred to as fuzzy measures, which involve all known 

measures of evidence: probability, possibility, necessity, belief and plausibility [272]. These 
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measures are all used to define information uncertainty in different dimensions. Therefore, 

the main aim of fusion methods in this category is to reduce the level of uncertainty by 

maximising suitable measures of evidence. 

A large number of methods are applied on soft output classifiers. An example of such 

methods is the Bayesian methods which can be applied to the decision-level fusion subject to 

the condition that the outputs of the classifier are expressed in posterior probabilities. It 

works by assigning the decision to the class with the highest combined belief measure [258]. 

5. 3 Experimental Results and Discussion 

This section presents the experiment results and discussion, in which the data collection, data 

space and the experimental results are indicated. A discussion about the experiment results 

and some comparisons with previous studies is performed in this section as well. 

5.3.1 Data Collection 

The features used in this part of the study are: the timing feature described in Section 3.3.2 

and the non-conventional features discussed in Section 4.2. The data used in this experiment 

was collected from the same twenty-five participants involved in the extended key-pairing 

experiment, the details of which are discussed in Section 3.3.5.1. Moreover, the timing data 

and the non-conventional data were both extracted at the same time, i.e. whilst the 

participants were typing the same eight tasks, as described in Section 4.4.1.   

5.3.2 Data Space 

The data space for the timing features used in this section is similar to that discussed in the 

extended key-pairing experiment (Section 3.3.5.2). The only difference is that the data was 

not combined and partitioned into twenty chunks as done in the key-pairing experiment. 

Instead, each one of the eight typing tasks was considered as a sample. This was done 

because in non-conventional features, it is not the case to combine the samples and partition 

them as each of the features represent the whole piece of text included in a sample (as 

discussed in Section 4.2). For example, the word-per-minute feature was calculated for the 

whole sample, each sample separately. Thus, each user had eight timing features samples in 

their profile. Similarly, eight non-conventional features samples were stored for every user as 

described in Section 4.4.2. 
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5.3.3 Experiment and Results 

As mentioned earlier, two types of fusion techniques are applied in this study. They are: 

feature-level fusion and decision-level fusion (as illustrated in Figure 5.1). A description of 

how each type of fusion was applied is presented in this section. 

 

 

Figure 5.1: Feature-level fusion and decision-level fusion. 

5.3.3.1 Feature-level Fusion  

Timing features and non-conventional features were combined to produce a larger set of 

features. This allowed for the 55 timing features and the nine non-conventional typing 

features to be joined in order to create a 64 mixed features dataset. This set was exploited in 

two classification processes. One of which was done using the SVMs/ACO technique and the 

other was done using DTs.  

The details of how SVMs/ACO and DTs were applied is similar to that explained in Section 

4.4. Both classification methods were carried-out through cross-validation [243]. This 

involved eight samples being utilized in performing eight cross-validation experiments. 

Seven of the samples were treated as the training sample set and the remaining sample was 

regarded as the testing sample. In each experiment, a different sample was selected to act as 

the testing data.  

 

 

 

Raw Data 

Timing Features

Non‐conventional 

Features 
DTs

SVMS/ACO Approach (A) 

Approach (B) 

Decision‐level 

Fusion 

Feature‐level 

Fusion 



151 
 

Similarly, two error rates were used to infer the performance, FAR and FRR; both discussed 

in Section 2.7. These error rates were chosen for reasons discussed in Section 3.2.2.4. The 

final error rates resulting from the feature-level fusion are shown in Table 5.1. The details of 

each individual’s results are shown in Appendix C.4.1. 

 
Table 5.1: Feature-level fusion of timing features and non-conventional features 

 FAR FRR

SVMs/ACO 0.0156 0.375 

DTs 0.00896 0.215 

5.3.3.2 Decision-level Fusion 

The decisions from two different approaches were fused to achieve decision level fusion in 

this section. Approach (A) utilized SVMs together with ACO to classify the timing features. 

The complete description of this method is found in Section 3.3. In Approach (B), the non-

conventional features were analysed using a DTs classifier. Similarly, the complete 

explanation of this method is indicated in Section 4.  

The decision to use the pair of the SVMs and DTs classifiers was based on the results 

produced in Chapter 3 and Chapter 4. It has been shown that good performance was produced 

when using SVMs with timing features and DTs with non-conventional features. 

Nonetheless, other combinations of classifiers exist, i.e. SVMs & SVMs, DTs & SVMs and 

DTs & DTs. However, these combinations were not considered in this study. The benefit of 

using these other combinations can be investigated in future work. 

Both approaches were carried-out using cross-validation in the same manner described in the 

previous section. As both classifiers, from approaches (A) and (B), produced crisp, single 

class labels (SCL), the majority voting method was used to fuse the two classifiers. Besides, 

it was used because of its simplicity and effectiveness [273]. A brief description of the voting 

strategy is presented in Section 5.2.3.2.1.  

Using cross validation, each of the eight typing tasks was considered as a single sample, all of 

which were used in the eight cross validation experiments. This was done for both 

approaches yielding in 16 different cross-validation experiments. Each experiment’s result 

was considered as a vote, i.e. there were 16 results to be included in the overall voting for 

each class. Eight of these votes belong to approach (A) and the other eight belong to 
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approach (B). Using the majority voting scheme, the overall error rates resulting from this 

decision-level fusion yielded in a 0.00 FAR and a 0.00 FRR. The details of each individual’s 

results are shown in Appendix C.4.2. 

5.3.4 Discussion 

This experiment is a continuation of the work previously conducted in Section 3.3 and 

Section 4. In Section 3.3, the timing features extracted from specific key-pairs were exploited 

and ACO was used to select a feature subset that was fed into a SVMs classifier. The 

resulting FAR was low while the resulting FRR was not satisfactory. Moreover, in the work 

carried-out in Section 4, the non-conventional typing features were utilized to distinguish 

between users using the DTs classifier. Slightly better FAR and FRR were produced. A 

fusion of these two methods was the next step in order to achieve better authentication 

performance [256]. Table 5.2 shows the error rates produced in the previous studies.  

Table 5.2: Previous studies performance. 

Study Approach Features Method FAR FRR

Study1 Approach (A) Timing features SVMs/ACO 0.013 0.384 

Study2 Approach (B) Non-conv. features DTs 0.0104 0.25 

 

In feature-level fusion, SVMs/ACO produced average rates, yet it very slightly improved 

Approach (A)’s FRR. Meanwhile, DTs produced overall good error rates and it was able to 

slightly enhancing both error rates of Approach (B). Thus, the fusion of the two feature sets 

had a slight positive impact on the FRR value yet the FAR obtained from fused features was 

only improved in the DTs case. It has to be noted, however, that the number of samples in the 

study testing approach (A) was 20 samples per person, 15 of which were used for training, 

whilst only 8 samples per person were used in the study testing approach (B), 7 of which 

were used for training. 

Moreover, in both cases, the trade-off between FAR and FRR [250] was in favour of the FAR 

as it produced lower error rates compared with FRR. This corresponds to the main goal of 

user authentication and the fact that it is more concerned with protecting users against the 

vast numbers of potential impostors in highly secured systems [274].  

Furthermore, DTs proved to have better recognition outcome compared with SVMs/ACO as 

shown in Table 5.2 since it was able to produce lower error rates from the fused features. 
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This has a lot to do with the nature of the data in this case and its ability to construct rules 

that are used by the DTs to separate the data [247]. 

 It is noteworthy that both methods include some form of feature subset selection. ACO is a 

feature subset selection technique applied to the fused features to select the most suitable 

features before being fed to SVMs [5]. DTs are also performing feature subset selection on 

the fused features when building and pruning the decision tree [275]. In addition, using all 

features with no feature selection did not produce good results as the level of noise was larger 

in such high features dimensionality [170]. The Curse of Dimensionality (described in 

Section 3.3.5.3) can be used to explain the performance deterioration when using a larger 

number of features [222]. As there are only eight samples per person, the number of features 

should be as small as possible to correctly represent the small number of samples. 

When looking more closely at the features selected to be utilized in both methods, it is noted 

that non-conventional features were in the majority over timing ones. Four features out of 

five selected by ACO and five features out of the eight chosen by DTs were non-conventional 

features. This supports the belief that non-conventional features represent human typing 

patterns more precisely compared with timing features in free-text keystroke systems. The 

selected features for both methods are listed in Table 5.3. 

 

Table 5.3: Selected features from the fused features set. 

 Timing features Non-conventional features 

SVMs/ACO SL-H2 Error rate | RSA | LSA | LSB 

DTs SL-H1 | SL-UD | FL-H1 WPM | NegUU | Error rate | RSA | LSA 

 

Thus, non-conventional features appear to have a strong relationship between input values 

and target values, in this data set. A strong input-target relationship is formed when 

knowledge of the value of an input improves the ability to predict the value of the target 

which helps in understanding the characteristics of the target [276].  

Moreover, in agreement with the outcomes of Section 4, the editing features appear to have 

more influence on the system performance in the feature-level fusion as four out of four and 

three out of five of the non-conventional features selected by ACO and DTs, respectively, 

were editing features. 
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In decision-level fusion, using majority voting has considerably improved the results of 

Approach (A) and Approach (B), individually. A perfect recognition rate was achieved using 

decision-level fusion. Even though not all votes were for the correct class, there was no 

common wrong class. The majority of votes were either for the correct class or for random 

classes which has no effect on the majority vote.  

In addition, approach (B), i.e. DTs and non-conventional features, has contributed the most to 

this very good result. It produced more correct votes which lead to a correct overall decision. 

This supports the existing conclusion which states that non-conventional features represent 

the human typing behaviour better than timing ones.  

A comparison between the error rates produced by feature-level fusion and decision-level 

fusion is illustrated in Figure 5.2. It demonstrates the low error rates produced by feature-

level fusion in the case of the ACO/SVMs and DTs classifiers. It also shows a slight 

advantage of the DTs method over the ACO/SVMs. Moreover, the decision-level fusion 

produced zero FAR and FRR which proved that using majority voting decision-level fusion 

produces better system performance compared with the feature level-fusion and succeeds in 

producing a very good recognition system.  

 

   

Figure 5.2: Comparison between the error rates produced by feature-level fusion and 

decision-level fusion. 
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Lastly, the bias between the FAR and the FRR values is still present in the feature-level 

fusion. It has occurred because of the uneven data set as the positive samples were much less 

than the negative ones [233].  Interestingly, however, the bias has disappeared in the 

decision-level fusion as the FAR and FRR were both found to be zeros.  

5. 4 Summary  

In this section of the thesis, an attempt to improve the methods introduced previously was 

carried-out using two types of fusion techniques. They are: decision-level fusion and feature-

level fusion. Moreover, these fusion mechanisms have been applied to achieve performance 

improvement in free-text keystroke dynamics authentication with the requirement of reduced 

training data.  

Feature-level fusion was performed to combine timing features and non-conventional features 

before providing the classifier with the fused set of features. Decision-level fusion, on the 

other hand, was carried-out to merge the outcomes of two classification approaches using the 

majority voting approach. In the first approach, SVMs were used to classify a subset of the 

timing features that was selected using ACO while the second approach used DTs to classify 

non-conventional features.  

Feature-level fusion was able to reduce the error rates produced by the two feature sets 

separately, especially using the DTs classifier. Yet, decision-level fusion proved to be 

superior to feature-level fusion as it succeeded in producing zero FAR and FRR. This 

dramatic enhancement showcases the fact that using majority voting on the joint decision of 

both approaches provides a good indication of the users’ typing behaviour. That will 

eventually provide a good assessment of the user’s identity when applying a reduced training 

authentication scheme. It has also been noted that non-conventional features have the edge 

over the timing features as they provided a better recognition rate throughout the study. 
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Chapter 6 

 

Exploration of Keystroke Dynamics in 

Arabic Language 

6. 1 Introduction  

This chapter is investigating the language-independency property of the key-pairing method, 

introduced in Section 3.3. The extended key-pairing method has been developed to accept 

input in any language. This is tested in this section by applying the key-pairing method to text 

in Arabic language.  

The key-pairing approach involves the use of the keyboard’s key-layout to group the text into 

key-pairs based on the two keys location on the keyboard. The method works after that by 

extracting a number of timing features from these specific key-pairs. Thus, the key-pairing 

method does not have to be used with a certain language as opposed to the standard keystroke 

dynamics authentication process, i.e. without the use of key-pairs. Standard keystroke 

methods such as the ones introduced in [8, 115] require the comparison between two samples 

to be done based on a certain combination of letters, which will be different for each 

language. However, using the same keyboard layout to collect the typing data will allow for 

the employment of the key-pairing method on any language. 

Furthermore, most of the studies in keystroke dynamics involved only English input from the 

user. Other languages have not received the same attention that English has in the research 

literature to date. Whilst such experimentation is very important, there is clearly a lack of 

language variation used in such systems.  

The work done by Gunetti et al. [88] is one of the few research  studies applied to languages 

other than English in the area of keystroke dynamics authentication. In that study, a 

combination of the two measures developed by Gunetti and Picardi [8] are used to assess the 
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similarities between typing patterns. This was done using the duration time of di-graphs 

found in samples typed in both English and Italian. Italian was used since the two languages, 

i.e. English and Italian, have the same alphabet and thus share a considerable number of di-

graphs (character-pairs). From experimenting with different combinations of training and 

testing samples, the best results were achieved when the user’s profile contains samples in 

both languages yet the performance increases when the language of the testing samples is the 

dominant language in the samples forming the user profile.  

Another relevant research was that by Samura and Nishimura [76], in which they conducted a 

study that examined keystroke dynamics for long free-texts in the Japanese language. In this 

study, hold time and flight time of Japanese language-specific keystrokes were used as timing 

features. In order to compare the test and training timing vectors, a weighted Euclidean 

distance was used. However, although this study was applied to the Japanese language, the 

keyboard used was an English standard keyboard. Subjects carried-out the typing process by 

entering the alphabet letters (in English) corresponding to the Japanese characters. 

Moreover, until the time of writing this thesis, there has been no reported research that has 

utilized Arabic input in keystroke dynamics authentication. Therefore, an attempt to 

incorporate Arabic input in keystroke dynamics user authentication was investigated in this 

study. The Arabic language has completely different characteristics to those of English, thus 

using typing patterns for Arabic input to authenticate users is an important research area in 

the field of keystroke dynamics. 

Arabic and English languages are very different to each other. Whereas English is a 

Germanic language from the Indo-European language family, Arabic is a Semitic language 

belonging to the Afro-Asiatic language family [277]. Arabic has 28 letters which are 

completely different from the English alphabet. Moreover, Arabic text is written from right to 

left which is a unique characteristic for merely Arabic and Hebrew scripts [278]. In addition, 

there is no distinction between upper and lower case in Arabic. Punctuation rules are much 

looser than those in English and less commonly used [279]. 

In the study conducted in this section, the extended key-pairing scheme (developed in this 

research as discussed in Section 3.3) is tested using text typed in Arabic. Moreover, SVMs 

were used for classification in association with the ACO feature selection technique. In 

parallel for comparison, DTs were also exploited to classify the typing data provided in the 

Arabic language.  
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6. 2 Feature Definition  

The features used for applying the key-pairing scheme to Arabic input are described in this 

section. The way in which the key-pairs are formed and the timing features are extracted is 

similar to that followed for English input. Yet, an explanation is provided in this section in 

order to showcase the Arabic language characteristics and how the key-pairing method was 

applied to Arabic text.  

6.2.1 Key-pair Formation 

The text was classified into the same five categories of key-pair relationships, namely: 

adjacent, second adjacent, third adjacent, fourth adjacent and none adjacent. The complete 

description of this grouping was introduced in Section 3.3.2.1. The only difference is that the 

keyboard used in this study is the standard Arabic keyboard since it is the most commonly 

used Arabic keyboard [280]. The Arabic standard keyboard have the same layout as the 

QWERTY keyboard used in the English input experiment with the only difference being the 

characters produced by each key. Figure 6.1 illustrates the key relationship concept when 

considering the key ‘ل’ on the Arabic standard keyboard.  

 

 

Figure 6.1:  Key-pair relationship formation on Arabic keyboard. 

 
These relationship categories can also fall into one of three overall locations on the keyboard 

(described in Section 3.3.2.1): keys on right side, keys on left side and keys on different 

sides. An example of the overall locations on the Arabic keyboard is provided in Figure 6.2.   
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Figure 6.2:  Overall key location on Arabic keyboard. 

 

Similar to English input, there are fifteen different combinations of key-pairs in total that any 

two keys can be classified into. As an example, the key-pairs forming the text “نتلائم” is 

demonstrated. The text is entered from right to left as the following sequence: “ن ت لا ئ م”. 

The key-pairs are: 

 “ن ت”: Adjacent/RightSide. 

 “ت لا”: SecondAdjacent/ DifferentSide. 

 “لا ئ”: FourthAdjacent/LeftSide. 

 “ئ م”: NonAdjacent/DifferentSide 

As mentioned in Section 3.3.2.1, the key-pairing method significantly boosts the number of 

key-pairs that can be found and compared in the training and testing samples. Thus, it is used 

to increase the reliability of the mean of the timing features which will help in increasing the 

stability of the timing vectors. And so, it is able to utilize a small amount of typing data in the 

best possible way.   

An example of that using Arabic text is shown in the following training and testing data: 

 Training data: “قرد الغابة صغير” 

 Testing data: “حوت البحر كبير” 

Only two similar key-pairs (“ال” and “ير”) can be used to compared the samples in the 

standard keystroke dynamics authentication process, i.e. without the use of key-pairs [8].  

However, this is not the case when using the key-pair method as there are more instances of 

each key-pair extracted from both the training and testing data. 
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6.2.2 Feature Extraction 

The five features used in the extended key-pairing scheme, described in Section 3.3.2.2, are 

also used when it is applied to Arabic input. They are H1, H2, UU, DD and UD. Thus, five 

timing features were defined for each key-pair appearance in the text. This was done for all 

fifteen types of key-pairs. Therefore, the overall number of timing features is 75 (5 timing 

features * 15 key-pairs). The means of these features are calculated and stored in the timing 

vector of each user, i.e. user’s profile. Table 3.8 in Chapter 3 lists all the 75 features extracted 

from all key-pairs. 

6. 3 Experimental Results and Discussion 

This section describes the experimentation process, in which the data collection, data space 

and the experimental results are specified. A discussion about the experiment results and a 

comparison with the results produced by English input is provided as well. 

6.3.1 Data Collection 

A total of twenty-one users participated in this study for data collection. All participants were 

native Arabic language speakers. They had different levels of typing skills that varied 

between moderate and very good. They all were accustomed to typing in Arabic but not all of 

them often type in English. Seven of the participants were involved in the English input study 

conducted in Section 3.3. Moreover, there were participants from both genders and all the 

participants were in the age group between 18 and 45 years old. Table 6.1 describes some of 

the demographic characteristics of the participants.  

 

Table 6.1: Characteristics of the participants in the Arabic language experiment. 

Gender  Age Native language Typing skills 

Male Female 18-27 28-37 38+ English Non-English Good Moderate Poor 

4 17 8 11 2 0 21 14 7 0 

 

During data collection, the participants were asked to perform two typing tasks. The tasks 

involved copying Arabic text that consisted of around 900 characters. The text employed was 

an excerpt from an Arabic online newspaper. The text included, in addition to letters, 

numbers and punctuation marks.  
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Data collection was performed in a similar manner to that described in Section 3.3.5.1. Figure 

6.3 illustrates a screenshot of the data collection program demonstrating the Arabic text 

appearing when the first typing task is clicked. Moreover, attributes captured for every key 

action performed on the keyboard is exactly the same as that captured for every key action in 

English input.  

As the native language in the country this research is performed at is not Arabic, twelve out 

of the twenty-one participants were recruited from outside of the country. The data collection 

program was e-mailed to the non-local participants and the data was also e-mailed back to the 

researcher when the data collection process was completed by the participants.  

 

 

Figure 6.3: A screen-shot of the data collection program for the Arabic experiment. 

6.3.2 Data Space 

The data space in this experiment is similar to that discussed in Section 3.3.5.2. Although 15 

key-pairs from which 75 timing features were captured, there were not enough instances that 
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appeared in the used text for some of the key-pairs. This made it unfeasible to include them in 

the final features set. The omitted key-pairs (with less than 10 instances) were: 

ThirdAdjacent/LeftSide, FourthAdjacent/LeftSide, NonAdjacent/RightSide and 

NonAdjacent/LeftSide.  In total, 20 timing features were excluded from the final feature set; 

resulting in the inclusion of only 55 features in the final feature vector. It has to be noted that 

two of the key-pairs removed from the Arabic experiment’s features set are different to those 

removed from the English experiment’s features set (found in Section 3.3.5.2). Table 6.2 lists 

the final 55 features set extracted from all key-pairs in the Arabic experiment.  

 

Table 6.2: Final features set for the Arabic experiment. 

Key-pair Category Feature Set 

Adjacent/RightSide AR-H1 AR-H2 AR-DD AR-UU AR-UD 

Adjacent/LeftSide AL-H1 AL-H2 AL-DD AL-UU AL-UD 

Adjacent/DifferentSide AD-H1 AD-H2 AD-DD AD-UU AD-UD 

SecondAdjacent/RightSide SR-H1 SR-H2 SR-DD SR-UU SR-UD 

SecondAdjacent/LeftSide SL-H1 SL-H2 SL-DD SL-UU SL-UD 

SecondAdjacent/DifferentSide SD-H1 SD-H2 SD-DD SD-UU SD-UD 

ThirdAdjacent/RightSide TR-H1 TR-H2 TR-DD TR-UU TR-UD 

ThirdAdjacent/DifferentSide TD-H1 TD-H2 TD-DD TD-UU TD-UD 

FourthAdjacent/RightSide FR-H1 FR-H2 FR-DD FR-UU FR-UD 

FourthAdjacent/DifferentSide FD-H1 FD-H2 FD-DD FD-UU FD-UD 

NonAdjacent/DifferentSide ND-H1 ND-H2 ND-DD ND-UU ND-UD 

 

The final step of data pre-processing involves creating the timing vector and storing it in the 

database as the user’s profile. This process was carried-out by combining the data from the 

two tasks and then dividing it into eight equal sections. Each one of the eight sections is 

considered as a single typing sample. 

This was done (similar to Section 3.3.5.2) by extracting the feature vector (which included all 

the instances of that feature) for each of the 55 features from each of the two typing tasks 

separately. And then the two feature vectors from the two tasks are concatenated to produce 

55 large vectors, one for each feature.  



163 
 

Similarly, outlier elimination and data normalization was performed exactly the same as 

described in Section 3.3.5.2. Around 0.01% of the overall data was considered outliers and 

therefore discarded form the dataset used for the experiment. Moreover, this small amount of 

discarded data does not massively affect the final dataset. 

After that, each of the large vectors is divided equally into 8 parts. The mean of each feature 

among these eight divisions is computed and then stored in the corresponding user’s timing 

vector (V). There are eight timing vectors (Vs) for each user which were employed as the 

user’s typing samples. Each single timing vector (V) is represented similar to the manner 

followed in Equation 3.39 in Chapter 3. 

6.3.3 Experiment and Results 

After creating users’ profiles, feature subset selection is performed using ACO [281] for each 

user’s data. The selected features were then passed to the SVMs machine learning mechanism 

in order to be used as the basic data for differentiating between classes. Similar to the 

extended key-pairing method (discussed in Section 3.3), the Radial Basis Kernel multiclass 

classification SVMs [282] was implemented on MATLAB with the aid of the LIBSVM 

library [227]. Moreover, the one-vs-one method for Multi-class classification was followed 

here as it is faster in training compared with one-vs-rest [212]. In addition one-vs-one 

produced lower error rates compared with one-vs-rest in the English experiment performed in 

Section 3.3. 

DTs, on the other hand, is capable of performing feature selection in the tree building and 

pruning phase [251]. Therefore, it was fed with the complete set of features as discussed in 

Section 4.4.3. The Statistics toolbox in MATLAB [248] was used to fit the tree and predict 

the class of each of the test samples.  

Similar to the approach followed in Section 4.4.3, classification for both classifiers was 

carried-out through the leave-one-out cross-validation. Eight samples were used to perform 

eight cross-validation experiments. Furthermore, FAR and FRR (described in Section 2.7) 

were used to infer the system performance, as shown in Table 6.3. FAR and FRR were 

chosen for reasons discussed in Section 3.2.2.4. The details of each individual’s results are 

shown in Appendix C.5.1. 
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Table 6.3: System performance using Arabic input. 

 FAR FRR 

ACO/SVMs 0.0256 0.512 

DTs 0.0211 0.423 

 

DTs showed a slight performance advantage over SVMs, as shown in Table 6.3. This can be 

due to the nature of the data and its ability to transformed into rules applicable for separating 

the data using decision trees [247].  

Moreover, the trade-off between FAR and FRR [250] was noticeable in both the SVMs and 

DTs cases. The FAR produced lower error rates compared with FRR which corresponds to 

the importance of protecting users against any imposters’ access in an authentication system 

with high security.   

The features selected by the ACO were AR-H2, TR-UD, TD-H1, TD-H2, and FD-UU. 

Meanwhile, the features selected by DTs were: AL-H1, TR-H2, TR-UU, TR-UD, and ND-

H1. The two subsets are different except for one feature: TR-UD. Moreover, three out of the 

five features selected by both ACO and DTs were duration features. This agrees with the 

conclusions previously presented in Section 3.3.5.3 in which hold features appear more 

significant compared with latency features in the key-pairing method applied to English text. 

6.3.4 Discussion 

The main goal of conducting the key-pairing method’s experiment on Arabic text is to 

investigate the applicability of this method on languages other than English. By applying it 

on a language that has a different alphabet such as Arabic, the key-pairing method is proved 

to be language-independent. 

In addition, in this section, the same 21 subjects provided English input to be tested using the 

key-pairing method. This is done to compare the system performance when using text in two 

different languages produced by the same group of people. 

The results of the English input experiment are shown in Table 6.4 (The details of each 

individual’s results are shown in Appendix C.5.2). Similar to Arabic input, DTs produced 

results that outperformed those produced by SVMs as they produced slightly lower error 

rates. SVMs used features selected by ACO in the classification stage. These features were: 
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AL-H1, AL-H2, AD-UU, AD-UD and SR-H2. Meanwhile, with decision trees, feature subset 

selection was performed in the tree building and pruning stage. The features chosen by DTs 

were: FR-H1, FR-H2, ND-H1, ND-H2 and ND-DD. Similarly, the majority of features 

selected by both ACO and DTs are duration features.  

 

Table 6.4: System performance using English input. 

 FAR FRR 

ACO/SVMs 0.0351 0.702 

DTs 0.0307 0.613 

 

It is worth mentioning that there was a difference between the key-pairs in English and 

Arabic. In Arabic, the number of key-pairs on the right hand side of the keyboard is more 

than those on the left, as most of the commonly used letters are on the right hand side of the 

keyboard. English, on the other hand, has a greater number of the most used letters (letters 

like: e, t, a, s and r) [283] on the left hand side of the keyboard, thus key-pairs from that side 

are larger in number than those on the right hand side. Due to that, the key-pairs that were 

used to create the users’ Arabic profile have some differences to those used for creating the 

user’s English profile, as mentioned in Section 6.3.2. This is because most of the key-pairs on 

the right side were included in the Arabic study while most of those on the left side were 

included in the English study. The key-pairs included in the English experiment can be found 

in Table 3.10 (in Chapter 3) and the key-pairs included in the Arabic experiment can be 

found in Table 6.2.  

Moreover, Arabic input results were generally better than those based on English input due to 

the fact that all of the subjects chosen to be part of the experiments of this study were native 

Arabic speakers and fourteen of the twenty-one subjects do not type in English regularly. As 

Arabic speakers are used to typing in Arabic, their typing skills have developed in Arabic and 

they are more familiar with an Arabic keyboard and how to operate it. This provides their 

typing with enough uniformity to be used to correctly identify the users based on their typing 

patterns. In addition, subjects who are not familiar with English typing have less familiarity 

with an English keyboard and typing in that language. Therefore, the absence of English 

experience has caused non-English natives to lack the typing consistency needed to correctly 

identify users based on their typing patterns [284]. 
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The same key-pairing approach has been used in the study performed in Section 3.3 on 

English text, in which the SVMs/ACO method resulted in an FAR of 0.013 and an FRR of 

0.384. The performance of that experiment outperformed the English experiment performed 

in this section. This was because eight of the twenty-five participants in the English 

experiment performed in Section 3.3 were native English speakers and the rest were very 

familiar with English and were used to typing in English on a daily basis. This clearly 

improves the consistency of the typing patterns of such users compared to the subjects in the 

study performed in this section in which the majority were not familiar with English typing. 

It should be remarked that there were twenty samples per person in the experiment performed 

in Section 3.3 fifteen of which were used for training the 25 users whilst eight samples were 

used for each of the 21 individuals in the experiment performed in this section, seven of the 

samples were used for training.  

Both the experiments in this section and in Section 3.3 provided results demonstrating the 

effect that the most commonly used language has on the system performance. Lower error 

rates are achieved when users are using their native language or a language that they are 

familiar with. In the experiment performed in this section, the use of Arabic language was 

shown to achieve higher performance compared with the experiment using English text as all 

of the subjects involved in the experiment were native to Arabic and are more familiar with 

typing in Arabic. In contrast, in the study conducted in Section 3.3, the English experiment 

yielded good results due to the participants being either native to English or more familiar 

with English typing. Figure 6.4 illustrates the effect that the input language and the 

participants’ familiarity with the language have on the overall system performance.  

 

 

Figure 6.4: Effect of the input language and the participants’ familiarity with the language on 

the error rates. 
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Similar to the previous studies conducted in Sections 3, 4 and 5, the bias between the FAR 

and the FRR values is also present in the results for the Arabic input experiment. The large 

difference between the two error rates has occurred because of the uneven data set used for 

training as the positive samples were much less than the negative ones [233].  

Finally, although the non-conventional features are language-independent, they were hard to 

extract in the Arabic language. This is due to Arabic not having any distinction between 

uppercase and lowercase letters. Therefore, it is very rare that a user uses the shift key or the 

CapsLock key. In addition, the symbols that the shift key produces are very infrequent and 

they are hardly ever used in Arabic text. Therefore, five of the non-conventional features 

were not applicable to Arabic. These are CapsLock usage, RSA, RSB, LSA and LSB.   

6. 4 Summary 

In this part of the thesis, the usefulness of applying free-text keystroke dynamics user 

authentication on Arabic text was investigated. This was carried-out by using the keyboard’s 

key-layout based method. This key-pairing approach works by classifying every two 

characters typed consecutively based on their location in relation to each other and their 

overall location on the keyboard. For each key-pair, five timing features were extracted to be 

used in the user’s feature vector. 

SVMs and DTs were employed to classify individuals based on the proposed timing features 

extracted from Arabic input. The experiment accomplished user authentication based on the 

smallest amount of training possible. The FAR and FRR rates were both satisfactory with the 

FAR being the slightly better of the two.  

This study proved that the proposed method has been able to authenticate users based on their 

Arabic typing using reduced training data. The method was originally created to be used with 

English typing, yet it has successfully crossed over to Arabic input. This proves the language-

independency property of the key-pairing method. Moreover, in a comparative study, DTs 

produced lower error rates compared with SVMs. Duration times also proved to contribute 

more in increasing the system performance when compared with the latency times. 
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In addition, experimenting with two languages showed that the user’s familiarity with a 

certain language has a high impact on the user’s typing patterns in that language. This 

considerably affects the system performance as lower error rates are produced from systems 

incorporating a language native or familiar to the users. 
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Chapter 7 

 

Conclusions  

In this chapter, the overall conclusions with regards to the research performed are 

summarized. The main contributions of the thesis are illustrated. The limitations faced when 

conducting this research are also discussed. Future work extending from this research is also 

presented in this section.   

7.1 Summary of Research Findings 

Keystroke dynamics is a non-intrusive method for user authentication because it only uses the 

behavioural data that users convey during regular typing tasks. In addition, it is inexpensive; 

the only hardware that is required is the standard keyboard. However, a very important 

benefit of free-text keystroke systems, specifically, is that the typing patterns can still be used 

for authenticating users even after the authentication phase is over. This is done by extracting 

the keystrokes for authentication during the course of using the system without intruding into 

the user’s experience.  Furthermore, free-text authentication provides a valuable balance 

between security and usability, as it does not involve any memorization of pre-defined text, 

which is very desirable by the end user. 

This research examined the effectiveness of using an original method, based on the keyboard 

key-layout, for free-text keystroke dynamics authentication to achieve a relaxed training 

requirement. This method involved the employment of specific key-pairs from which five 

timing features are extracted. The main reason for using key-pairs was to reduce the amount 

of training data the user is required to provide because the need for huge training data is a 

critical drawback in keystroke systems.  

The initial experimentation using the original key-pairing method has produced reasonable 

results considering the fact that it used merely one short sample of free-text for 



170 
 

authentication, which provided a good balance between the system’s security and the user’s 

comfort. Using individual features produced undesired high FAR. However, better FAR was 

obtained using a combination of more than one feature, yet the FRR was higher using the 

combined features. 

The extended key-pairing method expanded the original key-pairing algorithm used in the 

original method in order to include a sense of hand positioning. A larger number of features 

were deployed to find the features that best represented the human typing patterns without 

losing the advantage of the reduced training requirement of the key-pairing method. ACO and 

MANOVA were used for the features subset selection. SVMs (both one-vs-one and one-vs-

rest multiclass classification) was chosen to be the classifier in this study. The features 

selected by ACO and MANOVA were dominated by duration times. This corresponds to the 

duration time having a higher impact on the system performance compared with latency 

times. The extended method produced lower error rates, more specifically using the features 

subset extracted using ACO. Nonetheless, the FRR was still higher than desired.  

It is hardly surprising that the authentication performance is not perfect, given the nature of 

this experiment and the fact that its priority is the user’s comfort at the enrolment phase. 

However, this study, which used only a few short training samples, resulted in an FAR that 

was quite close to most studies found in literature which required much more training. 

Nevertheless, the FRR results were not as promising, and more work is needed to improve it.  

Moreover, non-conventional features were explored. These features include semi-timing 

features along with editing features. They were extracted from the users’ typing stream as an 

attempt to understand the patterns a user follows when typing a whole piece of text. Both 

DTs and SVMs were used for classification, with the DTs producing less error rates. The 

non-conventional features succeeded in reducing the FAR and FRR of the timing features 

which leads to believing that non-conventional features are slightly more superior compared 

with the conventional timing ones. 

Whilst the timing features and non-conventional features produced encouraging yet not 

perfect results, the next step in the research was to fuse these two features. This was done in 

order to combine the two sets of features to achieve a better understanding of the user’s 

typing behaviour. Both feature-level and decision level fusions were implemented. Feature-

level fusion saw reduced error rates, yet decision-level fusion succeeded in achieving zero 
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error rates. Figure 7.1 illustrates the results produced by all experiments performed in this 

research on English text. 

 

 

Figure 7.1: Results produced by all experiments performed on English text. 

 

As the key-pairing method was language-independent, this had inspired the investigation of 

how it can be applied to text in languages other than English. Arabic input was chosen for 

this test due to the vast differences between the Arabic and English languages. SVMs and 

DTs were also used in the Arabic input experiment. Similar to English, FAR produced better 

rates compared with FRR. Arabic and English inputs produced similar results despite the 

massive differences between the two languages which reveals the ability of the key-pairing 

method to employ text from different languages.  

Moreover, experimenting with these two languages proved that the user’s familiarity with a 

certain language has a noticeable influence on the user’s typing patterns in that language, 

which significantly affects the performance of the authentication system. 
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In this research, the compromise between the user comfort and the system performance was 

considerably reduced by using key-pairs that worked to increase the number of di-graphs 

used for comparing samples in the course of authenticating users. In addition, non-

conventional features were also gathered to boost the amount of information the system 

retains about the users typing behaviour. Therefore, this research is on the right track for 

creating a simple yet practical system for authenticating users while producing the lowest 

possible amount of irritation in the training phase. 

Furthermore, a trade-off between the FAR and FRR [18] was experienced in all of the studies 

included in this research. Based on the application of user authentication in real life, there is a 

huge number of potential impostors that act as a threat to the security of any authentication 

system [224]. Protecting the system from these risks is very important for applications of a 

high security nature. This study was successful in achieving that as it protects the system 

against risk from most imposter’s (low FAR). The high security requirement of the 

authentication system, unfortunately, has caused more legitimate users to be denied access 

(higher FRR). 

Moreover, the biased results illustrated in the noticeable difference between the FAR and 

FRR values (produced by all studies) is caused by the imbalance of the dataset [232]. The 

dataset used is considered imbalanced because the positive samples are much fewer than 

negative samples.  

It was stated earlier that comparing the performance of keystroke dynamics systems and 

therefore determining the method to follow for achieving the best authentication accuracy is 

not a straightforward task [4]. The reason goes back to the variation of conditions that might 

be affecting the study; specifically: the participants, environment and procedures included in 

each study. 

An attempt to compare the results produced in this research with results found in similar 

studies in the field is carried-out (shown in Table 7.1). Nonetheless, there were a great deal of 

differences between the manner these methods were executed. First, the FAR and FRR are 

higher in the study performed using the key-pairing method introduced in this research 

compared by that that produced by Davoudi and Kabir [117], which does not involve any 

key-pairs. Additionally, the FAR produced by the key-pairing method achieved in this 

research is lower than that generated by the key-pairing technique introduced by Zahid et al. 
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[46] to use keystroke dynamics on smart phones. Nonetheless, the FRR was slightly lower in 

the Zahid et al. technique [46].  

 
Table 7.1: Comparison with state of the art studies. 

Study 
Participant 

no. 
Characters 

no. 

Features System performance 

Convent. Non-convent. Accuracy FAR FRR 

Davoudi & Kabir [117] 
(doesn’t involve key-pairs) 

21 11700- 13500 √   0.0008 0.188 

Zahid et al. [46] 
(involve key-pairs) 

25 12500 √   0.292 0.308 

Key-pairing method 
(developed in this study) 

25 7200 √   0.013 0.384 

Hempstalk et al. [80] 10 10800- 30000  √  0.113 0.331 

Non-conventional features method 
(developed in this study) 

25 7200  √  0.0104 0.25 

Curtin et al. [79] 8 15000 √ √ 0.985   

Feature-level fusion method 
(developed in this study) 

25 7200 √ √ 0.80 0.00896 0.215 

Ahmed & Traore [285] 53 11000 √   0.00052 0.0482

Decision-level fusion method 
(developed in this study) 

25 7200 √ √  0.00 0.00 

 

Moreover, the non-conventional features in this research were able to produce lower error 

rates compared with those produced by the non-conventional features exploited by 

Hempstalk et al. [80]. In addition, the accuracy produced from fusing the features of the key-

pair timing method and the non-conventional features is fairly similar to that delivered by 

fusing the timing and non-conventional features, in the work conducted by Curtin et al. [79], 

despite the very low number of participants included in the latter study.  

Furthermore, decision-level fusing of the two methods suggested in the study conducted by 

Ahmed & Traore [258] have produced low error rates, yet the decision-level fusion proposed 

here succeeded to achieve zero error rates. The number of participants, however, is larger in 

the Ahmed & Traore study which might contribute to the higher error rate. 

It has to be noted, however, that the error rates produced in this research are considered 

reasonable, despite the requirement for far fewer training data and the much more practical 

nature of the study. As illustrated in table 7.1, in the studies mentioned for comparison, long 
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input was collected from users as the system required substantial amounts of data for training. 

This contradicts with the main goal of this research which is relieving the users from the 

tedious training input to achieve a user-friendly authentication system. This was achieved as 

both the key-pairing method and non-conventional features method were developed to 

perform user authentication using reduced amount of training. Nonetheless, more research is 

needed to improve the system performance of the key-pairing method and non-conventional 

methods in order to produce error rates close to that produced by methods that does not 

involve key-pairs such as the one conducted in [117] whilst satisfying the reduced training 

requirement. 

Finally, keystroke dynamics is faced with a large amount of challenges that have to be 

overcome in order for it to be an operational biometric for distinguishing between users. 

Nevertheless, because of its semi-autonomous and cost-effective nature, keystroke dynamics 

has the potential to develop in the field of information security. Moreover, the idea of using 

keystroke dynamics is certainly not only restricted to the traditional keyboard; it can be 

adapted to many other mechanisms, such as ATM machines and cell phones, which provides 

better everyday protection for the standard user [286]. 

7.2 Concluding Remarks 

The work produced in this research has provided evidence that the key-pairing method was 

able to reduce the training used for free-text keystroke dynamics authentication. In addition, 

the use of non-conventional features has produced satisfactory results using the least amount 

of training possible. Additionally, the fusion of these two types of features has further 

improved the system performance as the decision-level fusion produced perfect recognition 

with zero error rates. 

Therefore, it is possible to verify the identity of a user by using a method depending on the 

timing of particular key-pairs on the keyboard as well as other general inputting and editing 

features. Such authentication will not add-on the burden of long training on the user as it is 

able to stretch a small amount of training data to its limits and retrieve as much information 

as possible about the user’s typing pattern.  

The key-pairing method was capable of adapting input from a language other than English. 

This was tested by applying the key-pairing method to text in Arabic language. Even though 

Arabic is a language completely different to English in its characteristics and alphabet, 
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Arabic text was utilized in a similar way to achieve user authentication. This proves that the 

key-pairing method is not language dependent. Moreover, experimenting with Arabic and 

English proved that the user’s familiarity with the language has a high impact on his or her 

typing behaviour which consequently affects the performance of the authentication system. 

Using free-text keystroke dynamics in user authentication is considered semi-autonomous 

and cost-effective. This is due to its nature and the freedom it provides users in choosing any 

text of any length for the authentication process. Yet more research is particularly needed to 

improve the performance of the free-text keystroke dynamics system in order to satisfy the 

need for a reduced training requirement.  

Detailed conclusions derived from Chapters 2 to 6 are listed in Table 7.2. 
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Table 7.2: Conclusions list. 

Chapter Conclusions 

 

 

 

Chapter 2 

Literature Review 

- Free-text keystroke dynamics is more user-friendly and more 

applicable in real life than fixed-text. 

- Free-text keystroke dynamics is impaired by the huge amount 

of training it needs. 

- Keystroke dynamics are influenced by the user’s state and by 

experimental conditions. 

- Very little research was performed on text in languages other 

than English. 

 

 

 

 

Chapter 3 

Key-pairing Method 

- The use of combination of features produce better error rates 

compared with individual timing features. 

- ACO thrived to select a feature subset that produced lower 

error rates compared with MANOVA. 

- Duration time has more impact on the system performance 

compared to latency times. 

- One-vs-one SVMs has an advantage over one-vs-rest in the 

case of this study. 

- Biased error rates are produced due to the difference between 

the positive and negative sample sizes. 

 

 

Chapter 4 

Non-conventional Features  

 

- Non-conventional features produce error rates slightly superior 

to those produced by timing features. 

- DTs classified non-conventional features more effectively than 

SVMs. 

- Editing features perform better than semi-timing features in 

user authentication.  

 

Chapter 5 

Performance Improvement by 

Fusion 

- Fusion of the key-pairing method and the non-conventional 

method improved the error rates. 

- Decision-level fusion produced better results compared with 

feature-level fusion. 

- Majority voting produced zero error rates. 

 

Chapter 6 

Exploration of Arabic 

Language 

- The key-pairing method was successful in authenticating users 

based on their Arabic typing. 

- The key-pairing method is language-independent. 

- The user’s familiarity with a language has a high impact on the 

performance of the authentication system. 
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7.3 Contributions to Knowledge 

This research has produced original contributions in the field of free-text keystroke dynamics 

authentication. These contributions are concerned with two main issues that require more 

investigation in this area. Below is a discussion of these two issues and how they were 

addressed in this research to provide original contributions to the knowledge:  

 The need for a large amount of typing data to train the authentication system in the 

free-text keystroke dynamics area is considered a huge hurdle as it forms a large 

burden for the users of these systems. Typing large amounts of text in the enrolment 

phase is time consuming and not user-friendly. This issue is dealt with in this thesis to 

produce the following contributions: 

o Development of a framework for a keyboard-layout-based key-pairing 

method. 

o Definition and facilitation of non-conventional features. 

o Implementation of fusion between the key-pair timing features and the non-

conventional features. 

 
 There is a lack of language variety in the systems developed previously for free-text 

keystroke dynamics authentication. Most of the research done in keystroke dynamics 

had included text only in English. This is addressed by this thesis to achieve the 

following contribution:  

o Design the key-pairing framework to accept text in any language. This allows 

for user-authentication to take place even when the text is typed in a language 

other than English which should appeal to more users. 

o Application of the keyboard-layout-based key-pairing method to Arabic text. 

7.4 Limitations and Future Work 

It is inevitable to come across some obstacles and hindrances over the duration of any 

research. This section discusses the challenges that faced this research and how it affected the 

course of the study. In addition, this section discusses some improvement techniques that 

have emerged from the work done in this research. These suggested ideas could be 

implemented in future studies. 
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Recruiting subjects to participate in the experiments conducted in this research was a hard 

undertaking. This was especially due to either the subjects’ busy schedules or lack of interest. 

Moreover, the fact that no reward was offered to participants could be a reason for the limited 

number of participants that completed all the required typing. It is understandable that using a 

larger database and incorporating data from a greater number of participants will more than 

likely produce more reliable results. However, the datasets used in this study seem to fairly 

illustrate the point raised in this research which is concerned with evaluating the efficiency of 

the newly developed algorithms introduced in this research.  

Furthermore, the number of samples collected per subject was limited. Only eight typing 

tasks were produced by each individual, from which twenty samples and eight samples were 

extracted for the key-pairing method experiment and the non-conventional features 

experiment, respectively. The main reason for not including more samples is similar to the 

previous point; it is hard to interest volunteers to provide a large number of samples.  As the 

accuracy of the system generally escalated when the number of samples in the user’s profile 

increased as proven by [88], this might be a reason for some of the underwhelming results 

produced by the studies conducted in this research.  

Moreover, the biased results produced by most of the studies conducted in this research are 

due to the imbalanced data set. This noticeable difference between FAR and FRR is mainly 

caused by having more negative samples than positive samples [232]. This causes the SVMs 

predicted hyperplane to lie closer to the group with smaller samples, i.e. positive samples. 

This is the main reason for classifying a new data point as the class with the larger number of 

samples, i.e. negative class. There are many suggested ways to cope with this problem. One 

of which is attempting to balance the training set by either duplicating the positive samples or 

discarding some of the negative samples, especially those close to the positive ones [287]. 

Another solution includes using different balanced data subsets to train several classifiers 

[288]. Each of these subsets is created by incorporating all positive samples and only a part 

(with comparable size) of the negative samples. The final prediction is computed by 

combining each of the classifiers’ predictions. 

Determining the performance of a keystroke dynamics system and therefore the best method 

to follow for achieving the best authentication accuracy is not a straightforward task. Due to 

the variation of conditions that might be affecting the study participants, environment or 

procedure, the comparison between two or more methods is not always accurate [4]. Hence, 
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comparing results from this research with other studies in the current literature is not a direct 

task.  

One concern about keystroke systems is that it tends to be instable, in the sense that it might 

be influenced by the user’s state or by experimental conditions [5]. Indeed, some level of 

instability might occur even without any obvious reasons. This causes marginally higher error 

rates in keystroke dynamics systems, which stops it from acting as a user identifier in highly 

secure systems. However, this can be controlled using adaptation methods [6] that acts as a 

post-processing step. Adaptation methods allow the initial training data to be extended and 

updated during the log-in session. That is done by allowing the user to start with a small 

training sample and gradually build it up, using text typed during the log-in phase. An 

adaptation method similar to that used in the study conducted in [6] seems to have the desired 

effect because it adds new timing vectors to the user’s profile during log-in time until a 

predefined number of samples is reached. It then adapts to the user’s changing behaviour by 

swapping the older samples in the user’s profile with newer ones.   

Moreover, due to its instability, in the way that it is affected by many conditions relating to 

the user or the experiment environment, it is recommended to use free-text keystroke 

dynamics in combination with other authentication methods in a multi-factor authentication 

system [1]. This is done by using free-text keystroke dynamics together with another 

authentication method such as those discussed in Section 1.2. Properly combining more than 

one authentication scheme increases the overall performance of the system and compensates 

for the weakness that one of the methods suffers from [1]. This will allow for a highly secure 

system whilst fulfilling the low training requirement desired by the users of the keystroke 

dynamics authentication system. 

One of the restrictions of the key-pairing method is its complete reliance on the keyboard’s 

layout. The only type of keyboard layout considered in the data collection process was the 

QWERTY keyboard as it is the most commonly used keyboard layout [129]. However, other 

layouts, such as AZERTY and Dvorak [289], are still in use. Therefore, identifying the 

keyboard layout and adjusting the algorithm used in key-pairing accordingly may help this 

approach to appeal to a larger audience.  

There are two entry-modes followed in this research, i.e. copy-mode and freetyping-mode. A 

debate about whether the use of these two modes have different effects on the authentication 

rate is found in literature [49, 130]. Therefore, implementing a comparison between these two 
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entry modes is important in order to find answers about which entry mode is more adequate 

to use in research similar to the one conducted here.  

Non-conventional features have the property of being language-independent. This could be 

investigated by extracting these features from text in a language other than English. The 

tested language, however, have to satisfy a certain condition. It has to include a significant 

amount of shift key usage. Languages such as Arabic do not fulfil such condition. Therefore, 

choosing an appropriate language and applying the non-conventional method to it will 

provide more knowledge about this method’s functionality.     

Moreover, the fact that the key-pairing scheme is language-independent introduces the 

incentive for investigating its applicability on text typed in more languages. This can be done 

by applying it to languages other than English and Arabic. Comparisons can then be 

performed to understand the similarities and differences between languages in regards to this 

method’s application.  

The next step, after applying the key-pairing method to other languages is to investigate its 

use with samples typed in two different languages. To the date of writing this thesis, only one 

research study has evaluated users’ typing behaviours in a particular language, based on 

keystroke data collected from another language [88]. However, only languages that have 

identical alphabets were discussed. Since the key-pairing algorithm depends only on the 

location of the key on the keyboard, rather than on the actual characters, it is possible to use 

data typed in English as profile data and, then ask the participants to provide testing samples 

in another language, provided that both languages are collected using the same keyboard 

layout. Arabic is a good choice for the second language since it has a completely different set 

of letters compared with English. An investigation that evaluates the capability of the key-

pairing method to authenticate users based on text typed in a language other than that of the 

training samples will open new horizons for the application of such a method in many real-

life conditions.  

Applying the key-pairing and non-conventional methods on multiple languages can be 

facilitated by the common features found in the typing of different languages, such as the use 

of chords, i.e. pressing more than one key simultaneously to generate additional characters, 

the opportunity to use the two hands, the possibility to measure key adjacency, the correction 

of typing mistakes via backspace, the use of non-language keys (such as: arrow keys, escape 

key, function keys … etc.). Nonetheless, the differences that exist between languages might 
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introduce a challenge when designing a multiple language system for keystroke dynamics. 

Differences between languages include, for example, the lack of using punctuation in Arabic 

and the larger character sets in Chinese. However, uniqueness of these characteristics to a 

certain language can be considered in single-language systems to extract more distinctive 

features from users input. 

The relationship between the system performance and the user’s personal traits could be 

investigated as well. Personal traits, such as age, gender, native language and computer skills, 

can be analysed in each user’s case to investigate their effect on the success of the method. 

The initial analysis showed a higher level of consistency in the input produced by the 

individual with high level of familiarity with the typed language. A more in-depth analysis 

might be beneficial to provide additional information about this association and others that 

may exist as well.    
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Appendix A 

 

Ethical Approval 

A. 1 Consent Form 

 
School of Systems Engineering 

Consent Form 

Keystroke Dynamics Authentication    

 

Investigator: Prof. Kevin Warwick and Dr. Hong Wei 

Student Investigator: Arwa Alsultan 

 

Participant No.:                                                                                                   Please Initial Box 

 

1. I confirm that I have read and understood the information contained in the 

“Information Sheet” needed to participate in this research exercise. 
 

2. I agree that the data collection will involve recording typing behaviour that 

includes typing time and editing activities. 
 

3. I consent to the use of the recorded data for research purposes; the data will be 

stored securely in line with the university data protection policies; portions of 

the recorded data may be made available to members of the research 

community outside the University in order to undertake research into 

keystroke dynamics recognition; data collected is anonymous – my identity is 

not associated with the data. 
 

4. I agree to take part in the above research and data collection exercise and I 

consent that I can withdraw from the study at any time if I chose to do so. 
 
      ___________________________            _________________________ 

    Name of Participant    Signature/Date 

 
      ____________________________            _________________________ 

      Name of Researcher                                 Signature/Date 
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A. 2 Information Sheet 

 
School of Systems Engineering 

 

 

Information Sheet 

Research Title: Keystroke Dynamics Authentication 

Investigator: Prof. Kevin Warwick and Dr. Hong Wei 

Student Investigator: Arwa Alsultan 

 

Project Purposes 

This experiment is part of a research conducted on free-text keystroke dynamics to study the human typing 
patterns. Particularly, the application of keystroke dynamics in user authentication is the main focus of this 
research. 

Keystroke dynamics uses the manner and rhythm in which an individual types characters on a keyboard to 

develop a unique biometric template of the user's typing pattern to be used for future authentication.  Raw data 

collected from the keyboard include the time each key is pressed and released. This raw data can be, then, used 
to determine many features that can be used in keystroke dynamics to distinguish between individuals using 
their typing patterns.  

 

Participating  

The participants are randomly selected 18-60 years old males and females. All participants are treated 
anonymously in this research. 

It is up to the participant to decide whether or not to take part of this experiment. If the participant decides to 
take part he/she will be given this information sheet to keep and be asked to sign a consent form. If the 
participant decides to take part he/she is still free to withdraw at any time and without giving a reason. 

Participants are, also, entitled to request the research results if they so wish. 

 

Research Summary  

In this experiment participants are kindly requested to install an application on their PC and use it to collect 
experimental typing data; installation details are provided in the “Participants Instructions” document. If the 
participants feel uncomfortable installing this software they are permitted not to continue. This application 
includes various typing tasks that the participant is asked to perform in the convenience of their own machine. 
These tasks are either copy-typing tasks in which participants will copy a number of paragraphs from an article 
or free-typing tasks in which the participants are free to type whatever they want.  

The typing information will be collected and stored in the participant’s system. This data can be, then, sent to 
the researcher in order to be used in further research. This data has to be sent back to the researcher by the 
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participant; no information is broadcasted to the internet as the application doesn’t have any access to the 
internet. 

 The data that will be collected from the participants’ machines include: 

□ Hold time: the time each key is pressed until it is released. 
□ Latency Time: There are three types of latencies: 

 Down-Down (DD) time:  the interval time between two successive key presses. 

 Up-UP (UU) time:  the interval time between two successive key releases. 

 Up-Down (UD) time:  the interval time between a key release and the next key press.  
□ Other typing features: this includes typing speed, frequency of error, shift key usage and editing 

patterns. 

Although the data collection process will be conducted on the participants own machines, it only captures 
keystrokes typed on the actual application. Any other keystrokes typed on any other application on the 
participants PC will not be captured. Therefore, all sensitive and private information is completely safe as this 
application does not work in the backside of the machine but have to be executed by the participants to capture 
keystrokes typed only on this application. Moreover, the collected data does not contain any information related 
to the participant or his/her machine. 

After the experiment is complete the software can be uninstalled; details of the uninstallation process are 
provided in the “Participants Instructions” document. 

 

Research Ethics 

This project has been subject to ethical review, according to the procedures specified by the University Research 
Ethics Committee, and has been given a favourable ethical opinion for conduct. 

All the data recorded in this experiment is for research purposes only. The data will be stored securely in line 
with the university data protection policies. Portions of the recorded data may be published to members of the 
research community for future research. 

All data collected is anonymous and any information about the participants collected during the project is 
confidential. 
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A. 3 Participating Instructions  

 
School of Systems Engineering 

 

 

Participating Instructions - Keystroke Data Collection  

 

Dear Participant 

The following three parts are guides for you to install the application, use it to collect data and then uninstall it: 

 
To install visual Studio 2013 & the data collection application, please follow the instructions below: 

1. Go to https://login.live.com/ webpage. 
2. Enter your Microsoft account username/password to log-in. If you don’t have a Microsoft account, use 

this: username: user1_2014@outlook.com, password: U.ser2014 
3. Complete your information, and then click "Express 2013 for Windows Desktop." 
4. Follow the installing wizard: opt-in the "agree on terms" option, then click "Install", then click "Yes". 
5. Wait for few minutes until the installation is complete.  
6. Depending on your machine configuration, click “Restart” and wait for the PC to reboot or click 

“Launch” and close the visual studio interface. 
7. After that, unzip the folder "project1_folder", attached to this e-mail, to be used later. 

 
To complete the data collection process, please follow the instructions below: 

1. Run "project1.exe" by clicking on the “project1” file located inside the unzipped “project1_folder”. 
2. Click on the first task. Then text will appear in the empty space in the upper box of the screen. 
3. Perform the task by typing the text in the lower empty space of the screen (the white space). 
4. Click Done. After the first task, you will find that a text file called “data.txt” has been created and 

saved in the “project1_folder”, it will contain all the collected data from all typing tasks. 
5. Perform steps 1, 2, 3 and 4 again for the remaining tasks, each task is performed separately. 
6. After completing all 8 tasks, please e-mail me back the text file "data.txt" which is located in the 

“project1_folder”. 
 
To uninstall visual Studio 2013 & the data collection application, please follow the instructions below: 
 

1. Delete the folder “project1_folder” from your machine. This will delete the “project1” application and 
the data collected in the file “data.txt”. 

2. Uninstall visual Studio 2013 express from control panel on you PC. 
 
 Note: 

 When installing Visual Studio or running the project1 application, you might encounter warnings that 
the file’s content may be harmful. This is because they are executable files, they are completely safe. 
Please ignore these warnings and carry on the insulation or the execution.   

 Please type in the usual way that you normally do. You can use any key on the keyboard including the 
Backspace, Enter, Shift, Numpad keys … etc.  



206 
 

 Each typing task must be performed separately; you have the freedom to choose the time between tasks 
as long as it is more than a day.   

 If you forgot what task have you completed last, you can open the "data.txt" file and check the last line 
in the file, it will be something like this: "The last task you have completed was Task #:1". 

 
Please don’t hesitate to e-mail the researcher if you have any questions at: a.f.a.alsultan@pgr.reading.ac.uk  
 
Thank you for you for your assistance with the data collection task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



207 
 

Appendix B 

 

Selected Source Code 

B. 1 Keystroke Collector 

B.1.1 Header File 

1. #include <Windows.h> 
2. #include <iostream> 
3. #include <sstream> 
4. #include <fstream> 
5. #include <list> 
6. #include <stdlib.h> 
7. #include <vector> 
8.  
9.  
10. using namespace std; 
11.  
12. #pragma comment(lib, "user32.lib") 
13.  
14. #define DBOUT( s )            \ 
15. {                             \ 
16.   std::wostringstream os_;    \ 
17.   os_ << s;                   \ 
18.   OutputDebugStringW(os_.str().c_str());  \ 
19. } 
20.  
21.  % node class 
22. public class Mynode { 
23.  
24. public: 
25.   Mynode(char _x, LARGE_INTEGER _y, std::string _z, std::string _q) 
26.   { 
27.     charec = _x; 
28.     time = _y; 
29.     type = _z; 
30.     status = _q; 
31.   } 
32.   Mynode() 
33.   {} 
34.  
35.   char get_charc() 
36.   { 
37.     return charec; 
38.   } 
39.   LARGE_INTEGER get_time() 
40.   { 
41.     return time; 
42.   } 
43.   std::string get_type() 
44.   { 
45.     return type; 
46.   } 
47.   std::string get_status() 
48.   { 
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49.     return status; 
50.   } 
51.   void change_charc(char c) 
52.   { 
53.     charec = c; 
54.   } 
55.    
56. private: 
57.   char charec; 
58.   LARGE_INTEGER time; 
59.   std::string type; 
60.   std::string status; 
61.    
62. }; 
63. Mynode mylist[3000]; 
64. Mynode mynewlist[3000]; 
65.  
66. % pair class 
67. public class Mypair { 
68.  
69. public: 
70.   Mypair(char _x, char _y, double _z, double _q, double _w, double _e, double _r, std::string 

_s) 
71.   { 
72.     char1=_x; 
73.     char2=_y; 
74.     hold1=_z; 
75.     hold2=_q; 
76.     dd=_w; 
77.     uu=_e; 
78.     ud=_r; 
79.     type = _s; 
80.   } 
81.  
82.   Mypair() 
83.   {} 
84.  
85.   char get_char1() 
86.   { 
87.     return char1; 
88.   } 
89.   char get_char2() 
90.   { 
91.     return char2; 
92.   } 
93.   double get_h1() 
94.   { 
95.     return hold1; 
96.   } 
97.   double get_h2() 
98.   { 
99.     return hold2; 
100.   } 
101.   double get_dd() 
102.   { 
103.     return dd; 
104.   } 
105.   double get_uu() 
106.   { 
107.     return uu; 
108.   } 
109.   double get_ud() 
110.   { 
111.     return ud; 
112.   } 
113.   std::string get_type() 
114.   { 
115.     return type; 
116.   } 
117.   void add_hold2(double h) 
118.   { 
119.     hold2 = h; 
120.   } 
121.   void add_hold1(double h) 
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122.   { 
123.     hold1 = h; 
124.   } 
125.   void add_type(std::string s) 
126.   { 
127.     type = s; 
128.   } 
129.  
130. private: 
131.   char char1; 
132.   char char2; 
133.   double hold1; 
134.   double hold2; 
135.   double dd; 
136.   double uu; 
137.   double ud; 
138.   std::string type; 
139. }; 
140. Mypair mypairlist[3000]; 
141.  
142. % vars 
143. int caplock = 0, numlock = 0, letter_caplock = 0; 
144. LARGE_INTEGER mystart = { 0 }, myend = { 0 }; 
145. std::string gl_st=""; 
146. int i = 0,j=0,k=0,q=0, task=0; 
147.  
148.  % print list 
149. void print_keyslist(Mynode list[], int type) 
150. { 
151.   LARGE_INTEGER frequency; 
152.   int m; 
153.   QueryPerformanceFrequency(&frequency); 
154.     switch (type) 
155.     { 
156.     case 0: gl_st=gl_st+"Raw list :\n"; 
157.        m = i; 
158.       break; 
159.     case 1: gl_st=gl_st+ "Ordered list :\n"; 
160.        m = j; 
161.       break; 
162.     } 
163.  
164.     for (int it = 0; it <m; it++) 
165.     { 
166.       std::string s1 = std::to_string(list[it].get_time().QuadPart); 
167.       gl_st=gl_st+ list[it].get_charc() + " | " + s1 + " | " + list[it].get_type() + 

" | " + list[it].get_status() + "\n"; 
168.     } 
169.     gl_st=gl_st+ ("______________________________________\n"); 
170.  
171. } 
172.  
173. % print list 
174. void print_pair() 
175. { 
176.     gl_st=gl_st+ ("char1 | char2 |  hold1 | hold2 |   uu |    dd  |   du  |   status\n"); 
177.     for (int it = 0; it != k; it++) 
178.     { 
179.       std::string s1 = std::to_string(mypairlist[it].get_h1()); 
180.       std::string s2 = std::to_string(mypairlist[it].get_h2()); 
181.       std::string s3 = std::to_string(mypairlist[it].get_uu()); 
182.       std::string s4 = std::to_string(mypairlist[it].get_dd()); 
183.       std::string s5 = std::to_string(mypairlist[it].get_ud()); 
184.       gl_st=gl_st+mypairlist[it].get_char1() + " | " + mypairlist[it].get_char2() + 

" | " + s1 + " | " + s2 + " | " + s3 +  " | " + s4 + " | " + s5 + " | " + 
mypairlist[it].get_type() + "\n"; 

185.     } 
186. } 
187.  
188. void add_h2( double h) 
189. { 
190.   if (k != 0) 
191.   { 
192.     mypairlist[k ‐ 1].add_hold2(h); 
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193.   } 
194. } 
195.  
196. void add_h2_final( double h) 
197. { 
198.   if (k != 0) 
199.   { 
200.     mypairlist[k ‐ 1].add_hold2(h); 
201.   } 
202. } 
203.  
204. double d[88]; 
205. % find value of keys 
206.  void initingarr() 
207. { 
208.   d['`' ‐ 35] = 100.0; 
209.   d['1' ‐ 35] = 101.0; 
210.   d['2' ‐ 35] = 102.0; 
211.   d['3' ‐ 35] = 103.0; 
212.   d['4' ‐ 35] = 104.0; 
213.   d['5' ‐ 35] = 105.0; 
214.   d['6' ‐ 35] = 106.0; 
215.   d['7' ‐ 35] = 107.0; 
216.   d['8' ‐ 35] = 108.0; 
217.   d['9' ‐ 35] = 109.0; 
218.   d['0' ‐ 35] = 110.0; 
219.   d['‐' ‐ 35] = 111.0; 
220.   d['=' ‐ 35] = 112.0; 
221.  
222.   //my keyboard second row is about 20% indented from first row 
223.   d['Q' ‐ 35] = 200.5; 
224.   d['W' ‐ 35] = 201.5; 
225.   d['E' ‐ 35] = 202.5; 
226.   d['R' ‐ 35] = 203.5; 
227.   d['T' ‐ 35] = 204.5; 
228.   d['Y' ‐ 35] = 205.5; 
229.   d['U' ‐ 35] = 206.5; 
230.   d['I' ‐ 35] = 207.5; 
231.   d['O' ‐ 35] = 208.5; 
232.   d['P' ‐ 35] = 209.5; 
233.   d['[' ‐ 35] = 210.5; 
234.   d[']' ‐ 35] = 211.5; 
235.  
236.   //my keyboard third row is about 20% indented from second row 
237.   d['A' ‐ 35] = 300.2; 
238.   d['S' ‐ 35] = 301.2; 
239.   d['D' ‐ 35] = 302.2; 
240.   d['F' ‐ 35] = 303.2; 
241.   d['G' ‐ 35] = 304.2; 
242.   d['H' ‐ 35] = 305.2; 
243.   d['J' ‐ 35] = 306.2; 
244.   d['K' ‐ 35] = 307.2; 
245.   d['L' ‐ 35] = 308.2; 
246.   d[';' ‐ 35] = 309.2; 
247.   d['\'' ‐ 35] = 310.2; 
248.   d['#' ‐ 35] = 311.2; 
249.  
250.   //fourth row is about 50% indented from third row 
251.   d['\\' ‐ 35] = 399.5; 
252.   d['Z' ‐ 35] = 400.5; 
253.   d['X' ‐ 35] = 401.5; 
254.   d['C' ‐ 35] = 402.5; 
255.   d['V' ‐ 35] = 403.5; 
256.   d['B' ‐ 35] = 404.5; 
257.   d['N' ‐ 35] = 405.5; 
258.   d['M' ‐ 35] = 406.5; 
259.   d[',' ‐ 35] = 407.5; 
260.   d['.' ‐ 35] = 408.5; 
261.   d['/' ‐ 35] = 409.5; 
262. } 
263.  
264. % order list if -ud 
265. void order_list(Mynode list[], Mynode newlist[]) 
266.  { 
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267.    for (int it = 0 ; it != i; it++) 
268.    { 
269.      if (list[it].get_type() == "DOWN") 
270.      { 
271.        if (!(it != 0 && (list[it ‐ 1].get_type() == "DOWN") && (list[it].get_charc() 

== list[it ‐ 1].get_charc()))) 
272.        { 
273.          for (int jt = it; jt != i; jt++) 
274.          { 
275.            if (list[it].get_charc() == list[jt].get_charc() && 

list[jt].get_type() == "UP") 
276.            { 
277.              Mynode anode(list[it].get_charc(), 

list[it].get_time(), list[it].get_type(), list[it].get_status()); 
278.              newlist[j] = anode; 
279.              j++; 
280.              Mynode anode2(list[jt].get_charc(), 

list[jt].get_time(), list[jt].get_type(), list[jt].get_status()); 
281.              newlist[j] = anode2; 
282.              j++; 
283.              list[jt].change_charc('*'); 
284.              break; 
285.            } 
286.          } 
287.        } 
288.      } 
289.    } 
290.  } 
291. % test key-pair relation  
292. bool prox(int jt) 
293.  { 
294.  
295.    try 
296.    { 
297.      double a1 = d[mypairlist[jt].get_char2() ‐ 35]; 
298.      double a2 = d[mypairlist[jt].get_char1() ‐ 35]; 
299.  
300.      double dummy = abs(a1 ‐ a2); 
301.  
302.      return dummy == 0 || dummy == 1 || (dummy >= 98.5 && dummy <= 100.4); 
303.    } 
304.    catch (int e) 
305.    { 
306.      DBOUT("error1"<<e); 
307.      return false; 
308.    } 
309.  } 
310.  
311.  % test key-pair relation  
312. bool prox2( int jt) 
313.  { 
314.    try 
315.    { 
316.      double a1 = d[mypairlist[jt].get_char2() ‐ 35]; 
317.      double a2 = d[mypairlist[jt].get_char1() ‐ 35]; 
318.  
319.      double dummy = abs(a1 ‐ a2); 
320.  
321.      return dummy == 2 || (dummy >= 97.5 && dummy <= 101.4) || (dummy >= 197.2 && dummy <= 

200); 
322.    } 
323.    catch (int e) 
324.    { 
325.      DBOUT("error2" << e); 
326.      return false; 
327.    } 
328.  } 
329.  
330.  % test key-pair relation  
331. bool prox3(int jt) 
332.  { 
333.    try 
334.    { 
335.      double a1 = d[mypairlist[jt].get_char2() ‐ 35]; 
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336.      double a2 = d[mypairlist[jt].get_char1() ‐ 35]; 
337.  
338.      double dummy = abs(a1 ‐ a2); 
339.  
340.      return dummy == 3 || (dummy >= 96.5 && dummy <= 102.4) || (dummy > 196 && dummy <= 

201) || (dummy >= 296.5 && dummy <= 300); 
341.    } 
342.    catch (int e) 
343.    { 
344.      DBOUT("error3" << e); 
345.      return false; 
346.    } 
347.  } 
348.  
349.  bool prox4(int jt) 
350.  { 
351.    try 
352.    { 
353.      double a1 = d[mypairlist[jt].get_char2() ‐ 35]; 
354.      double a2 = d[mypairlist[jt].get_char1() ‐ 35]; 
355.  
356.      double dummy = abs(a1 ‐ a2); 
357.  
358.      return dummy == 4 || (dummy >= 95.5 && dummy <= 103.4) || (dummy > 195 && dummy <= 

202) || (dummy >= 295 && dummy <= 300.5); 
359.    } 
360.    catch (int e) 
361.    { 
362.      DBOUT("error4" << e); 
363.      return false; 
364.    } 
365.  } 
366.  
367. % return symbol   
368.  char getchar(int x) 
369.  { 
370.    switch (x) 
371.    { 
372.    case 221:return']'; 
373.    case 219:return'['; 
374.    case 222: return '#'; 
375.    case 192: return '\''; 
376.    case 186: return ';'; 
377.    case 191: return '/'; 
378.    case 190: return '.'; 
379.    case 188: return ','; 
380.    case 187: return '='; 
381.    case 189: return '‐'; 
382.    case 220: return '\\'; 
383.    case 223: return '`'; 
384.    case 111: return '/'; 
385.    case 106: return '*'; 
386.    case 109: return '‐'; 
387.    case 103: return '7'; 
388.    case 104: return '8'; 
389.    case 105: return '9'; 
390.    case 107: return '+'; 
391.    case 100: return '4'; 
392.    case 101: return '5'; 
393.    case 102: return '6'; 
394.    case 97: return '1'; 
395.    case 98: return '2'; 
396.    case 99: return '3'; 
397.    case 96: return '0'; 
398.    case 110: return '.'; 
399.    case 16: return '$'; 
400.    default:return(char)x; 
401.    } 
402.  } 
403.  
404. % right side  
405.  bool isright(char x) 
406.  { 
407.    switch (x) 
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408.    { 
409.    case '=': return true; 
410.    case '‐': return true; 
411.    case '0': return true; 
412.    case '9': return true; 
413.    case '8': return true; 
414.    case '7': return true; 
415.    case ']': return true; 
416.    case '[': return true; 
417.    case 'P': return true; 
418.    case 'O': return true; 
419.    case 'I': return true; 
420.    case 'U': return true; 
421.    case 'Y': return true; 
422.    case '#': return true; 
423.    case '\'': return true; 
424.    case ';': return true; 
425.    case 'L': return true; 
426.    case 'K': return true; 
427.    case 'J': return true; 
428.    case 'H': return true; 
429.    case '/': return true; 
430.    case '.': return true; 
431.    case ',': return true; 
432.    case 'M': return true; 
433.    case 'N': return true; 
434.    } 
435.    return false; 
436.  } 
437.  
438.  % numlock  
439. bool isnumlock(int s) 
440.  { 
441.    switch (s) 
442.    { 
443.    case VK_NUMPAD0: return true; 
444.    case VK_NUMPAD1: return true; 
445.    case VK_NUMPAD2: return true; 
446.    case VK_NUMPAD3: return true; 
447.    case VK_NUMPAD4: return true; 
448.    case VK_NUMPAD5: return true; 
449.    case VK_NUMPAD6: return true; 
450.    case VK_NUMPAD7: return true; 
451.    case VK_NUMPAD8: return true; 
452.    case VK_NUMPAD9: return true; 
453.    case 110: return true; 
454.    case 107: return true; 
455.    case 109: return true; 
456.    case 106: return true; 
457.    case 111: return true; 
458.    } 
459.    return false; 
460.  } 
461.  
462. % special charachter  
463.  char returnsymbol(int s) 
464.  { 
465.     
466.    switch (s) 
467.    { 
468.    case 187: return '='; 
469.    case 189: return '‐'; 
470.    case 48: return '0'; 
471.    case 57: return '9'; 
472.    case 56: return '8'; 
473.    case 55: return '7'; 
474.    case 54: return '6'; 
475.    case 53: return '5'; 
476.    case 52: return '4'; 
477.    case 51: return '3'; 
478.    case 50: return '2'; 
479.    case 49: return '1'; 
480.    case 223: return '`'; 
481.    case 221: return ']'; 
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482.    case 219: return '['; 
483.    case 80: return 'p'; 
484.    case 79: return 'o'; 
485.    case 73: return 'i'; 
486.    case 85: return 'u'; 
487.    case 89: return 'y'; 
488.    case 84: return 't'; 
489.    case 82: return 'r'; 
490.    case 69: return 'e'; 
491.    case 81: return 'w'; 
492.    case 87: return 'q'; 
493.    case 222: return '#'; 
494.    case 192: return '\''; 
495.    case 186: return ';'; 
496.    case 76: return 'l'; 
497.    case 75: return 'k'; 
498.    case 74: return 'j'; 
499.    case 72: return 'h'; 
500.    case 71: return 'g'; 
501.    case 70: return 'f'; 
502.    case 68: return 'd'; 
503.    case 83: return 's'; 
504.    case 65: return 'a'; 
505.    case 191: return '/'; 
506.    case 190: return '.'; 
507.    case 188: return ','; 
508.    case 77: return 'm'; 
509.    case 78: return 'n'; 
510.    case 66: return 'b'; 
511.    case 86: return 'v'; 
512.    case 67: return 'c'; 
513.    case 88: return 'x'; 
514.    case 90: return 'z'; 
515.    case 220: return '\\'; 
516.    case 32: return ' '; 
517.    case 8: return (char)8; 
518.    case 13: return (char)13; 
519.    case 20: return (char)VK_CAPITAL; 
520.    case 16: return (char)VK_RSHIFT; 
521.    } 
522.   return '@'; 
523.  } 
524.  
525. % prent key-pair relation  
526.  void print_keypair() 
527.  { 
528.    std::string mytype = ""; 
529.     
530.      gl_st=gl_st+ "______________________________________\n"; 
531.      gl_st = gl_st + "hold1 | hold2 |   uu |    dd  |   du\n"; 
532.  
533.      for (int j = 0; j < 17; j++) 
534.      { 
535.        switch (j) 
536.        { 
537.        case 0: mytype = "adj_right"; 
538.          break; 
539.        case 1: mytype = "second_right"; 
540.          break; 
541.        case 2: mytype = "third_right"; 
542.          break; 
543.        case 3: mytype = "fourth_right"; 
544.          break; 
545.        case 4: mytype = "non_right"; 
546.          break; 
547.        case 5: mytype = "same_right"; 
548.          break; 
549.        case 6: mytype = "adj_left"; 
550.          break; 
551.        case 7: mytype = "second_left"; 
552.          break; 
553.        case 8: mytype = "third_left"; 
554.          break; 
555.        case 9: mytype = "fourth_left"; 
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556.          break; 
557.        case 10: mytype = "non_left"; 
558.          break; 
559.        case 11: mytype = "same_left"; 
560.          break; 
561.        case 12: mytype = "adj_rl"; 
562.          break; 
563.        case 13: mytype = "second_rl"; 
564.          break; 
565.        case 14: mytype = "third_rl"; 
566.          break; 
567.        case 15: mytype = "fourth_rl"; 
568.          break; 
569.        case 16: mytype = "non_rl"; 
570.          break; 
571.        } 
572.        gl_st = gl_st + mytype + "\n"; 
573.        for (int it = 0; it != k; it++) 
574.        { 
575.                  if (mypairlist[it].get_type() == 

mytype) 
576.          { 
577.            std::string s1 = std::to_string(mypairlist[it].get_h1()); 
578.            std::string s2 = std::to_string(mypairlist[it].get_h2()); 
579.            std::string s3 = std::to_string(mypairlist[it].get_uu()); 
580.            std::string s4 = std::to_string(mypairlist[it].get_dd()); 
581.            std::string s5 = std::to_string(mypairlist[it].get_ud()); 
582.            gl_st = gl_st + s1 + "|" + s2 + "|" + s3 + "|" + s4 + "|" + 

s5 + "\n"; 
583.          } 
584.        } 
585.      } 
586.      gl_st=gl_st+ ("______________________________________\n"); 
587.       
588.    } 
589.  
590. % find non-conventional features  
591.  void print_stat(int space, int backspace, int m_du, int m_uu, int ksorderl, int ksorderr, int 

skorderl, int skorderr, int tas) 
592.  { 
593.    ofstream myfile("data.txt", ios::app); 
594.    if (myfile.is_open()) 
595.    { 
596.      LARGE_INTEGER frequency; 
597.      QueryPerformanceFrequency(&frequency); 
598.       
599.      double total_time = ((double)myend.QuadPart ‐ (double)mystart.QuadPart) / 

(double)frequency.QuadPart; 
600.      double mins =  total_time / 60; 
601.  
602.     double cpm =space/ mins; 
603.      
604.      myfile << "Total typing time in seconds: " << total_time<<"\n"; 
605.      myfile << "Total typing time in minutes: " << mins << "\n"; 
606.      myfile << "Total number of words: " << space << "\n"; 
607.      myfile << "Charchters Per Munit: " << cpm << "\n"; 
608.      myfile << "Total number of errors: " << backspace << ", Percentage: " << 

((double)backspace / (k+1)) * 100 << "%\n"; 
609.      myfile << "Number of Caps Lock used: " << caplock / 2 << "\n"; 
610.      myfile << "Number of litters typed using CapLock: " << letter_caplock << "\n"; 
611.      myfile << "Number of litters typed on Numpad: " << numlock << "\n"; 
612.      myfile << "Total number of key pairs: " << k<< "\n"; 
613.      myfile << "Total number of minus DU: " << m_du << ", Percentage: " << ((double)m_du / 

k) * 100 << "%\n"; 
614.      myfile << "Total number of minus UU: " << m_uu << ", Percentage: " << ((double)m_uu / 

k) * 100 << "%\n"; 
615.      myfile << "Total number of times shift was released BEFORE litter (right shift): " << 

skorderr << "\n"; 
616.      myfile << "Total number of times shift was released AFTER litter (right shift): " << 

ksorderr << "\n"; 
617.      myfile << "Total number of times shift was released BEFORE litter (left shift): " <<  

skorderl<< "\n"; 
618.      myfile << "Total number of times shift was released AFTER litter (left shift): " <<  

ksorderl<< "\n"; 
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619.      myfile << 
"*************************************************************************************************
*****************************\n"; 

620.      myfile << "The last task you have Completed was Task #:" << tas << "\n"; 
621.  
622.      myfile.close(); 
623.    } 
624.    else cout << "Unable to open file"; 
625.  } 
626.  
627.  % printing  
628.  void print_st(std::string st) 
629.  { 
630.    ofstream myfile("data.txt", ios::app); 
631.    if (myfile.is_open()) 
632.    { 
633.      myfile << st; 
634.      myfile.close(); 
635.    } 
636.    else cout << "Unable to open file"; 
637.  } 
638.  
639.  void print_freq(LARGE_INTEGER x) 
640.  { 
641.      std::string s1 = std::to_string(x.QuadPart); 
642.      gl_st = gl_st + "Frequency: " + s1 + "\n"; 
643.    
644.  } 
 

B.1.2 Main File 

1. #include "Header.h" 
2.  
3. #pragma once 
4.  
5. namespace Project1 { 
6.  
7.   using namespace std; 
8.   using namespace System; 
9.   using namespace System::ComponentModel; 
10.   using namespace System::Collections; 
11.   using namespace System::Windows::Forms; 
12.   using namespace System::Data; 
13.   using namespace System::Drawing; 
14.    
15.   /// Summary for MyForm 
16.    
17.   public ref class MyForm : public System::Windows::Forms::Form 
18.   { 
19.   public: 
20.     MyForm(void) 
21.     { 
22.       InitializeComponent(); 
23.        
24.     }   
25.  
26.   protected: 
27.      
28.     ~MyForm() 
29.     { 
30.       if (components) 
31.       { 
32.         delete components; 
33.       } 
34.     } 
35.   private: System::Windows::Forms::TextBox^  textBox1; 
36.   private: System::Windows::Forms::Label^  label1; 
37.   private: System::Windows::Forms::Button^  button1; 
38.   private: System::Windows::Forms::Label^  label2; 
39.   private: System::Windows::Forms::PictureBox^  pictureBox1; 
40.  
41.   private: System::Windows::Forms::Button^  button2; 
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42.   private: System::Windows::Forms::Button^  button3; 
43.  
44.   private: System::Windows::Forms::TextBox^  textBox2; 
45.   private: System::Windows::Forms::PictureBox^  pictureBox2; 
46.   private: System::Windows::Forms::PictureBox^  pictureBox3; 
47.   protected: 
48.  
49.   private: 
50.      
51.     System::ComponentModel::Container ^components; 
52.  
53. #pragma region Windows Form Designer generated code 
54.      
55.     void InitializeComponent(void) 
56.     { 
57.       System::ComponentModel::ComponentResourceManager^  resources = (gcnew 

System::ComponentModel::ComponentResourceManager(MyForm::typeid)); 
58.       this‐>textBox1 = (gcnew System::Windows::Forms::TextBox()); 
59.       this‐>label1 = (gcnew System::Windows::Forms::Label()); 
60.       this‐>button1 = (gcnew System::Windows::Forms::Button()); 
61.       this‐>label2 = (gcnew System::Windows::Forms::Label()); 
62.       this‐>pictureBox1 = (gcnew System::Windows::Forms::PictureBox()); 
63.       this‐>button2 = (gcnew System::Windows::Forms::Button()); 
64.       this‐>button3 = (gcnew System::Windows::Forms::Button()); 
65.       this‐>textBox2 = (gcnew System::Windows::Forms::TextBox()); 
66.       this‐>pictureBox2 = (gcnew System::Windows::Forms::PictureBox()); 
67.       this‐>pictureBox3 = (gcnew System::Windows::Forms::PictureBox()); 
68.     (cli::safe_cast<System::ComponentModel::ISupportInitialize^>(this‐>pictureBox1))‐

>BeginInit(); 
69.     (cli::safe_cast<System::ComponentModel::ISupportInitialize^>(this‐>pictureBox2))‐

>BeginInit(); 
70.     (cli::safe_cast<System::ComponentModel::ISupportInitialize^>(this‐>pictureBox3))‐

>BeginInit(); 
71.       this‐>SuspendLayout(); 
72.       // textBox1 
73.       resources‐>ApplyResources(this‐>textBox1, L"textBox1"); 
74.       this‐>textBox1‐>Name = L"textBox1"; 
75.       this‐>textBox1‐>KeyDown += gcnew System::Windows::Forms::KeyEventHandler(this, 

&MyForm::textBox1_KeyDown); 
76.       this‐>textBox1‐>KeyUp += gcnew System::Windows::Forms::KeyEventHandler(this, 

&MyForm::textBox1_KeyUp); 
77.       // label1 
78.       resources‐>ApplyResources(this‐>label1, L"label1"); 
79.       this‐>label1‐>Name = L"label1"; 
80.       // button1 
81.       resources‐>ApplyResources(this‐>button1, L"button1"); 
82.       this‐>button1‐>Name = L"button1"; 
83.       this‐>button1‐>UseVisualStyleBackColor = true; 
84.       this‐>button1‐>Click += gcnew System::EventHandler(this, 

&MyForm::button1_Click); 
85.       // label2 
86.       resources‐>ApplyResources(this‐>label2, L"label2"); 
87.       this‐>label2‐>Name = L"label2"; 
88.       // pictureBox1 
89.       resources‐>ApplyResources(this‐>pictureBox1, L"pictureBox1"); 
90.       this‐>pictureBox1‐>Name = L"pictureBox1"; 
91.       this‐>pictureBox1‐>TabStop = false; 
92.       //  
93.       // button2 
94.       //  
95.       resources‐>ApplyResources(this‐>button2, L"button2"); 
96.       this‐>button2‐>Name = L"button2"; 
97.       this‐>button2‐>UseVisualStyleBackColor = true; 
98.       this‐>button2‐>Click += gcnew System::EventHandler(this, 

&MyForm::button2_Click); 
99.       // button3 
100.       resources‐>ApplyResources(this‐>button3, L"button3"); 
101.       this‐>button3‐>Name = L"button3"; 
102.       this‐>button3‐>UseVisualStyleBackColor = true; 
103.       this‐>button3‐>Click += gcnew System::EventHandler(this, 

&MyForm::button3_Click); 
104.       // textBox2 
105.       resources‐>ApplyResources(this‐>textBox2, L"textBox2"); 
106.       this‐>textBox2‐>Name = L"textBox2"; 
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107.       this‐>textBox2‐>ReadOnly = true; 
108.       // pictureBox2 
109.       resources‐>ApplyResources(this‐>pictureBox2, L"pictureBox2"); 
110.       this‐>pictureBox2‐>Name = L"pictureBox2"; 
111.       this‐>pictureBox2‐>TabStop = false; 
112.       // pictureBox3 
113.       resources‐>ApplyResources(this‐>pictureBox3, L"pictureBox3"); 
114.       this‐>pictureBox3‐>Name = L"pictureBox3"; 
115.       this‐>pictureBox3‐>TabStop = false; 
116.       // MyForm 
117.       resources‐>ApplyResources(this, L"$this"); 
118.       this‐>AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font; 
119.       this‐>Controls‐>Add(this‐>pictureBox3); 
120.       this‐>Controls‐>Add(this‐>pictureBox2); 
121.       this‐>Controls‐>Add(this‐>button3); 
122.       this‐>Controls‐>Add(this‐>button2); 
123.       this‐>Controls‐>Add(this‐>textBox2); 
124.       this‐>Controls‐>Add(this‐>pictureBox1); 
125.       this‐>Controls‐>Add(this‐>label2); 
126.       this‐>Controls‐>Add(this‐>button1); 
127.       this‐>Controls‐>Add(this‐>label1); 
128.       this‐>Controls‐>Add(this‐>textBox1); 
129.       this‐>Name = L"MyForm"; 
130.       (cli::safe_cast<System::ComponentModel::ISupportInitialize^>(this‐

>pictureBox1))‐>EndInit(); 
131.       (cli::safe_cast<System::ComponentModel::ISupportInitialize^>(this‐

>pictureBox2))‐>EndInit(); 
132.       (cli::safe_cast<System::ComponentModel::ISupportInitialize^>(this‐

>pictureBox3))‐>EndInit(); 
133.       this‐>ResumeLayout(false); 
134.       this‐>PerformLayout(); 
135.  
136.     } 
137.  
138. #pragma endregion 
139.  
140. % key down action 
141.   private: System::Void textBox1_KeyDown(System::Object^  sender, 

System::Windows::Forms::KeyEventArgs^  e) { 
142.            
143.          LARGE_INTEGER t1, frequency,m={0}; 
144.          std::string status = ""; 
145.  
146.          QueryPerformanceCounter(&t1); 
147.          QueryPerformanceFrequency(&frequency); 
148.  
149.          if (mystart.QuadPart == m.QuadPart) 
150.          { 
151.            mystart = t1; 
152.          } 
153.  
154.          char mycodechar = getchar((int)e‐>KeyCode); 
155.  
156.          if (returnsymbol((int)e‐>KeyCode) == '@' && !isnumlock((int)e‐

>KeyCode) && (int)e‐>KeyCode != VK_LSHIFT) 
157.          { 
158.            //System.Diagnostics.Debug.WriteLine("Not a litter"); 
159.            status = "nonletter"; 
160.          } 
161.          else if ((int)e‐>KeyCode == VK_CAPITAL) 
162.          { 
163.            //System.Diagnostics.Debug.WriteLine("CapLock down"); 
164.            status = "capital"; 
165.          } 
166.          else if (GetKeyState(VK_CAPITAL)) 
167.          { 
168.            //System.Diagnostics.Debug.WriteLine("capslock list d"); 
169.            status = "caplockitem"; 
170.          } 
171.           else if (isnumlock((int)e‐>KeyCode)) 
172.           { 
173.             //System.Diagnostics.Debug.WriteLine("NumLock D"); 
174.             status = "numlock"; 
175.           } 
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176.          else if ((int)e‐>KeyCode == VK_SHIFT) 
177.          { 
178.            int ret = GetKeyState(VK_LSHIFT); 
179.            if (ret & 0x80000000) 
180.            { 
181.              status = "lshift"; 
182.            } 
183.            else  
184.            { 
185.              status = "rshift"; 
186.            } 
187.          } 
188.          else 
189.          { 
190.            int ret = GetKeyState(VK_LSHIFT); 
191.            int ret2 = GetKeyState(VK_RSHIFT); 
192.            if (ret & 0x80000000) 
193.            { 
194.              status = "lshiftitem"; 
195.            } 
196.            else if (ret2 & 0x80000000) 
197.            { 
198.              status = "rshiftitem"; 
199.            } 
200.          } 
201.          Mynode anode (mycodechar, t1, "DOWN", status); 
202.          mylist[i]=anode; 
203.          i++; 
204.   } 
205.         
645.   % key up action  
206. private: System::Void textBox1_KeyUp(System::Object^  sender, 

System::Windows::Forms::KeyEventArgs^  e) { 
207.  
208.          LARGE_INTEGER t2, frequency; 
209.          std::string status = ""; 
210.           
211.          QueryPerformanceCounter(&t2); 
212.          QueryPerformanceFrequency(&frequency); 
213.  
214.          myend = t2; 
215.          char mycodechar = getchar((int)e‐>KeyCode); 
216.                  if (returnsymbol((int)e‐>KeyCode) == 

'@' && !isnumlock((int)e‐>KeyCode) && (int)e‐>KeyCode != VK_SHIFT) 
217.          { 
218.            status = "nonletter"; 
219.          } 
220.          else if ((int)e‐>KeyCode == VK_CAPITAL) 
221.          { 
222.            caplock++; 
223.            status = "capital"; 
224.          } 
225.          else if (GetKeyState(VK_CAPITAL)) 
226.          { 
227.            status = "caplockitem"; 
228.            letter_caplock++; 
229.          } 
230.           else if (isnumlock((int)e‐>KeyCode)) 
231.           { 
232.             numlock++; 
233.             status = "numlock"; 
234.           } 
235.          else if ((int)e‐>KeyCode == VK_SHIFT) 
236.          { 
237.            int ret = GetKeyState(VK_LSHIFT); 
238.            if (ret & 0x80000000) 
239.            { 
240.              status = "lshift"; 
241.            } 
242.            else 
243.            { 
244.              status = "rshift"; 
245.            } 
246.          } 
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247.          else  
248.          { 
249.            int ret = GetKeyState(VK_LSHIFT); 
250.            int ret2 = GetKeyState(VK_RSHIFT); 
251.            if (ret & 0x80000000) 
252.            { 
253.              status = "lshiftitem"; 
254.            } 
255.            else if (ret2 & 0x80000000) 
256.            { 
257.              status = "rshiftitem"; 
258.            } 
259.          } 
260.            
261.          Mynode anode(mycodechar, t2, "UP", status); 
262.          mylist[i]=anode; 
263.          i++; 
264.           
265.   } 
266.  
267. % press finish button  
268.    
269.   private: System::Void button1_Click(System::Object^  sender, System::EventArgs^  e) { 
270.  
271.          LARGE_INTEGER frequency;  
272.          double hold,dd,uu,ud; 
273.          int space_num = 1, backspace_num = 0, tri_num = 0, ksorderr = 0, 

skorderr = 0, r_shift = 0, ksorderl = 0, skorderl = 0, l_shift = 0, mi_du = 0, mi_uu=0; 
274.          std::string my_s = ""; 
275.          QueryPerformanceFrequency(&frequency); 
276.          initingarr();  //keyboardlayout 
277.          print_freq(frequency); 
278.  
279.          //print rawl list, order it and print ordered list 
280.          print_keyslist(mylist,0); 
281.          order_list(mylist,mynewlist); 
282.          print_keyslist(mynewlist,1); 
283.  
284.          //find hold,dd,uu,ud 
285.          int my_iter = 0, my_iter2 = 0, my_iter3 = 0, my_iter4 = 0; 
286.           
287.          if (my_iter2 != j) my_iter2++; 
288.          if (my_iter3 !=j) my_iter3++; 
289.          if (my_iter3 != j)my_iter3++; 
290.          if (my_iter4 != j)my_iter4++; 
291.          if (my_iter4 != j)my_iter4++; 
292.          if (my_iter4 != j)my_iter4++; 
293.  
294.  
295.  
296.          while (my_iter != j) 
297.          { 
298.            if (mynewlist[my_iter].get_type() == "DOWN") 
299.            { 
300.             if (my_iter2 != j) 
301.             { 
302.               hold = 

(mynewlist[my_iter2].get_time().QuadPart ‐ mynewlist[my_iter].get_time().QuadPart) * 1000.0 / 
frequency.QuadPart; 

303.               if (my_iter != 0) 
304.               { 
305.                 add_h2( hold); 
306.               } 
307.               if (my_iter4 != j) 
308.               { 
309.                 uu = 

(mynewlist[my_iter4].get_time().QuadPart ‐ mynewlist[my_iter2].get_time().QuadPart) * 1000.0 / 
frequency.QuadPart; 

310.               } 
311.               if (my_iter3 != j) 
312.               { 
313.                 ud = 

(mynewlist[my_iter3].get_time().QuadPart ‐ mynewlist[my_iter2].get_time().QuadPart) * 1000.0 / 
frequency.QuadPart; 
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314.               } 
315.             } 
316.             if (my_iter3 != j) 
317.             { 
318.               dd = (mynewlist[my_iter3].get_time().QuadPart 

‐ mynewlist[my_iter].get_time().QuadPart) * 1000.0 / frequency.QuadPart; 
319.               my_s = mynewlist[my_iter].get_status() + 

mynewlist[my_iter2].get_status() + mynewlist[my_iter3].get_status() + 
mynewlist[my_iter4].get_status(); 

320.               Mypair apair(mynewlist[my_iter].get_charc(), 
mynewlist[my_iter3].get_charc(), hold, 0, dd, uu, ud, my_s); 

321.               mypairlist[k]=apair; 
322.               k++; 
323.               if (ud < 0 && my_s.find("shift")==‐1) 
324.               { 
325.                 mi_du++; 
326.               } 
327.               if (uu < 0 && my_s.find("shift") == ‐1) 
328.               { 
329.                 mi_uu++; 
330.               } 
331.             } 
332.           } 
333.             
334.            if (my_iter2 != j) 
335.            { 
336.              my_iter2++; 
337.            } 
338.            if (my_iter3 != j) 
339.            { 
340.              my_iter3++; 
341.            } 
342.            if (my_iter4 != j) 
343.            { 
344.              my_iter4++; 
345.            } 
346.            my_iter++;  
347.          }  
348.          add_h2_final(hold); 
349.           
350.          //classify pairs 
351.          for (int it = 0; it != k; it++) 
352.          { 
353.            if (mypairlist[it].get_char1() == (char)13 || 

mypairlist[it].get_char2() == (char)13) 
354.            { 
355.              if (mypairlist[it].get_char1() == (char)13) 
356.              { 
357.                space_num++; 
358.                tri_num = 0; 
359.              } 
360.            } 
361.            else if ((mypairlist[it].get_char1() == ' ' && 

mypairlist[it].get_char2() != '$') || mypairlist[it].get_char2() == ' ') 
362.            { 
363.              if (mypairlist[it].get_char1() == ' ') 
364.              { 
365.                space_num++; 
366.                tri_num = 0; 
367.              } 
368.            } 
369.            else if (mypairlist[it].get_char1() == (char)8 || 

mypairlist[it].get_char2() == (char)8) 
370.            { 
371.              if (mypairlist[it].get_char1() == (char)8) 
372.              { 
373.                backspace_num++; 
374.                tri_num = 0; 
375.              } 
376.            } 
377.            else if (mypairlist[it].get_char1() == 

mypairlist[it].get_char2()) 
378.            { 
379.              if (isright(mypairlist[it].get_char1())) 



222 
 

380.              { 
381.                mypairlist[it].add_type("same_right"); 
382.                add_tri_item( "Same | rightside", 

mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

383.              } 
384.              else 
385.              { 
386.                mypairlist[it].add_type("same_left"); 
387.                add_tri_item( "Same | leftside", 

mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

388.              } 
389.            } 
390.            else if (mypairlist[it].get_char1().Equals('$') || 

mypairlist[it].get_char2().Equals('$') || mypairlist[it].get_type().find("rshift")!=‐1 || 
mypairlist[it].get_type().find("lshift")!=‐1) 

391.            { 
392.              if (mypairlist[it].get_char1() == '$' && 

mypairlist[it].get_type()==("rshiftrshiftrshiftitem")) 
393.              { 
394.                skorderr++; 
395.                r_shift++; 
396.                tri_num = 0; 
397.              } 
398.              else if (mypairlist[it].get_char1() == '$' && 

mypairlist[it].get_type()==("lshiftrshiftlshiftitem")) 
399.              { 
400.                skorderl++; 
401.                l_shift++; 
402.                tri_num = 0; 
403.              } 
404.              else if (mypairlist[it].get_char1() == '$' && 

mypairlist[it].get_type()==("rshiftrshiftrshiftitemrshiftitem")) 
405.              { 
406.                ksorderr++; 
407.                r_shift++; 
408.                tri_num = 0; 
409.              } 
410.              else if (mypairlist[it].get_char1() == '$' && 

mypairlist[it].get_type()==("lshiftrshiftlshiftitemlshiftitem")) 
411.              { 
412.                ksorderl++; 
413.                l_shift++; 
414.                tri_num = 0; 
415.              } 
416.            } 
417.            else if (mypairlist[it].get_type().find("lock") != ‐1 || 

mypairlist[it].get_type().find("capital") != ‐1 || mypairlist[it].get_type().find("nonletter")!=‐
1) 

418.            { 
419.              tri_num = 0; 
420.            } 
421.            else 
422.            { 
423.              if (isright(mypairlist[it].get_char1()) && 

isright(mypairlist[it].get_char2())) 
424.              { 
425.                if (mypairlist[it].get_char1() != 

mypairlist[it].get_char2() && prox(it)) 
426.                { 
427.                  

mypairlist[it].add_type("adj_right"); 
428.                  add_tri_item("Adjacent | rightside", 

mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

429.                } 
430.                else if (mypairlist[it].get_char1() != 

mypairlist[it].get_char2() && !prox(it)) 
431.                { 
432.                  if (prox2( it)) 
433.                  { 
434.                    

mypairlist[it].add_type("second_right"); 
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435.                    add_tri_item( "Second | 
rightside", mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

436.                  } 
437.                  else if (prox3( it)) 
438.                  { 
439.                    

mypairlist[it].add_type("third_right"); 
440.                    add_tri_item( "Third | 

rightside", mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

441.                  } 
442.                  else if (prox4( it)) 
443.                  { 
444.                    

mypairlist[it].add_type("fourth_right"); 
445.                    add_tri_item("Fourth | 

righside", mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

446.                  } 
447.                  else 
448.                  { 
449.                    

mypairlist[it].add_type("non_right"); 
450.                    add_tri_item( "not adj | 

rightside", mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

451.                  } 
452.                } 
453.              } 
454.              else if (!isright(mypairlist[it].get_char1()) && 

!isright(mypairlist[it].get_char2())) 
455.              { 
456.                if (mypairlist[it].get_char1() != 

mypairlist[it].get_char2() && prox(it)) 
457.                { 
458.                  mypairlist[it].add_type("adj_left"); 
459.                  add_tri_item( "Adjacent | leftside", 

mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

460.                } 
461.                else if (mypairlist[it].get_char1() != 

mypairlist[it].get_char2() && !prox(it)) 
462.                { 
463.                  if (prox2( it)) 
464.                  { 
465.                    

mypairlist[it].add_type("second_left"); 
466.                    add_tri_item( "Second | 

leftside", mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

467.                  } 
468.                  else if (prox3( it)) 
469.                  { 
470.                    

mypairlist[it].add_type("third_left"); 
471.                    add_tri_item( "Third | 

leftside", mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

472.                  } 
473.                  else if (prox4( it)) 
474.                  { 
475.                    

mypairlist[it].add_type("fourth_left"); 
476.                    add_tri_item( "Fourth | 

leftside", mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

477.                  } 
478.                  else 
479.                  { 
480.                    

mypairlist[it].add_type("non_left"); 
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481.                    add_tri_item( "not adj | 
leftside", mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

482.                  } 
483.                } 
484.              } 
485.              else 
486.              { 
487.                if (mypairlist[it].get_char1() != 

mypairlist[it].get_char2() && prox(it)) 
488.                { 
489.                  mypairlist[it].add_type("adj_rl"); 
490.                  add_tri_item( "Adjacent | l_r", 

mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

491.                } 
492.                else if (mypairlist[it].get_char1() != 

mypairlist[it].get_char2() && !prox(it)) 
493.                { 
494.                  if (prox2( it)) 
495.                  { 
496.                    

mypairlist[it].add_type("second_rl"); 
497.                    add_tri_item("Second | 

l_r", mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

498.                  } 
499.                  else if (prox3( it)) 
500.                  { 
501.                    

mypairlist[it].add_type("third_rl"); 
502.                    add_tri_item( "Third | 

l_r", mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

503.                  } 
504.                  else if (prox4( it)) 
505.                  { 
506.                    

mypairlist[it].add_type("fourth_rl"); 
507.                    add_tri_item( "Fourth | 

l_r", mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

508.                  } 
509.                  else 
510.                  { 
511.                    

mypairlist[it].add_type("non_rl"); 
512.                    add_tri_item("not adj | 

l_r", mypairlist[it].get_h1(), mypairlist[it].get_h2(), mypairlist[it].get_dd(), 
mypairlist[it].get_uu(), mypairlist[it].get_ud(), tri_num); 

513.                  } 
514.                } 
515.              } 
516.            } 
517.          } 
518.          print_pair(); 
519.          print_keypair(); 
520.          print_tri_list(); 
521.           
522.          print_st(gl_st); 
523.          print_stat(space_num, backspace_num, mi_du, mi_uu, ksorderl, 

ksorderr, skorderl, skorderr,task); 
524.  
525.  
526.          exit(0); 
527.   } 
528.  
529. % text for different tasks 
530.   
531.   private: System::Void button2_Click(System::Object^  sender, System::EventArgs^  e) { 
532.          textBox2‐>Text = "Photo‐sharing sites such as Pinterest and 

Instagram are at the forefront of a new wave of social networks which showcase beautiful images 
uploaded by artists, brands and the public. Marketers are using the sites to drive social shopping 
and inspire people to collect and share pictures of their favourite products.\r\n\r\nFashion chain 
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Topshop collaborated with pinboard site Pinterest in November to encourage shoppers to pin their 
favourite products – that is the equivalent of clicking Like on Facebook ‐ from the retailer's 
website on to their own Pinterest pages, which are known as \"boards\". This helped shoppers 
create personalised Pinterest Christmas gift guides. The most pinned products were featured on the 
Topshop homepage and shoppers could enter their Christmas‐themed Pinterest boards into a 
competition to win prizes at the store.\r\n\r\nThe chain also installed giant touchscreens in 
flagship stores in London and the US so shoppers could see the most popular pins. Popular items on 
display had swing tags attached stating that they were most pinned products."; 

533.          pictureBox2‐>Visible = true; 
534.          pictureBox3‐>Visible = false; 
535.          gl_st = gl_st +"Task # 1:\n"; 
536.          task = 1; 
537.   } 
538.    
539.   private: System::Void button3_Click(System::Object^  sender, System::EventArgs^  e) { 
540.          textBox2‐>Text = "Topshop's global marketing and communications 

director says the campaign aimed to get people to collect gift ideas and share them with family 
and friends in an attempt to create a social shopping platform. This is a much‐touted development 
in retail where people will increasingly use social media to help them choose what to 
buy.\r\n\r\nShe believes Pinterest's appeal to a young, female audience is a good fit with 
Topshop's customers.\r\n\r\nUK country manager for Pinterest says the great attraction of the 
network is that it helps people plan what they want to achieve from organising a holiday to 
cooking a meal.The three most pinned topics on the network are for pictures related to travel, 
party planning and fashion.\r\n\r\n While Facebook is mainly for posting about what has just 
happened and Twitter is great for talking about the here and now, the attraction of Pinterest is 
its use for future plans.Because of how people use Pinterest, it is a tool which helps facilitate 
future planning ‐ to plan what you are going to cook tomorrow night for instance."; 

541.         pictureBox3‐>Visible = true; 
542.          pictureBox2‐>Visible = false; 
543.          gl_st = gl_st + "Task # 2:\n"; 
544.         task = 2; 
545. } 
546.    
547.   private: System::Void button4_Click(System::Object^  sender, System::EventArgs^  e) { 
548.         textBox2‐>Text = "For example, when you are in the supermarket, you 

have the mobile app and you have created a pin board of meals with recipe pins and you can browse 
the aisles looking for ingredients. Pinterest is also powerful for discovering new products and 
prospective experiences. It is like Google, a search engine. It is an environment where you 
discover and do things, because all pins have a destination and it can work for a wide range of 
businesses.\r\n\r\nBrands can get involved by going to the Business Centre on the Pinterest 
website, where they sign up for a verified account, ensuring it links through to their official 
website.They can also add a Pin It button to their site.They can make use of different types of 
rich pins containing extra information.\r\n\r\n For instance, the newly ‐ launched place pins 
include a map, address and phone number while article pins include headline, author and story 
description, helping pinners find and save stories that matter to them.There are also product 
pins, recipe pins and movie pins."; 

549.          pictureBox2‐>Visible = "False"; 
550.          gl_st = gl_st + "Task # 3:\n"; 
551.        task = 3; 
552. } 
553.    
554.   private: System::Void button5_Click(System::Object^  sender, System::EventArgs^  e) { 
555.          textBox2‐>Text = "Meanwhile, Instagram has 160 million monthly 

active users globally, with 65 million photos uploaded every day and with a billion likes per day. 
The Facebook‐owned company representer says users spend three times as long on Instagram as they 
do on Pinterest and twice as long as on Twitter.\r\n\r\nUK brands that have used Instagram include 
Burberry, which has posted live pictures of its fashion shows including London Fashion Week. The 
fashion retailer has grown its Instagram following organically to over one million. Moreover, Red 
Bull has also documented a cliff‐diving competition in Wales through Instagram. And Jaguar has 
published a series of short films as part of an Instagram video campaign to promote its F‐Type 
Coupe launch. Brands may find that pictures speak louder than words when it comes to scoring a hit 
with social shoppers.\r\n\r\nPublishers are also active on the photo‐sharing sites. The director 
of partnerships at Random House in the US, says that many authors use Instagram to post teasers 
about upcoming books, and give a behind‐the‐scenes look at the life of a writer."; 

556.          gl_st = gl_st + "Task # 4:\n"; 
557.        task = 4; 
558. } 
559.    
560.   private: System::Void button6_Click(System::Object^  sender, System::EventArgs^  e) { 
561.          textBox2‐>Text = "Rome today is one of the most important tourist 

destinations of the world, due to the incalculable immensity of its archaeological and artistic 
treasures, as well as for the charm of its unique traditions, the beauty of its panoramic views, 
and the majesty of its magnificent villas (parks).\r\n\r\nAmong its most significant resources are 
the many museums ‐ Musei Capitolini, the Vatican Museums and the Galleria Borghese ‐ aqueducts, 
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fountains, churches, palaces, historical buildings, and the Catacombs. It also contains numerous 
ancient sites, including the Forum Romanum, Trajan's Market, Trajan's Forum, the Colosseum, and 
the Pantheon, to name a few.\r\n\r\nRome contains a vast and impressive collection of art, 
sculpture, fountains, mosaics, frescos, and paintings, from all different periods. It first became 
a major artistic center during ancient Rome, with forms of important Roman art such as 
architecture, painting, sculpture and mosaic work. Metal‐work, coin die and gem engraving, ivory 
carvings, figurine glass, pottery and book illustrations are considered to be minor forms of Roman 
artwork too."; 

562.          gl_st = gl_st + "Task # 5:\n"; 
563.        task = 5; 
564. } 
565.    
566.   private: System::Void button7_Click(System::Object^  sender, System::EventArgs^  e) { 
567.          textBox2‐>Text = "Rome later became a major center of Renaissance 

art, since the popes spent vast sums of money for the constructions of grandiose basilicas, 
palaces, piazzas and public buildings in general. The city was affected greatly by the baroque, 
and Rome became the home of numerous artists and architects, such as Bernini, Caravaggio, 
Carracci, Borromini and Cortona.\r\n\r\nRome was one of the centers of the Grand Tour, when 
wealthy, young English and other European aristocrats visited the city to learn about ancient 
Roman culture, art, philosophy and architecture. Rome hosted a great number of neoclassical and 
rococo artists, such as Pannini and Bernardo Bellotto.\r\n\r\nRome has a growing stock of 
contemporary and modern art and architecture. The National Gallery of Modern Art has works by 
Balla, Morandi, Pirandello, Carra, De Chirico, De Pisis, Guttuso, Fontana, Burri, Mastroianni, 
Turcato, Kandisky and Cezanne on permanent exhibition. It is one of Rome's most ambitious modern 
architecture projects alongside Renzo Piano's Auditorium Parco della Musica, Massimiliano Fuksas 
Rome Convention Center and Centro Congressi Italia EUR."; 

568.          gl_st = gl_st + "Task # 6:\n"; 
569.        task = 6; 
570. } 
571.    
572.   private: System::Void button8_Click(System::Object^  sender, System::EventArgs^  e) { 
573.        textBox2‐>Text = "\r\nPlease type two or three paragraphs long about any 

holiday experience that you've had.\r\n\r\nNote: Please free type ‐ Don't copy."; 
574.  
575.           
576.        gl_st = gl_st + "Task # 7:\n"; 
577.        task = 7; 
578. } 
579.  
580.   private: System::Void button9_Click(System::Object^  sender, System::EventArgs^  e) { 
581.        textBox2‐>Text = "\r\nPlease type another two or three paragraphs long of any 

content you like.\r\nEg: song lyrics, opinion about a current issue, plans for next year … 
etc.\r\n\r\nNote: Please free type ‐ Don't copy."; 

582.        gl_st = gl_st + "Task # 8:\n"; 
583.        task = 8; 
584. } 
585. }; 
586. } 

 
 

B. 2 Outlier Discarding and Data Scaling 
1. clear all; 
2. clc; 
3.   
4. % outlier descarding 
5. vector=importdata('m.txt'); 
6. C=vector; 
7. for i=1:size(vector,2) 
8.         A=C(:,i); 
9.         m = mean(A); 
10.         sd = std(A);  
11.         C=C( A<=(3*(m+sd )),:); 
12.         m = mean(A); 
13.         sd = std(A); 
14.          
15. end 
16. fid = fopen('Mym.txt','wt'); 
17. for ii = 1:size(C,1) 
18.     fprintf(fid,'%g|',C(ii,:)); 
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19.     fprintf(fid,'\n'); 
20. end 
21. fclose(fid); 
22.   
23. %scalling 
24. vector2=importdata('Mym.txt'); 
25. C2=vector2; 
26. for i=1:size(vector2,2) 
27.         A2=C2(:,i); 
28.         b=scaledata(A2,0,1); 
29.         C2(:,i)=b; 
30. end 
31. fid = fopen('Mymatrix.txt','wt'); 
32. for ii = 1:size(C2,1) 
33.     fprintf(fid,'%g\t',C2(ii,:)); 
34.     fprintf(fid,'\n'); 
35. end 
36. fclose(fid); 
37.   
38. %chuncking 
39. vector3=importdata('Mymatrix.txt'); 
40. chunck= floor((size(vector3,1))/20) 
41. chunck_size=chunck; 
42.   
43. mynum=1; 
44. for i=1:20 
45.         A2=vector3(mynum:chunck_size,:); 
46.         mynum=mynum+chunck; 
47.         chunck_size= chunck_size+chunck; 
48.         b=mean(A2); 
49.         T2(i,:)=b; 
50. end 
51. fid = fopen('chunks.txt','wt'); 
52. for ii = 1:size(T2,1); 
53.     fprintf(fid,'%g\t',T2(ii,:)); 
54.     fprintf(fid,'\n'); 
55. end 
56. fclose(fid); 

B. 3 ACO 
1. clear all; 
2. clc;  
3.   
4. %Initilization 
5. NoA=55;     %num of ants 
6. NoIT=100;   %num of itration 
7. NoF=5;      %number of features for each ant 
8. IP=1.0;     %initial phermon 
9. my_accuracy=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];    %array of accuracy 
10. alpha= 1.0; 
11. beta= 0.1; 
12. gama=0.95; 
13. gama2=0.2; 
14. my_gamma = 1; 
15. accuracy_subset=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];  % array of ants best accuracy 
16. maxit_ant=0; 
17. maxit_feat=[0 0 0 0 0]; 
18. maxit_accur=0; 
19. all_ant_nodes=[0 0 0 0 0;0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 

0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0;0 0 0 0 0;0 0 0 0 
0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0;0 0 0 
0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0; 0 0 0 0 0; 0 0 
0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0; 0 
0 0 0 0; 0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 
0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0]; 

20.   



228 
 

21. %right format  
22. b=importdata('m.txt'); 
23. fid = fopen('Mym.txt','wt'); 
24. for ii = 1:size(b,1) 
25.     fprintf(fid,'%g,',b(ii,:)); 
26.     fprintf(fid,'\n'); 
27. end 
28. fclose(fid); 
29.   
30. b2=importdata('m2.txt'); 
31. fid2 = fopen('Mym2.txt','wt'); 
32. for ii = 1:size(b2,1) 
33.     fprintf(fid,'%g,',b2(ii,:)); 
34.     fprintf(fid,'\n'); 
35. end 
36. fclose(fid2); 
37.   
38. % find accuracy of each feature 
39. a=importdata('mym.txt');    %train data 
40.   
41. a2=importdata('mym2.txt');    %test data 
42.   
43. %for each feature 
44. for jj=2:size(a,2) 
45.     fid = fopen('Myfeat.txt','wt'); 
46.     %extract column 
47.     for ii = 1:size(a,1) 
48.         fprintf(fid,'%g,',a(ii,1)); 
49.         fprintf(fid,'%g,',a(ii,jj)); 
50.         fprintf(fid,'\n'); 
51.     end 
52.     fclose(fid); 
53.      
54.     fid2 = fopen('Myfeat2.txt','wt'); 
55.     %extract column 
56.     for ii = 1:size(a2,1) 
57.         fprintf(fid2,'%g,',a2(ii,1)); 
58.         fprintf(fid2,'%g,',a2(ii,jj)); 
59.         fprintf(fid2,'\n'); 
60.     end 
61.     fclose(fid2); 
62.      
63.     %LIBSVM format 
64.     SPECTF = csvread('Myfeat.txt'); % read a csv file 
65.     labels = SPECTF(:, 1); % labels from the 1st column 
66.     features = SPECTF(:, 2:end);  
67.     features_sparse = sparse(features); % features must be in a sparse matrix 
68.     libsvmwrite('my.txt', labels, features_sparse); 
69.      
70.     SPECTF2 = csvread('Myfeat2.txt'); % read a csv file 
71.     labels2 = SPECTF2(:, 1); % labels from the 1st column 
72.     features2 = SPECTF2(:, 2:end);  
73.     features_sparse2 = sparse(features2); % features must be in a sparse matrix 
74.     libsvmwrite('my2.txt', labels2, features_sparse2); 
75.      
76.     %classification accuracy 
77.     [y, x] = libsvmread('my.txt'); 
78.      
79.     [y2, x2] = libsvmread('my2.txt'); 
80.   
81.     % Libsvm options 
82.     % -s 0 : classification 
83.     % -t 2 : RBF kernel 
84.     % -g : gamma in the RBF kernel 
85.   
86.     model = svmtrain(y, x, sprintf('-s 0 -t 2 -g %g', my_gamma)); 
87.   
88.     % Display training accuracy 
89.     [predicted_label, accuracy, decision_values] = svmpredict(y2, x2, model); 
90.   
91.     my_accuracy(jj)=accuracy(1)/100;    
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92. end 
93.   
94. %feature Intilization 
95. feature1=struct('phermon',IP,'accuracy',my_accuracy(2));     %my_accuracy(1)=0 
96. feature2=struct('phermon',IP,'accuracy',my_accuracy(3)); 
97. feature3=struct('phermon',IP,'accuracy',my_accuracy(4)); 
98. feature4=struct('phermon',IP,'accuracy',my_accuracy(5)); 
99. feature5=struct('phermon',IP,'accuracy',my_accuracy(6)); 
100. feature6=struct('phermon',IP,'accuracy',my_accuracy(7)); 
101. feature7=struct('phermon',IP,'accuracy',my_accuracy(8)); 
102. feature8=struct('phermon',IP,'accuracy',my_accuracy(9)); 
103. feature9=struct('phermon',IP,'accuracy',my_accuracy(10)); 
104. feature10=struct('phermon',IP,'accuracy',my_accuracy(11)); 
105. feature11=struct('phermon',IP,'accuracy',my_accuracy(12)); 
106. feature12=struct('phermon',IP,'accuracy',my_accuracy(13)); 
107. feature13=struct('phermon',IP,'accuracy',my_accuracy(14)); 
108. feature14=struct('phermon',IP,'accuracy',my_accuracy(15)); 
109. feature15=struct('phermon',IP,'accuracy',my_accuracy(16)); 
110. feature16=struct('phermon',IP,'accuracy',my_accuracy(17)); 
111. feature17=struct('phermon',IP,'accuracy',my_accuracy(18)); 
112. feature18=struct('phermon',IP,'accuracy',my_accuracy(19)); 
113. feature19=struct('phermon',IP,'accuracy',my_accuracy(20)); 
114. feature20=struct('phermon',IP,'accuracy',my_accuracy(21)); 
115. feature21=struct('phermon',IP,'accuracy',my_accuracy(22)); 
116. feature22=struct('phermon',IP,'accuracy',my_accuracy(23)); 
117. feature23=struct('phermon',IP,'accuracy',my_accuracy(24)); 
118. feature24=struct('phermon',IP,'accuracy',my_accuracy(25)); 
119. feature25=struct('phermon',IP,'accuracy',my_accuracy(26)); 
120. feature26=struct('phermon',IP,'accuracy',my_accuracy(27)); 
121. feature27=struct('phermon',IP,'accuracy',my_accuracy(28)); 
122. feature28=struct('phermon',IP,'accuracy',my_accuracy(29)); 
123. feature29=struct('phermon',IP,'accuracy',my_accuracy(30)); 
124. feature30=struct('phermon',IP,'accuracy',my_accuracy(31)); 
125. feature31=struct('phermon',IP,'accuracy',my_accuracy(32)); 
126. feature32=struct('phermon',IP,'accuracy',my_accuracy(33)); 
127. feature33=struct('phermon',IP,'accuracy',my_accuracy(34)); 
128. feature34=struct('phermon',IP,'accuracy',my_accuracy(35)); 
129. feature35=struct('phermon',IP,'accuracy',my_accuracy(36)); 
130. feature36=struct('phermon',IP,'accuracy',my_accuracy(37)); 
131. feature37=struct('phermon',IP,'accuracy',my_accuracy(38)); 
132. feature38=struct('phermon',IP,'accuracy',my_accuracy(39)); 
133. feature39=struct('phermon',IP,'accuracy',my_accuracy(40)); 
134. feature40=struct('phermon',IP,'accuracy',my_accuracy(41)); 
135. feature41=struct('phermon',IP,'accuracy',my_accuracy(42)); 
136. feature42=struct('phermon',IP,'accuracy',my_accuracy(43)); 
137. feature43=struct('phermon',IP,'accuracy',my_accuracy(44)); 
138. feature44=struct('phermon',IP,'accuracy',my_accuracy(45)); 
139. feature45=struct('phermon',IP,'accuracy',my_accuracy(46)); 
140. feature46=struct('phermon',IP,'accuracy',my_accuracy(47)); 
141. feature47=struct('phermon',IP,'accuracy',my_accuracy(48)); 
142. feature48=struct('phermon',IP,'accuracy',my_accuracy(49)); 
143. feature49=struct('phermon',IP,'accuracy',my_accuracy(50)); 
144. feature50=struct('phermon',IP,'accuracy',my_accuracy(51)); 
145. feature51=struct('phermon',IP,'accuracy',my_accuracy(52)); 
146. feature52=struct('phermon',IP,'accuracy',my_accuracy(53)); 
147. feature53=struct('phermon',IP,'accuracy',my_accuracy(54)); 
148. feature54=struct('phermon',IP,'accuracy',my_accuracy(55)); 
149. feature55=struct('phermon',IP,'accuracy',my_accuracy(56)); 
150.   
151.   
152. % array of features 
153. arr_feat=[feature1, feature2,feature3, feature4,feature5, feature6,feature7, feature8, 

feature9, feature10, feature11, feature12,feature13, feature14,feature15, 
feature16,feature17, feature18, feature19, feature20, feature21, feature22,feature23, 
feature24,feature25, feature26,feature27, feature28, feature29, feature30, feature31, 
feature32,feature33, feature34,feature35, feature36,feature37, feature38, feature39, 
feature40, feature41, feature42,feature43, feature44,feature45, feature46,feature47, 
feature48, feature49, feature50, feature51, feature52,feature53, feature54,feature55]; 

154.   
155. % for all eatrations 
156. for it=1 : NoIT 
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157.      
158.     % for all ants 
159.   
160.     %randomise ants first selected features 
161.     ants=randperm(55); 
162.     ants=ants(1:55); 
163.   
164.     %features not used for ants 
165.     for i=1 :NoA 
166.         not_used_feat(i,:)=[1 2 3 4 5 6 7 8 9 10  11 12 13 14 15 16 17 18 19 20 21 22 23 

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 
54 55]; 

167.         m=ants(1,i); 
168.         not_used_feat(i,m)=0; 
169.     end 
170.   
171.     %for each ant 
172.     %denomenator 
173.     den=0; 
174.     for k=1 : size(arr_feat,2) 
175.         den=den + ((arr_feat(1,k).phermon .^alpha).* (arr_feat(1,k).accuracy .^beta)); 
176.     end 
177.   
178.   
179.     %transition rule  
180.     p=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0]; 
181.     ants_subset= [0 0 0 0 0]; 
182.   
183.     for i=1 : NoA   
184.         for m= 1 : NoF            %number of features vesited 
185.             max_p=0; 
186.             max_feat=0; 
187.             for j=1 : size(not_used_feat,2) 
188.                 if (not_used_feat(i,j)~= 0) 
189.                     nom=(arr_feat(1,j).phermon .^alpha).* (arr_feat(1,j).accuracy 

.^beta);   %nomenator 
190.                     p(1,j)=nom/den; 
191.                     if p(1,j)>max_p 
192.                         max_p=p(1,j); 
193.                         max_feat=j; 
194.                         ants_subset(i,m)=max_feat; 
195.                     end 
196.                 end 
197.             end 
198.         not_used_feat(i,max_feat)=0; 
199.         end   
200.     end 
201.      
202.     all_ants_nodes=ants_subset; 
203.      
204.     %choose best ant (subset) 
205.     best_ant_accuracy=0; 
206.     myant_set=[0 0 0 0 0]; 
207.      
208.     my_a=importdata('mym.txt');    %train data 
209.     my_a2=importdata('mym2.txt');    %test data 
210.   
211.     for mm=1 : size (ants_subset,1)      
212.         for mmm=1 : size(ants_subset,2) 
213.         myant_set(mmm)=ants_subset(mm,mmm); 
214.         end 
215.   
216.         fid = fopen('selected_feature.txt','wt'); 
217.         %extract column 
218.         for ii = 1:size(my_a,1) 
219.             fprintf(fid,'%g,',my_a(ii,1)); 
220.             if (myant_set(1)~=0) 
221.                 fprintf(fid,'%g,',my_a(ii,(myant_set(1)+1))); %mm=1 is the lable 
222.             end 
223.             if (myant_set(2)~=0) 
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224.                 fprintf(fid,'%g,',my_a(ii,(myant_set(2)+1))); 
225.             end 
226.             if (myant_set(3)~=0) 
227.                 fprintf(fid,'%g,',my_a(ii,(myant_set(3)+1))); 
228.             end 
229.             if (myant_set(4)~=0) 
230.                 fprintf(fid,'%g,',my_a(ii,(myant_set(4)+1))); 
231.             end 
232.             if (myant_set(5)~=0) 
233.                 fprintf(fid,'%g,',my_a(ii,(myant_set(5)+1))); 
234.             end 
235.             fprintf(fid,'\n'); 
236.         end 
237.         fclose(fid); 
238.          
239.         fid2 = fopen('selected_feature2.txt','wt'); 
240.         %extract column 
241.         for ii = 1:size(my_a2,1) 
242.             fprintf(fid2,'%g,',my_a2(ii,1)); 
243.             if (myant_set(1)~=0) 
244.                 fprintf(fid2,'%g,',my_a2(ii,(myant_set(1)+1))); %mm=1 is the lable 
245.             end 
246.             if (myant_set(2)~=0) 
247.                 fprintf(fid2,'%g,',my_a2(ii,(myant_set(2)+1))); 
248.             end 
249.             if (myant_set(3)~=0) 
250.                 fprintf(fid2,'%g,',my_a2(ii,(myant_set(3)+1))); 
251.             end 
252.             if (myant_set(4)~=0) 
253.                 fprintf(fid2,'%g,',my_a2(ii,(myant_set(4)+1))); 
254.             end 
255.             if (myant_set(5)~=0) 
256.                 fprintf(fid2,'%g,',my_a2(ii,(myant_set(5)+1))); 
257.             end 
258.             fprintf(fid2,'\n'); 
259.         end 
260.         fclose(fid2); 
261.   
262.         %LIBSVM format 
263.         SPECTF = csvread('selected_feature.txt'); % read a csv file 
264.         labels = SPECTF(:, 1); % labels from the 1st column 
265.         features = SPECTF(:, 2:end);  
266.         features_sparse = sparse(features); % features must be in a sparse matrix 
267.         libsvmwrite('my_selected_fearures.txt', labels, features_sparse); 
268.          
269.         SPECTF2 = csvread('selected_feature2.txt'); % read a csv file 
270.         labels2 = SPECTF2(:, 1); % labels from the 1st column 
271.         features2 = SPECTF2(:, 2:end);  
272.         features_sparse2 = sparse(features2); % features must be in a sparse matrix 
273.         libsvmwrite('my_selected_features2.txt', labels2, features_sparse2); 
274.   
275.         %classification accuracy 
276.         [y, x] = libsvmread('my_selected_fearures.txt'); 
277.         [y2, x2] = libsvmread('my_selected_features2.txt'); 
278.   
279.   
280.         % Libsvm options 
281.         % -s 0 : classification 
282.         % -t 2 : RBF kernel 
283.         % -g : gamma in the RBF kernel 
284.   
285.         model = svmtrain(y, x, sprintf('-s 0 -t 2 -g %g', my_gamma)); 
286.   
287.         % Display training accuracy 
288.         [predicted_label, accuracy, decision_values] = svmpredict(y2, x2, model); 
289.   
290.         accuracy_subset(1,mm)= accuracy(1)/100; 
291.          
292.         if (best_ant_accuracy<accuracy(1)/100) 
293.             best_ant_accuracy=accuracy(1)/100; 
294.             best_ant=mm; 
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295.             best_antfeature=myant_set; 
296.         end 
297.     end 
298.   
299.   
300.     % phermon evaporation rate 
301.     evap_rate=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; 
302.     leng_subset=NoF;                % fixed 
303.     for ii=1 : NoA 
304.         acc_subset=accuracy_subset(1,ii); 
305.         ph_evap=(gama.*(acc_subset/leng_subset)) + ((1-gama).*(NoA-leng_subset)/NoA); 
306.         evap_rate(1,ii)=ph_evap; 
307.     end 
308.   
309.     % update phermon 
310.     %phermone evaboration 
311.     for ii= 1 : size(arr_feat,2) 
312.         arr_feat(ii).phermon=(1-gama2)*arr_feat(ii).phermon; 
313.     end 
314.      
315.     %phermone update for every ant 
316.     for i= 1 : size(all_ants_nodes,1) 
317.         for j=1 : size(all_ants_nodes,2) 
318.         arr_feat(all_ants_nodes(i,j)).phermon=(1-

gama2)*arr_feat(all_ants_nodes(i,j)).phermon+evap_rate(i); 
319.         end 
320.     end 
321.    
322.     if (maxit_accur<best_ant_accuracy) 
323.     maxit_ant=best_ant;        %best itration solution 
324.     maxit_feat=best_antfeature; 
325.     maxit_accur=best_ant_accuracy; 
326.     end 
327.   
328.     maxit_ant 
329.     maxit_feat 
330.      
331.     fid = fopen('test.txt','a'); 
332.     fprintf(fid,'%g,',best_ant_accuracy); 
333.     fprintf(fid,'%g,',maxit_accur); 
334.     fprintf(fid,'%g,',best_ant); 
335.     fprintf(fid,'%g,',maxit_ant); 
336.     fprintf(fid,'%g,',best_antfeature); 
337.     fprintf(fid,'\n'); 
338.     fclose(fid); 
339.      
340. End 

 

B. 4 SVMs Classification 
1. clear all; 
2. clc; 
3.  
4. b=importdata('mym_train.txt'); 
5. fid = fopen('mformulty_train.txt','wt'); 
6. for ii = 1:size(b,1) 
7.     fprintf(fid,'%g,',b(ii,:)); 
8.     fprintf(fid,'\n'); 
9. end 
10. fclose(fid); 
11.   
12. b2=importdata('mym_test.txt'); 
13. fid2 = fopen('mformulty_test.txt','wt'); 
14. for ii = 1:size(b2,1) 
15.     fprintf(fid2,'%g,',b2(ii,:)); 
16.     fprintf(fid2,'\n'); 
17. end 
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18. fclose(fid2); 
19.   
20. %LIBSVM format 
21. SPECTF = csvread('mformulty_train.txt'); % read a csv file 
22. labels = SPECTF(:, 1); % labels from the 1st column 
23. features = SPECTF(:, 2:end);  
24. features_sparse = sparse(features); % features must be in a sparse matrix 
25. libsvmwrite('mymulty_train.txt', labels, features_sparse); 
26.   
27. SPECTF2 = csvread('mformulty_test.txt'); % read a csv file 
28. labels2 = SPECTF2(:, 1); % labels from the 1st column 
29. features2 = SPECTF2(:, 2:end);  
30. features_sparse2 = sparse(features2); % features must be in a sparse matrix 
31. libsvmwrite('mymulty_test.txt', labels2, features_sparse2); 
32.   
33.  [trainY trainX] = libsvmread('mymulty_train.txt'); 
34.  [testY testX] = libsvmread('mymulty_test.txt'); 
35.   
36. model = ovrtrain(trainY, trainX, '-c 10 -g 1'); 
37. [pred ac decv] = ovrpredict(testY, testX, model); 
38. fprintf('Accuracyyy = %g%%\n', ac * 100); 

 

B. 5 DTs Classification 
1. clear all; 
2. clc; 
3. % training and pruning 
4. training = importdata('non_time_data.txt'); 
5. labels   = importdata('non_time_lables.txt'); 
6. testing = importdata('non_time_test.txt'); 
7. tree = ClassificationTree.fit(training,labels) 
8. tree2 = prune(tree,'level',2) 
9. % prediction 
10. prediction = predict(tree2, testing) 
11. view(tree2) 
12. view(tree2,'Mode','graph') 
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Appendix C 

 

Results Details 

C.1 Original Key-paring Method 

C.1.1 Legitimate User Testing  

User  Try 
Feature Set 

ALL  Hold1|Hold2  UU|DD|UD  Hold1|UD|Hold2  UU  DD  UD  H1  H2 

User 1 
Try1   1  1  1  1  1  1  1  1  1 

Try2  0  1  0  1  1  1  1  1  1 

User 2 
Try1   0  0  1  0  1  1  1  1  1 

Try2  0  0  1  0  1  1  1  1  1 

User 3 
Try1   0  0  1  0  1  1  1  0  1 

Try2  0  0  0  0  1  1  1  0  1 

User 4 
Try1   0  1  1  1  1  1  1  1  1 

Try2  0  1  0  0  1  1  1  1  1 

User 5 
Try1   0  1  1  1  1  1  1  1  1 

Try2  0  1  1  1  1  1  1  1  1 

User 6 
Try1   0  1  0  0  1  1  1  1  1 

Try2  0  1  1  1  0  0  1  1  1 

User 7 
Try1   0  1  1  1  1  1  1  1  1 

Try2  0  0  1  0  1  1  1  0  1 

User 8 
Try1   0  1  0  1  1  1  1  1  1 

Try2  0  1  0  0  1  1  1  1  1 

User 9 
Try1   0  1  0  0  1  1  1  1  1 

Try2  0  1  1  1  1  1  1  1  1 

User 
10 

Try1   0  1  0  1  1  1  1  1  1 

Try2  0  1  0  1  1  1  1  1  1 

User 
11 

Try1   0  1  0  0  0  0  0  1  1 

Try2  0  1  0  0  1  1  1  1  1 

User 
12 

Try1   0  0  0  0  1  1  1  1  1 

Try2  0  0  0  0  1  1  1  0  1 

User 
13 

Try1   1  1  1  1  1  1  1  1  1 

Try2  1  1  1  1  1  1  1  1  1 
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User 
14 

Try1   0  1  0  0  1  0  1  1  0 

Try2  0  1  0  1  1  0  1  1  0 

User 
15 

Try1   1  1  1  1  1  1  1  1  1 

Try2  0  0  0  0  0  0  0  0  0 

 

C.1.2 Imposter user testing 

Victim  Try 
Feature Set 

Imposter 
ALL  Hold1|Hold2 UU|DD|UD Hold1|UD|Hold2 UU  DD  UD  H1  H2 

User 1 
Try1  0  0  1  0  1  1  1  1  1 

User 2 
Try2  0  0  0  0  1  1  1  1  1 

User 2 
Try1  0  0  1  0  1  1  1  0  1 

User 3 
Try2  0  1  1  1  1  1  1  1  1 

User 3 
Try1  0  0  0  0  1  1  1  1  1 

User 4 
Try1  0  1  0  0  1  1  1  1  1 

User 4 
Try2  0  0  0  0  1  1  1  1  1 

User 5 
Try2  0  1  1  0  1  1  1  1  1 

User 5 
Try1  0  1  1  0  1  1  1  1  1 

User 6 
Try2  0  1  0  0  1  1  1  1  1 

User 6 
Try1  0  0  0  0  1  1  1  1  1 

User 7 
Try2  1  1  1  1  1  1  1  1  1 

User 7 
Try2  0  1  1  1  1  1  1  1  1 

User 8 
Try2  0  1  1  1  1  1  1  1  1 

User 8 
Try1  0  1  1  1  1  1  1  1  1 

User 9 
Try2  0  0  1  0  1  1  1  1  1 

User 9 
Try2  0  1  0  0  1  0  0  1  1 

User 10 
Try2  0  1  0  0  1  0  0  1  1 

User 
10 

Try1  0  1  0  1  1  1  1  1  1 
User 11 

Try2  0  1  0  1  1  1  1  1  1 

User 
11 

Try2  0  1  0  0  1  1  1  1  1 
User 12 

Try2  0  1  0  0  1  1  1  1  1 

User 
12 

Try2  0  1  1  1  1  1  1  1  1 
User 13 

Try2  0  1  1  0  1  1  1  1  1 

User 
13 

Try1  0  1  0  1  1  1  1  1  1 
User 14 

Try2  0  0  1  0  1  1  1  1  1 

User 
14 

Try1  0  1  1  1  1  1  1  1  0 
User15 

Try2  0  1  0  1  1  0  1  1  0 

User15 
Try1  0  0  0  0  0  0  0  0  0 

User1 
Try2  0  0  0  0  0  0  0  0  0 
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C.2 Extended Key-paring Method 

C.2.1 One-vs-One  
ACO 

  MANOVA

Actual  Predicted 
 

Actual  Predicted 

1  6 
 

1  1 

1  1 
 

1  1 

1  1 
 

1  1 

1  6 
 

1  1 

1  1 
 

1  1 

2  2 
 

2  12 

2  2 
 

2  12 

2  2 
 

2  2 

2  2 
 

2  2 

2  2 
 

2  13 

3  3 
 

3  3 

3  3 
 

3  1 

3  3 
 

3  3 

3  3 
 

3  8 

3  3 
 

3  3 

4  4 
 

4  4 

4  4 
 

4  4 

4  4 
 

4  4 

4  4 
 

4  4 

4  4 
 

4  4 

5  10 
 

5  4 

5  5 
 

5  5 

5  14 
 

5  14 

5  10 
 

5  4 

5  14 
 

5  4 

6  1 
 

6  6 

6  6 
 

6  6 

6  6 
 

6  6 

6  6 
 

6  6 

6  6 
 

6  6 

8  5 
 

8  8 

8  5 
 

8  8 

8  5 
 

8  13 

8  5 
 

8  8 

8  8 
 

8  8 

9  9 
 

9  9 

9  9 
 

9  9 

9  9 
 

9  9 

9  8 
 

9  9 
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9  9 
 

9  9 

12  12 
 

12  12 

12  12 
 

12  4 

12  12 
 

12  10 

12  12 
 

12  12 

12  12 
 

12  12 

13  13 
 

13  13 

13  9 
 

13  9 

13  20 
 

13  13 

13  13 
 

13  13 

13  20 
 

13  13 

14  14 
 

14  4 

14  14 
 

14  14 

14  18 
 

14  14 

14  14 
 

14  14 

14  18 
 

14  24 

15  15 
 

15  15 

15  15 
 

15  15 

15  15 
 

15  15 

15  15 
 

15  15 

15  15 
 

15  15 

7  4 
 

7  3 

7  13 
 

7  7 

7  13 
 

7  1 

7  7 
 

7  14 

7  7 
 

7  7 

11  18 
 

11  11 

11  11 
 

11  11 

11  10 
 

11  11 

11  11 
 

11  11 

11  11 
 

11  11 

10  5 
 

10  13 

10  7 
 

10  13 

10  10 
 

10  11 

10  10 
 

10  11 

10  10 
 

10  11 

16  25 
 

16  16 

16  25 
 

16  14 

16  25 
 

16  16 

16  25 
 

16  16 

16  25 
 

16  16 

17  18 
 

17  17 

17  17 
 

17  17 

17  17 
 

17  17 
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17  17 
 

17  17 

17  17 
 

17  17 

18  23 
 

18  18 

18  18 
 

18  18 

18  18 
 

18  17 

18  18 
 

18  17 

18  18 
 

18  17 

19  22 
 

19  18 

19  18 
 

19  24 

19  18 
 

19  24 

19  18 
 

19  14 

19  18 
 

19  24 

20  20 
 

20  18 

20  20 
 

20  21 

20  20 
 

20  21 

20  20 
 

20  22 

20  20 
 

20  18 

21  21 
 

21  25 

21  21 
 

21  21 

21  21 
 

21  14 

21  21 
 

21  16 

21  21 
 

21  13 

22  22 
 

22  16 

22  22 
 

22  19 

22  22 
 

22  21 

22  22 
 

22  22 

22  22 
 

22  14 

23  23 
 

23  16 

23  23 
 

23  17 

23  23 
 

23  17 

23  23 
 

23  23 

23  23 
 

23  18 

24  24 
 

24  24 

24  24 
 

24  24 

24  24 
 

24  24 

24  22 
 

24  24 

24  22 
 

24  24 

25  25 
 

25  25 

25  25 
 

25  25 

25  25 
 

25  16 

25  25 
 

25  24 

25  25 
 

25  25 
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C.2.2 One-vs-Rest  
a. ACO 

 

Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted

1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

User 7 User 8User 6User 1 User 2 User 3 User 4 User 5
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‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1
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‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1
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‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 1 ‐1 1 ‐1 1 ‐1 1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1
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b. MANOVA 

 

Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted

1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1
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‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1
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‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1
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‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1
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‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1
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‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1



249 
 

 

Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted Actual  Predicted

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1
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‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 1 ‐1 1 ‐1 1 ‐1 1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1 ‐1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1

‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 1 ‐1



251 
 

c. Predictions  
ACO  MANOVA 

1  1 

1  ‐1 

1  1 

1  ‐1 

1  ‐1 

‐1  ‐1 

‐1  1 

‐1  1 

‐1  ‐1 

‐1  ‐1 

‐1  1 

‐1  1 

1  1 

1  1 

‐1  1 

1  1 

1  1 

1  1 

‐1  1 

‐1  1 

‐1  ‐1 

‐1  ‐1 

‐1  ‐1 

1  ‐1 

‐1  ‐1 

‐1  ‐1 

1  ‐1 

‐1  1 

1  1 

1  ‐1 

‐1  ‐1 

1  ‐1 

1  1 

‐1  1 

1  ‐1 

1  ‐1 

1  ‐1 

1  ‐1 

1  ‐1 

1  1 

‐1  ‐1 

‐1  1 
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‐1  1 

‐1  1 

‐1  1 

1  ‐1 

1  1 

1  1 

‐1  ‐1 

‐1  1 

‐1  1 

‐1  1 

‐1  1 

‐1  1 

‐1  1 

‐1  1 

‐1  1 

‐1  1 

‐1  1 

1  1 

1  1 

1  ‐1 

1  ‐1 

1  ‐1 

1  1 

‐1  1 

‐1  1 

‐1  1 

‐1  ‐1 

‐1  ‐1 

1  1 

1  ‐1 

‐1  ‐1 

‐1  ‐1 

‐1  ‐1 

1  ‐1 

1  ‐1 

‐1  ‐1 

‐1  ‐1 

1  ‐1 

‐1  ‐1 

‐1  ‐1 

1  ‐1 

‐1  1 

‐1  1 

‐1  ‐1 
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‐1  ‐1 

1  ‐1 

1  ‐1 

‐1  ‐1 

‐1  ‐1 

‐1  ‐1 

‐1  ‐1 

‐1  ‐1 

1  ‐1 

‐1  ‐1 

‐1  ‐1 

1  ‐1 

1  1 

1  1 

1  ‐1 

1  ‐1 

‐1  1 

‐1  ‐1 

1  ‐1 

1  ‐1 

‐1  ‐1 

‐1  ‐1 

‐1  ‐1 

‐1  ‐1 

1  ‐1 

‐1  ‐1 

1  ‐1 

1  ‐1 

1  ‐1 

1  ‐1 

1  ‐1 

‐1  ‐1 

‐1  ‐1 

1  ‐1 

1  ‐1 

‐1  ‐1 

‐1  ‐1 

‐1  ‐1 

‐1  ‐1 
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C.3 Non-conventional Method 

C.3.1 DTs 
   Predicted class 

 
Actual 
 class 

Sample  
1 

Sample  
2 

Sample  
3 

Sample 
 4 

Sample  
5 

Sample  
6 

Sample  
7 

Sample 
 8 

1  1  1  1  1  17  24  20  1 

2  2  2  2  2  2  2  11  16 

3  16  3  16  3  3  3  3  22 

4  4  16  4  4  4  4  3  4 

5  5  5  5  5  5  5  5  8 

6  6  6  6  6  6  6  6  4 

7  19  7  7  7  7  7  19  11 

8  8  8  8  8  8  8  8  8 

9  9  9  9  9  9  9  9  9 

10  10  10  10  10  10  10  10  10 

11  11  2  11  11  11  11  11  2 

12  12  12  12  12  12  12  12  12 

13  13  13  13  13  13  13  13  13 

14  14  14  14  14  9  14  14  14 

15  15  12  15  15  15  15  15  15 

16  3  5  16  16  14  3  3  22 

17  17  20  17  17  20  17  19  20 

18  20  19  7  18  1  20  20  18 

19  18  7  17  19  17  17  18  18 

20  20  5  17  17  20  17  20  7 

21  21  21  21  21  21  21  21  21 

22  23  22  22  22  22  22  1  4 

23  23  23  23  23  23  23  23  23 

24  24  24  24  24  24  24  24  24 

25  25  25  25  25  25  25  25  25 

 

 

 

 



255 
 

C.3.2 SVMs 
   Predicted class 

 
Actual 
 class 

Sample  
1 

Sample 
 2 

Sample  
3 

Sample  
4 

Sample 
 5 

Sample 
 6 

Sample  
7 

Sample  
8 

1  1  1  1  1  1  1  1  1 

2  11  11  10  11  11  24  1  11 

3  3  3  16  4  3  16  3  4 

4  4  14  3  4  14  8  14  4 

5  1  5  5  25  1  25  25  5 

6  6  6  6  6  6  6  6  9 

7  7  7  7  7  7  7  7  7 

8  8  8  8  8  23  8  14  8 

9  14  9  9  9  9  9  9  9 

10  13  25  25  13  13  24  25  13 

11  11  17  11  11  11  11  17  11 

12  7  20  19  25  20  25  1  18 

13  24  13  13  13  13  13  13  13 

14  14  14  14  14  14  14  14  14 

15  1  20  15  15  15  15  15  15 

16  16  16  16  16  16  16  16  3 

17  17  20  19  6  20  1  1  17 

18  15  20  15  25  1  25  15  15 

19  7  20  19  25  17  25  15  15 

20  7  7  19  25  17  25  7  7 

21  21  9  21  24  10  21  21  21 

22  22  22  8  8  22  8  22  22 

23  23  23  23  23  23  23  23  23 

24  24  24  24  24  24  24  24  24 

25  15  20  12  25  20  25  25  18 
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C.4 Fusion 

C.4.1 Feature-level Fusion 

C.4.1.1 DTs 
Predicted class 

Actual 
 class 

Sample 
 1 

Sample 
 2 

Sample 
 3 

Sample 
 4 

Sample 
 5 

Sample 
 6 

Sample 
 7 

Sample 
 8 

1  17  1  1  5  17  5  17  5 

2  2  21  2  2  2  2  2  2 

3  3  14  16  7  3  3  3  3 

4  4  4  4  4  4  23  4  23 

5  5  5  16  5  16  5  5  8 

6  3  6  6  4  6  6  6  22 

7  7  7  7  23  7  7  7  24 

8  8  8  8  8  8  8  7  8 

9  21  9  9  9  9  9  9  9 

10  10  10  10  10  10  10  12  10 

11  11  11  11  22  11  11  11  11 

12  12  12  12  12  12  12  12  10 

13  13  13  13  13  13  13  13  13 

14  3  14  14  14  9  14  14  23 

15  15  12  15  15  15  15  15  10 

16  16  16  5  16  14  16  16  4 

17  17  17  18  17  17  17  17  17 

18  18  18  18  12  1  17  18  5 

19  7  19  19  19  19  19  19  19 

20  20  20  20  20  20  20  20  20 

21  21  21  2  21  21  21  2  21 

22  22  22  22  22  22  22  22  22 

23  14  18  23  23  23  23  23  23 

24  24  24  24  24  24  24  24  24 

25  25  25  25  25  25  25  25  25 
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C.4.1.2 SVMs 
Predicted class 

Actual  
class 

Sample 
 1 

Sample 
 2 

Sample 
 3 

Sample 
 4 

Sample 
 5 

Sample 
 6 

Sample 
 7 

Sample 
 8 

1  20  1  17  1  1  1  1  1 

2  2  2  2  11  2  2  17  11 

3  3  3  16  3  3  3  3  3 

4  23  14  3  4  4  8  4  14 

5  5  5  10  5  5  10  5  13 

6  6  6  6  12  6  6  6  9 

7  7  7  7  7  7  7  7  7 

8  8  8  8  8  23  8  14  8 

9  14  9  9  9  9  9  9  9 

10  13  15  10  10  10  24  5  13 

11  11  11  11  11  11  11  17  11 

12  7  15  10  15  18  20  19  19 

13  24  13  13  13  21  13  13  13 

14  14  14  14  14  14  14  14  14 

15  20  15  10  15  18  20  19  19 

16  16  16  16  16  16  16  16  3 

17  11  15  10  6  18  6  18  6 

18  18  18  10  15  17  20  19  15 

19  7  15  10  15  17  19  18  19 

20  7  7  20  20  20  19  7  7 

21  21  21  21  24  21  9  21  21 

22  22  22  22  22  22  8  22  22 

23  23  23  23  23  23  23  23  23 

24  24  24  24  24  24  24  24  24 

25  20  15  10  25  25  25  19  19 
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C.4.2 Decision-level Fusion 

C.4.2.1 Approach (A) 
Predicted class 

Actual 
 class 

Sample 
 1 

Sample 
 2 

Sample 
 3 

Sample 
 4 

Sample 
 5 

Sample 
 6 

Sample 
 7 

Sample 
 8 

1  6  24  19  25  13  22  3  1 

2  13  19  9  13  14  25  5  16 

3  10  19  9  9  1  25  6  15 

4  9  9  21  12  6  7  8  16 

5  17  12  14  5  5  17  25  15 

6  10  19  2  14  9  10  13  14 

7  8  20  17  5  8  23  25  22 

8  6  8  8  8  25  8  8  8 

9  9  9  9  8  16  16  9  9 

10  17  3  2  18  24  25  3  16 

11  5  12  23  5  10  22  8  9 

12  17  15  1  19  18  24  23  22 

13  13  3  3  10  19  16  13  1 

14  15  20  25  8  19  14  2  16 

15  10  2  10  12  18  12  13  7 

16  16  16  16  16  16  16  16  16 

17  17  23  23  22  19  12  22  12 

18  17  18  12  1  19  23  17  22 

19  19  22  19  2  20  19  15  4 

20  14  20  22  2  20  6  21  25 

21  21  21  21  21  21  21  21  21 

22  12  22  20  22  22  20  22  13 

23  2  23  23  23  23  20  23  23 

24  24  18  23  25  22  23  12  22 

25  20  25  1  20  11  7  16  15 
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C.4.2.2 Approach (B) 
Predicted class 

Actual 
 class 

Sample 
 1 

Sample 
 2 

Sample 
 3 

Sample 
 4 

Sample 
 5 

Sample 
 6 

Sample 
 7 

Sample 
 8 

1  1  1  1  1  17  24  20  1 

2  2  2  2  2  2  2  11  16 

3  16  3  16  3  3  3  3  22 

4  4  16  4  4  4  4  3  4 

5  5  5  5  5  5  5  5  8 

6  6  6  6  6  6  6  6  4 

7  19  7  7  7  7  7  19  11 

8  8  8  8  8  8  8  8  8 

9  9  9  9  9  9  9  9  9 

10  10  10  10  10  10  10  10  10 

11  11  2  11  11  11  11  11  2 

12  12  12  12  12  12  12  12  12 

13  13  13  13  13  13  13  13  13 

14  14  14  14  14  9  14  14  14 

15  15  12  15  15  15  15  15  15 

16  3  5  16  16  14  3  3  22 

17  17  20  17  17  20  17  19  20 

18  23  19  7  18  1  20  20  18 

19  18  7  17  19  17  22  18  20 

20  20  5  17  17  20  17  20  7 

21  21  21  21  21  21  21  21  21 

22  23  22  22  22  22  22  1  4 

23  23  23  23  23  23  23  23  23 

24  24  24  24  24  24  24  24  24 

25  25  25  25  25  25  25  25  25 
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C.4.2.3 Votes 

Actual 
class 

Voted  
class 

1  1 

2  2 

3  3 

4  4 

5  5 

6  6 

7  7 

8  8 

9  9 

10  10 

11  11 

12  12 

13  13 

14  14 

15  15 

16  16 

17  17 

18  18 

19  19 

20  20 

21  21 

22  22 

23  23 

24  24 

25  25 
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C.5 Arabic Language Experiment  

C.5.1 Arabic Input  

C.5.1.1 SVMs 
Predicted class 

Actual 
 class 

Sample 
 1 

Sample 
 2 

Sample 
 3 

Sample 
 4 

Sample 
 5 

Sample 
 6 

Sample 
 7 

Sample 
 8 

1  1  1  1  1  1  1  1  1 

2  2  2  3  2  2  2  2  2 

3  3  14  11  2  21  3  6  3 

4  3  14  11  2  21  3  6  3 

5  9  5  5  9  7  11  6  12 

6  21  5  21  3  6  14  13  6 

7  2  9  8  7  7  15  7  7 

8  9  8  9  9  12  8  11  8 

9  9  9  7  9  9  13  15  9 

10  10  10  10  16  10  10  17  10 

11  3  9  11  7  15  11  11  5 

12  12  8  18  1  11  6  12  8 

13  13  13  13  13  16  11  13  13 

14  2  14  18  14  14  14  6  14 

15  15  15  7  9  15  7  15  7 

16  20  16  16  16  16  16  16  16 

17  17  17  17  17  17  17  17  17 

18  18  18  18  18  18  18  18  18 

19  19  19  19  19  10  16  19  19 

20  20  20  20  20  20  20  20  16 

21  21  21  21  21  21  21  21  21 
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C.5.1.2 DTs 
Predicted class 

Actual 
 class 

Sample 
 1 

Sample 
 2 

Sample 
 3 

Sample 
 4 

Sample 
 5 

Sample 
 6 

Sample 
 7 

Sample 
 8 

1  1  1  1  1  1  1  1  1 

2  2  2  2  2  2  2  2  2 

3  5  21  14  17  1  9  5  5 

4  5  21  14  17  1  9  5  5 

5  5  5  5  6  3  8  5  5 

6  1  6  6  6  1  1  13  3 

7  15  10  2  7  7  7  16  2 

8  8  8  21  5  8  14  13  14 

9  9  9  9  9  9  9  9  9 

10  17  17  17  21  10  10  17  10 

11  21  11  11  1  12  11  15  1 

12  5  18  18  18  14  8  6  5 

13  13  13  13  13  20  13  13  2 

14  15  14  14  16  19  14  3  14 

15  9  9  9  7  18  15  15  15 

16  19  16  16  16  19  16  16  16 

17  17  17  17  17  17  17  17  17 

18  18  18  18  18  18  12  18  18 

19  19  19  19  3  19  19  9  20 

20  3  20  13  21  19  16  19  13 

21  21  21  21  21  21  8  9  6 
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C.5.2 English Input  

C.5.2.1 SVMs 
Predicted class 

Actual 
 class 

Sample 
 1 

Sample 
 2 

Sample 
 3 

Sample 
 4 

Sample 
 5 

Sample 
 6 

Sample 
 7 

Sample 
 8 

1  1  15  1  6  8  4  1  1 

2  12  20  2  9  15  8  8  12 

3  4  10  3  3  3  1  10  3 

4  4  4  4  12  15  8  2  6 

5  1  3  7  4  4  1  9  2 

6  12  4  6  16  2  17  3  20 

7  3  9  1  7  6  3  10  7 

8  12  17  17  8  4  8  15  10 

9  15  9  9  9  14  5  2  18 

10  4  8  11  8  13  3  10  10 

11  1  19  19  2  3  3  12  1 

12  15  15  12  12  9  7  6  2 

13  12  13  13  13  13  13  13  13 

14  6  11  11  6  11  14  20  20 

15  15  16  16  8  2  17  1  10 

16  16  16  16  16  16  16  13  16 

17  17  17  17  17  17  17  17  17 

18  18  18  18  13  18  18  13  18 

19  19  7  19  19  19  19  19  19 

20  19  20  20  20  20  20  15  20 

21  21  21  21  21  21  21  9  21 

 

 

 

 

 

 



264 
 

C.5.2.2 DTS 
Predicted class 

Actual 
 class 

Sample 
 1 

Sample 
 2 

Sample 
 3 

Sample 
 4 

Sample 
 5 

Sample 
 6 

Sample 
 7 

Sample 
 8 

1  7  2  11  1  3  12  10  2 

2  2  8  14  4  2  8  10  6 

3  6  9  11  17  13  2  5  3 

4  15  4  4  14  11  4  12  3 

5  5  7  8  2  4  19  5  13 

6  20  21  20  9  8  4  16  21 

7  7  9  13  7  21  18  17  9 

8  6  20  8  2  4  3  12  20 

9  6  8  7  18  14  14  19  4 

10  3  5  2  3  10  10  10  13 

11  19  10  2  2  21  16  14  13 

12  5  8  7  2  16  12  5  19 

13  11  13  11  11  16  18  16  21 

14  20  20  9  21  15  14  9  9 

15  20  20  2  1  8  5  21  14 

16  17  19  16  18  16  16  18  16 

17  17  17  17  7  17  17  18  17 

18  18  18  18  18  18  18  18  18 

19  19  19  19  19  19  19  7  19 

20  20  20  20  20  20  20  20  20 

21  21  21  21  21  21  21  21  21 
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User-Friendly Free-text Keystroke Dynamics 
Authentication for Practical Applications 

Arwa Alsultan and Kevin Warwick 
School of Systems Engineering  

University of Reading 
Reading, United Kingdom 

 
Abstract—This paper introduces a novel approach for free-text 
keystroke dynamics authentication which incorporates the use 
of the keyboard’s key-layout. The method extracts timing 
features from specific key-pairs. The Euclidean distance is then 
utilized to find the level of similarity between a user’s profile 
data and his/her test data. The results obtained from this 
method are reasonable for free-text authentication while 
maintaining the maximum level of user relaxation. Moreover, it 
has been proven in this study that flight time yields better 
authentication results when compared with dwell time. In 
particular, the results were obtained with only one training 
sample for the purpose of practicality and ease of real life 
application. 

Keywords-Keystroke Dynamics; Free-text; Authentication; 
Keyboard Key-layout; key-pair; Euclidian Distance 

I. INTRODUCTION 
During the past couple of decades, online services have 

become an essential tool for performing many tasks on a daily 
basis. Such services usually involve using a username and 
password in order to verify users. Unfortunately passwords 
are prone to social engineering and can be easy to crack by 
using various methods, such as the dictionary attack and even 
a brute force attack. Therefore, users are obliged to use 
extreme measures to safeguard their passwords, a procedure 
which includes remembering long and complex passwords in 
addition to the need for changing their passwords 
periodically. This causes frustration and apprehension for 
users, especially when a single user is most likely responsible 
for more than a hand-full of ID/passwords spread over 
multiple systems. 

In consequence, the need for a more useable method for 
authentication has become a necessity. One of the alternative 
methods for ID/passwords is behavioral biometrics such as 
signature recognition, handwriting recognition, gait analysis 
etc.; all of which depend on the user’s behavioral patterns, 
which makes it intuitive for the user and difficult to imitate by 
others. Unfortunately, all of these previously mentioned 
methods need highly reliable external hardware for 
measurement purposes, which is considered a critical 
drawback from the point of view of users, who are mostly 
concerned with the practicality of the system, in addition to 
the undesirable monetary costs of these devices. 

 Monitoring keystroke dynamics, on the other hand, is 
considered to be an effortless behavior-based method for 
authenticating users which employs the person’s typing 
patterns for validating his/her identity. As mentioned in [1], 
keystroke dynamics is “not what you type, but how you type.” 
In this approach, the user types in text, as usual, without any 
kind of extra work to be done for authentication. Moreover, it 

only involves the user’s own keyboard and no other external 
hardware.  

This paper considers a keyboard-layout based method to 
compare timing features of free text typing samples. The 
method classifies the text to five different key-pairs 
depending on the position of the two keys on the keyboard. 
The Euclidian distance between the timing features’ vectors 
of each key-pair is used to find the level of similarity among 
the samples. 

This particular structured key-pair based method for 
extracting features was followed in this study in order to 
increase the number of the di-graphs found and compared in 
both the training and the testing samples. The aim was to 
enhance the stability of its mean and standard deviation which 
is the main component of the user’s timing vector. 
Furthermore, this method would aid in reducing the required 
computation time needed for comparing samples. 

In this approach, we attempt to use the least amount of 
training samples possible. The main goal for this is the user’s 
comfort and relaxation and hence the realization of a 
practically employable system. It is not adequate to relieve 
users from remembering long passwords if they will still have 
to type-in huge amount of text, multiple times when enrolling 
in the system. Hence here enrollment is a simple, relatively 
rapid process. Indeed this has been regarded as a vitally 
important aspect of our research.     

The rest of this paper proceeds as follows. Section II 
introduces the Keystroke dynamics theory and describes some 
of the work previously carried out which is utilized in user 
authentication. Section III describes the method we have 
actually followed in this study. At first, we indicate the data 
collection technique followed. Then, we discuss the timing 
features we decided to include in the study. Next, we explain 
the concept of key-pairs and how it was applied in our 
experiment. After that, we point to the timing vector’s 
creation and the distance calculation employed. In Section IV 
we present experimental results and make some comparisons 
with other recent studies in the same area. The final section 
concludes the topic and points out our research contributions 
and future work.   

II. KEYSTROKE DYNAMICS 
There are two basic classes of keystroke dynamics, 

namely: fixed-text and free-text. The fixed-text keystroke 
dynamics method is computed using a predefined text that the 
system has previously trained on and has to be delivered by 
the user at log-in time. On the other hand, the free-text 
keystroke method is considered easier for the user since it 
does not require memorizing any text due to the fact that the 
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text used for enrolment does not have to be the same as the 
text used for log-in. In addition, free-text keystroke dynamics 
is used for enhancing security through continuous and 
nonintrusive authentication [2]. It is this latter procedure 
which has been considered in this paper.  

Although free-text keystroke systems are much more 
complex than fixed-text systems, they can be applied in many 
useful settings to aid in real life situations in addition to the 
benefit they provide in balancing between security and 
usability [16] which directly fits with the objectives of this 
paper. 

Basically, Keystroke dynamics are utilized in user’s 
authentication by extracting timing features at the log-in 
session and comparing them with the timing features 
extracted at the enrolment session. These features include, 
among others: typing latency, keystroke duration [3], typing 
speed and shift key usage patterns [4].  If the extracted 
features are adequately similar, the user is authenticated and if 
not, the user might be denied access or at least asked to 
provide further identity information.  

Undeniably, the timing features extracted from the two 
sessions will never be exactly the same since human behavior 
is often subject to change. Therefore, a threshold is regularly 
used to determine if the level of similarity actually attained in 
the authentication process is deemed to be satisfactory. 

A lot of research has been carried out over the years to 
investigate the exploitation of keystroke dynamics for 
authentication purposes. Joyce and Gupta [5] used a statistical 
method that employs the absolute distances between the 
means of the signature data and test data; each of which 
consists of a fixed-text that includes username, password, first 
name, and last name.  

Meanwhile Gunetti and Picardi [6] introduced an effective 
method for free-text authentication  which was further 
explored by many other researchers. Their method was based 
on two measures: relative (R) measure and absolute (A) 
measure. These measures were used to calculate the degree of 
disorder and the absolute distance between two samples that 
share some n-graphs. 

 Another technique was introduced by Singh and Arya [7] 
for free-text authentication, in which, a keyboard grouping 
technique was used for creating timing vectors of flight times 
entered by the user at the enrolment session and log-in 
session. The keys were grouped based on their position on the 
keyboard, which was divided into 8 sections; two left and 
right halves and then each half divided into 4 lines 
representing the rows of the keyboard. The Euclidean distance 
was then used to calculate the similarity between the two 
vectors. 

Park et al. [15] also considered benefiting from key pairs 
in keystroke dynamics. They first started by dividing all 
keystrokes into four features; left hand side, right hand side, 
spacebar and backspace bar. Then, they created di-graphs 
using combinations of these features. This resulted in sixteen 
di-graphs of features. After that, they compared two samples 
using these digraphs. Only diagraphs with more than ten 
appearances in the training and testing samples were used in 
the comparison. The last step was using the Kolmogorov-
Smirnov test in order to decide if the test data actually 
belonged to the legitimate user. 

Other researchers relied on pattern recognition classifying 
methods such as K-nearest neighbor; one example of which 
was the work done by Hu et al. [8]. They used the k-nearest 
neighbor approach together with the distance measurement 
proposed by Gunetti and Picardi [6] in order to classify the 
users’ keystroke dynamics profiles.  

Neural Networks have also been used for keystroke 
pattern classification; such as the research conducted by 
Raghu et al. [9] where they incorporated a three-layered back 
propagation neural network to verify the identity of users. It 
should be said that this method, along with those previously 
mentioned, involved substantial input from the user in order 
to allow the computer system the chance to learn the user’s 
keystroke characteristics. Whilst such experimentation can be 
acceptable in the laboratory, this extensive initial input can in 
reality be very off putting, in a practical system, for the user. 

III. METHODOLOGY 
A. Data Collection 

In our study, fifteen users participated in the 
experimentation. Each participant provided merely one 
training sample. There were nine females and six males. All 
the participants were in the age group between 20 and 60 
years old. They had different levels of typing skills that varied 
between moderate and very good. Not all the people 
participating in the experiment were native speakers of 
English. Indeed this was a particular characteristic of our 
study. Included were, for example, native Pakistani, Czech 
and Saudi speakers.  

During the data collection phase, or what we call here the 
enrolment phase, we asked the participants to type-in a 
paragraph consisting of five lines of text. The text included 
five short and well-known English quotes. Most of the words 
used in this text were short, simple and known words reliant 
on the study done by Giot et al. [10] which proved that these 
kinds of words give better results in keystroke dynamics 
systems. All the words were in lower case and we did not 
include any numbers or punctuation marks. 

This 380 character long text was the only sample used for 
training the system, which was considered a very short 
training sample compared to previous studies. This added to 
the user-friendliness aspect of the system since the only 
instance of typing required for training the system was of 
reasonable length; which spared the user the annoyance of 
spending a long time in the enrolment phase. 

 
Figure 1.  Keystroke features. 
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Figure 2.  Key-pair classification example.

 

Users were directed to enter the samples in the most 
natural way they usually follow when typing. The user is 
allowed to enter carriage returns and backspaces if needed. 
The data collection was performed on a GUI program 
implemented using Java language.  

B. Feature Extraction 
After obtaining the users’ raw data, extracting the 

keystroke features was performed [11]. These features were 
computed for every key and key-pair using two main values, 
specifically: the press time (Dn) and the release time (Un) of 
each key (n) in milliseconds. In this research, five keystroke 
features were extracted from each key-pair as shown in 
Figure1: 

1) Dwell time or Hold time: is the time a key is pressed 
until it is released. Consequently, each key-pair has two hold 
times:  

a) Hold time for the first key (H1). 
b) Hold time for the second key (H2).  

 
2) Flight Time or Keystroke latencies: There are three 

types of  latencies: 
a) Down-Down (DD) or Press-Press (PP) time:  is the 

interval time between two successive key presses. 
b) Up-UP (UU) or Release-Release (RR) time:  is the 

interval time between two successive key releases. 
c) Up-Down (UD) or Release-Press (RP) time:  is the 

interval time between a key release and the next key press. 
Unlike the other two keystroke latencies, Up-Down can be a 
negative value in the case that the next key is pressed before 
releasing the previous one, which can happen in the case of 
very fast typing speeds. 

C. Key-pair Classification 
In this research we introduce a novel free-text based 

approach which makes use of the keyboard’s key-layout. This 
approach utilizes the keystroke features extracted between 
two keys (key-pair) which are pressed consecutively and have 
a relationship on the keyboard layout. This relationship 
depends mainly on the key positions on the keyboard. The 
keyboard used in this study was the English QWERTY 
keyboard since it is both the most common keyboard layout 
and the most popular one.  

 

 

 

 

There are five types of key-pairs:   

1) Adjacent: keys located next to each other on the 
keyboard. 

2) Second adjacent: keys that are one key apart from 
each other. 

3) Third adjacent: keys that are two keys apart. 
4) Fourth adjacent: keys that are three keys apart.  
5) None adjacent: keys that are more than three keys 

apart. 
For more of an explanation, an example is illustrated in 

Figure 2. If we consider the key G, the related key-pairs are: 

• F, T, Y, H, B, and V are adjacent keys to G.   

• U, J, N, C, D, and R are second adjacent to G. 

• I, K, M, E, S, and X are third adjacent to G. 

• O, L, Z, A, and W are fourth adjacent to G. 

• P and Q are none adjacent to G. 

This key classification can be performed in the same way 
for all the key-pairs in the typed text. 

An empirical example is given for all the key-pairs in the 
word “university” in table I. This example shows the process 
followed to break down a text into di-graphs and then 
classifying each digraph into one of the five types of key-
pairs before using its timing data in the corresponding timing 
vector.   

The key-pair based method was adapted as a way to 
escalate the stability of the timing vectors giving that it 
significantly boosts the number of key-pairs that can be found 
and compared in the training and testing samples. This is an 
obvious benefit of the suggested scheme as it utilizes a small 
amount of typing data in the best possible way. For example, 
the following training and testing data have only two similar 
di-graphs (“in” and “ng”) whose typing times’ can be 
compared in the authentication process.  

Training data: “University of reading.” 

Testing data: “Systems engineering.”  

This is not the case when using the key-pair method as 
there are a larger number of instants for each kind of key-pair 
extracted from both the training and testing data; as shown in 
table II. 
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TABLE I.  KEY-PAIRS IN THE WORD “UNIVERSITY” 

Di-graphs un ni iv ve er rs si it ty 

Key-pair type 2nd adjacent 2nd adjacent 4th adjacent 3rd adjacent Adjacent 2nd adjacent Non Adjacent 3rd adjacent Adjacent 

TABLE II.  TOTAL NUMBER OF KEY-PAIRS. 

Key-pair type Adjacent 2nd adjacent 3rd adjacent 4th adjacent Non adjacent 

Training data 3 7 2 1 3 

Testing data 1 5 2 3 4 

 
 

Each of the key-pairs is subject to the five features 
extraction described earlier. Pairs that involve spaces are 
discarded because of the work conducted by Singh and Arya 
[7] which inferred that a user normally experiences very 
unusual pauses before and after the space key which causes 
inconsistent typing behavior. 

D. Capturing Timing Vectors 
For each key-pair appearance in the text, the five timing 

features are extracted. Then, the mean of each timing feature 
is calculated for all the key-pair appearances.  This is done for 
all the five types of key-pairs. From observing users behavior, 
we noticed that some users take small pauses for different 
reasons, such as moving their eyes to read the provided text, 
therefore any outlier data are discarded. We identify outlier 
data to be as much as three standard deviations above the 
mean [5].  

After that, the timing vector is created and stored in the 
database. This timing vector consists of the means of the five 
features for all five kinds of key-pairs.  

E. Finding Distance 
At the log-in, or authentication, phase, the user is asked to 

enter another line of text that is different from the text entered 
at the enrolment phase. This text is approximately 75 
characters long. Then, the system prepares the timing vector 
for the test data which includes the means of the five features 
extracted from the five types of key-pairs.  Figure 3 (A) 
shows the similarity between the two timing vectors for one 
user whilst (B) shows the difference between the two vectors 
for two different users.  

After that, the Euclidean distance is calculated between 
the log-in vector and the vector stored at the user’s profile in 
the database. This distance has to be sufficiently small to give 
a good judgment that this is the legitimate user. Nevertheless, 
the distance will never be equal to zero because human 
behavioral characteristics are not always consistent [7]. 
Therefore, an acceptable value for the distance is determined; 
which if it is not exceeded, the user is accepted as genuine; 
and if otherwise, the user is denied access. This value or 
threshold, is decided based on each user’s profile data [5]. 

After several trials, the threshold that we decided to use is 
described as the mean plus one and a half standard deviations. 
The threshold used was a local threshold i.e. it was calculated 
for each user based only on the training data which was used 
to build the timing victor in that user’s profile. 

IV. RESULTS AND DISCUSSION 
Each participant was asked to enroll once in the system 

first; in which his/her timing profile was calculated and stored 
at the Database. This is the only sample that the user provides 
to the system as a training sample. And then each participant 
was requested to provide two testing samples. The testing 
process has been conducted in two manners: 

1) Legitimate user testing: where each user timing 
profile is compared with their own two sets of testing data. 

2) Imposter user testing: where each user timing profile is 
compared with two other random participants’ testing data. 

 
To infer the performance of the authentication method, two 

error rates are used [2]: 
1) False Accept Rate (FAR): is the percentage of 

impostors who have successfully gained access to the 
system. 

2) False Reject Rate (FRR): is the percentage of 
legitimate users who have been denied access to the system. 
 

The results from using the five timing features were 
analyzed separately and results from using a combination of 
these features were also investigated. After examining the 
results, most of the features produced low FRR, but on the 
other hand, the FAR was not as satisfactory. This trade-off 
between FAR and FRR is unavoidable [16]. Since user 
relaxation is of higher priority, low FRR is more important in 
this study. This denotes that genuine users will face less 
access rejections which will relieve them from unfavorable 
stress while using the system, which meets the main objective 
of this study. 
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Figure 3.  (A) The same user’s timing vectors (B) Diferent users’ timing vectors. 

Moreover, it was found, by using an exhaustive search, 
that the Up-Down (UD) timing feature produced the best 
results in comparison to other individual features and it also 
gives a good balance between FAR and FFR. Furthermore, 
even better results were delivered when using the UD in 
combination with other features. For the sake of brevity, 
Table III only provides the error rates for the combination of 
timing features that includes the UD time. 

The results from this research thus far are clearly 
comparable to other free-text studies such as the work done 
by Hempstalk et al. [12] which resulted in a 11.3% FAR and a 
20.4% FRR and the study conducted by Xi et al. [13] which 
delivered a 9.43% FAR and a 24.7% FRR. However, both 
studies incorporated a relatively huge number of enrolment 
samples which adds up to 3000 samples from 19 participants 
and 765 samples from 205 participants respectively. This can 
be directly compared to one sample per participant for 
enrolment in our study, i.e. 15 samples from 15 participants. 

 

TABLE III.  ERROR RATES  

 
Features 

 
FAR FRR 

UD 25% 28% 

H1 + UD + H2 28% 14% 

DD + UD + UU 21% 17% 

H1 + DD + UD + UU + H2 25% 25% 

 

 
It is interesting in directly comparing our own results with 

those from previous free-text studies that our own FRR rates 
are pretty similar, indeed in some cases even better, despite 
the requirement for far fewer enrolment samples, however 
FAR rates are clearly much better in the other studies. 

Whilst increased numbers of enrolment samples is clearly 
one reason that strongly affected the other results positively 
for FAR statistics, on the other hand, in this study user 
comfort was considered a main goal which accordingly 
limited the samples that each user was asked to provide. This 
is due to the fact that users are less likely to tolerate systems 
that require a large burden by having to go through long and 
multiple training sessions. Our own method is therefore, we 
believe, much more realistic from a practical perspective. 

Another important aspect that adds to the practicality of 
this system is the text length used for both the training and 
testing. Even though, the shortness of the text used for 
training is highly desired by users, it is an evident reason for 
the substandard FAR. Increasing the sample size for both 
phases of this experiment will definitely intensify the 
performance of the system as noted by Curtin et al. in [14].  

Nonetheless, an inevitable trade-off had to be experienced 
in this study as the user-friendliness of the system was of the 
highest priority. Hence, smaller numbers of training and 
testing samples were requested to be delivered by the users in 
both the enrolment and the authentication phases. This trade-
off was reduced considerably by using key-pairs which work 
to enlarge the number of di-graphs that can be used for 
comparing samples during the course of authenticating users. 

V. CONCLUSIONS  
 This paper examines the usefulness of using an original 

keyboard key-layout based method for keystroke dynamics 
authentication. The experiment produced reasonable results 
considering the fact that it uses free-text for authentication 
which gives a good balance between the system’s security 
and the user’s comfort. The UP-Down (UD) latency proved to 
be the best feature to use in such a system. Better 
performance was obtained using a combination of features 
that includes the UD time.  

Looking at the results produced, it was not a surprise that 
the authentication performance is not perfect due to the nature 
of the experiment and the user’s comfort priority. 
Nevertheless, using only one short training sample resulted in 
quite similar FRR results to other studies which require much 
more training samples than ours. Therefore, we have 
succeeded to create a simple yet practical system for 
authenticating users with the lowest possible amount of 
irritation for users.  

There are much more that can be done to improve this 
approach. One of which is using a more sophisticated key-
pair classification which takes into consideration the position 
of the hand on the keyboard.  Another addition that might aid 
in increasing the performance of this method is selecting only 
key-pairs that have a minimum number of instants appearing 
in the training and testing data, which will help to further 
improve the stability of the timing vectors. Moreover, to 
produce more accurate results, data from more participants 
will be incorporated in the experiment. This is clearly 
ongoing research in which results thus far are extremely 
encouraging. 
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Abstract 

Current computer systems depend greatly on authentication 
methods in order to provide sufficient protection to the data 
handled by these systems. Rather than using the common 
username and password scheme which suffers from many 
security and usability limitations, we investigate in this paper the 
use of keystroke dynamics as a more useable authentication 
alternative. We focus on the research done on free-text keystroke 
systems and its ability to provide continual identity verification 
during the whole time that the user is using the system.  
Keywords: free-text, keystroke dynamics, authentication, 
identification, performance, survey. 

1. Introduction 

The use of computer systems has proliferated at an 
unforeseen rate. They are now used in almost all aspects 
of our lives. This is a strong reason to protect them against 
illegal intrusions. However many computer systems use 
the simple username/password scheme for authentication, 
even though it suffers from the security-usability trade-off 
dilemma. Passwords can be guessed using different 
methods such as social engineering, spyware, dictionary 
attack and mere brute force attacks. These are all reasons 
for the user to employ extreme measures to safeguard 
his/her computer by using long and complex passwords 
which are unfriendly and hard to memorize. It is therefore 
ideal to use an alternative authentication method that can 
be low-cost yet provide ease of use and transparency to 
the user in addition to security robustness.  

Keystroke dynamics is a behavior biometric scheme that 
provides sturdy system protection while maintaining a 
high level of usability. In particular, using free-text 
keystrokes provides real-time identity verification by 
continuously monitoring the keyboard’s activities. This is 
a very important, yet frequently ignored, part of the 
authentication process since it is fairly simple to establish 
a level of confidence about the user’s identity at log-in 
time.  However there is no guarantee that the user who 
was successfully authenticated is the same person who is 
still using the system. There is always a chance that the 
system was left unattended which is a golden opportunity 
for the attacker who is physically close to the machine to 
have access to it and, for example, alter some documents 
or send an e-mail on behalf of the original user.   

In this method of authentication, it is not obligatory to 
memorize any text such as a password or a passphrase; 

instead authentication is conducted through finding the 
resemblance of the typing rhythm of a user, in a non-
intrusive manner, regardless of the text typed. 

One important fact in looking at research to date in free-
text keystroke systems is that results from most studies 
are far from ideal, i.e. either the resulted accuracy is not 
satisfactory or it has a high accuracy level which was 
obtained under strictly controlled conditions, which is not 
at all representative of real-life situations. Thus, we aim in 
this paper to look at the various factors that might affect 
the authentication system performance in addition to 
covering the methods used for feature extraction and 
classification. Situations where free-text keystroke 
dynamics are best used are also discussed in this paper. 

The rest of this paper proceeds as follows. Section two 
introduces keystroke dynamics theory and describes the 
differences between fixed-text and free-text systems. The 
third section lists some of the techniques followed for 
feature extraction while the section after that lists the 
methods used for classification. Performance 
measurement schemes are considered next. After that we 
list some of the factors affecting performance in free-text 
systems. A variety of applications that can benefit from 
free-text systems is given in the seventh section. Finally 
we discuss the level of protection that free-text systems 
can provide against some of the common security threats. 

2. Keystroke Dynamics 

Monitoring keystroke dynamics is considered to be an 
effortless behavioral based method for authenticating 
users which employs the person’s typing patterns for 
validating his/her identity. As mentioned in [1], keystroke 
dynamics is “not what you type, but how you type.” In 
this approach, the user types in text, as usual, without any 
kind of extra work to be done for authentication. 
Moreover, it only involves the user’s own keyboard and 
no other external hardware. The original idea of using 
keystroke patterns for user identification purposes was 
originated from the idea of identifying the sender of 
Morse code on a telegraph machine, where operators have 
been able to identify the sender of a message by the 
rhythm, pace and syncopation of the received taps [2].  

As early as 1980, researchers such as Gaines et al. [3] 
started to show interest in proving the hypothesis that 
typing patterns can be used as a mean of user 
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authentication. Experiments were conducted to find 
typing patterns that can be used effectively for 
authentication. Results from these tests showed that the 
similarity between typing samples from the same person 
is high with respect to the time delays it takes the user 
when typing one key or two successive keys. All of this 
early research though was only concerned with keystrokes 
generated by typing fixed words.  

It wasn’t until 1995 when Shepherd et al. [4] showed 
interest in continuous authentication. In 1997, the first 
organized attempt to use free-text keystroke system was 
conducted by Monrose and Rubin [1] where both fixed-
text and free-text were used. The overall performance was 
not encouraging for free-text giving only 23% correct 
classification while fixed-text produced about 90% correct 
classification. This shows the complexity of using free-
text systems compared with the fixed-text systems. 
Nevertheless, free-text systems have gone a long way 
since that experiment and much better results have been 
obtained using more sophisticated techniques. 

There are two main phases that a user has to go through in 
order to be authorized by keystroke dynamic systems; 
namely: the enrolment phase and the log-in phase. The 
first phase has to do with collecting data about the user 
such as username and password in addition to capturing 
the user’s typing behavior. The system gathers the 
keystroke times and extracts the timing features to create 
a template for each user’s typing behavior. This template, 
also referred to as a user’s profile, is stored in a database 
in correspondence to the user’s other details.  

The second phase takes place whenever the user needs to 
actually use the system. At that time, the system collects 
the user’s keystroke times and then extracts the timing 
features in the same manner pursued in the enrolment 
phase. After that, the system performs feature matching 
with the user’s template which is stored in the database. 
Next, based on the results of the matching process, one of 
two actions will take place: granting access to the user if 
the two sets of data are sufficiently similar or denying 
access to the user otherwise. 

Two types of keystroke systems are used and discussed in 
the literature; they are: fixed-text and free-text keystroke 
systems. Fixed-text, also referred to as static, obliges the 
users to use only a predefined text to produce the typing 
samples. The predefined text varies in the research done 
in this area in the way that some have utilized the same 
shared password for all users [5] and others used different 
fixed text for each user such as using the user’s name [6] 
or log-in IDs [7]. The main function of the fixed-text 
systems is applying it at log-in time in order to verify the 
user’s identity at the beginning of the session only. This is 
done by forcing the user to retype their password a 
number of times at the enrolment phase in order to 
determine the user’s typing rhythm for that specific 
password. This is considered a critical usability issue 
because of the amount of burden it adds on the user; still, 
the user needs to memorize the predefined text. Generally 
speaking, fixed-text keystrokes are mainly used for 
password hardening.  

Free-text systems, also known as dynamic, don’t restrict 
users to a particular text; on the contrary, they are given 
complete freedom to use any text of any length without 
any constraints. Unlike fixed-text, free-text systems will 
continue to collect the keystrokes, after successfully 
passing the log-in session, throughout the whole time that 
the user is logged-in for the reason of assuring the identity 
of the user during the full duration of that session. In free-
text systems, the user’s typing pattern is typically 
monitored during several days where he/she is performing 
regular typing tasks such as writing e-mails or typing 
word documents i.e. the enrolment phase is long yet 
transparent to the user. Even though, free-text and fixed-
text systems are quite similar in the way that they both 
utilize the key press and release times to build a user 
behavior profile, they clearly differ in the way that the 
system is trained and applied. 

All keystroke dynamics studies involve conducting five 
main experiment parts in the following order: recruiting 
participants, requesting a typing task to be done by the 
participants, collecting the keystrokes timing data, 
obtaining timing features from the raw keystroke data, 
training the classifier using part of the keystroke data and 
using the other part for testing the classifier [8]. We will 
go through the previous mentioned stages in order to 
compare and contrast what has been done in this area as 
reported in the current literature.   

3. Feature Extraction and Profile Creation 

The manner in which user data is collected in free-text 
keystroke systems is quite different from that of fixed-text 
systems in the way that a user is normally monitored for a 
period of time, a number of days for example. From all 
the typing data collected during this time, the system 
infers the typing pattern that the user typically follows 
which will be then stored as the user profile. The time it 
takes to type single letters or combinations of letters i.e. 
di-graphs, tri-graphs, even longer combinations is 
considered in free-text keystroke systems, yet there is a 
condition for including a particular letter or combination 
of letters in the template. It has to be typed often enough 
during the enrolment phase which will cause its mean and 
standard deviation to be statistically sound [9].  

This implies that it is not necessary to include all letters 
and letter combinations, typed during the enrolment 
phase, in the template. Therefore, much research includes 
a pre-processing stage for removing noise from the data 
set. Extreme duration or latency values, i.e. very small or 
very large outliers, are discarded; for example: only the 
durations and the latencies of keys for which the standard 
deviation was below a predefined value were added to the 
user’s template in [10, 1] while minimum and maximum 
values were fixed for the latencies that were used in [11].  

Timing features are basically calculated using the press 
and release times of every key the user types and then 
processed in a specific way before being stored in the 
user’s profile. Different methods were followed to carry 
out this part of the system, as shown in Table1. Here we 
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focus on some of the common methods used for feature 
extraction and profile creation in free-text keystroke 
systems.  

First we go through some of the simple feature extraction 
techniques found in the literature. Profiles in [1, 23] 
consisted of the mean latency and standard deviation of 
each di-graph in addition to the mean duration and 
standard deviation of each individual key. While the 
profiles in [11, 10] only included the latencies’ means and 
standard deviations for di-graphs that have occurred a 
minimum number of times. On the other hand, the down-
down duration time of di-graphs was used in [12, 13, 14]. 
This was extended in [15] to include more n-graphs 
including di-graphs, tri-graphs, and other longer n-graphs. 

Although, di-graph and tri-graph time has been used in 
plenty of research, Sim and Janakiraman [16] concluded 
from their several experiments that using di-graphs/tri-
graphs is not a good discriminative between users when 
the actual typed words are not taken into consideration. 
This is because the context of the text that a particular 
letter is included in regulates the manner in which it is 
typed [9] i.e. the letter ‘t’ has different duration in the 
word ‘sentence’ and ‘question’. Therefore, di-graphs/tri-
graphs are more effective for keystroke dynamics when 
using context-specific n-graphs.  

A more structured feature extraction was followed in 
some research where the timing features were extracted 
for only a set of key pairs which helped to increase the 
number of the di-graphs that can be found and compared 
in both the training and the testing samples. This increases 
the stability of its mean and standard deviation, in 
addition to reducing the required computation time. This 
was done in [17] by dividing all keystrokes into four 
attributes: left hand side keys, right hand side keys, 
spacebar and backspace bar; then, creating 16 diagraphs 
using these attribute combinations.  

A keyboard grouping technique was introduced in [18] for 
classifying the keys based on their location on the 
keyboard, which was divided into 8 sections; two left and 
right halves and then each half divided into 4 lines 
representing the rows of the keyboard. For example WM 
is represented as Left 2- Right 4. Moreover, only a fixed 
set of letters and two letter combinations were used in [9, 
19]; these sets were chosen based on each letters 
frequency in the English language. Letters including E, A, 
T ... etc. and di-graphs including: AT, TH, HE … etc. are 
frequently found in English text, therefore, it is a good 
idea to use the mean and standard deviation of their 
duration and latencies in the user template which will 
increase its stability.  

More complex features were also taken into consideration 
for the purpose of distinguishing users typing behavior. In 
addition to the usual key-press duration and di-graph’s 
down-down (duration) and up-down (latency) times, other 
features were utilized in [19, 20, 21]; such as: typing 
speed, error rate, press-release ordering and the 
percentages of using special characters. Other features 
that capture the editing patterns of the user which includes 

the usage of specific keys i.e. Home, End, Backspace, 
Delete, Insert, shortcut keys , arrow keys … etc. were also 
used. 

Another interesting feature was used in [22]; where all the 
commands executed in the first 10 minutes were 
collected. Although, it might seem irrelevant on first 
glimpse, an attacker is more likely to hurry to execute as 
many commands as he can on the victim’s machine 
during the first few minutes. This shows an obvious 
change in the users habits which can be used to detect 
illegal intrusion.  

4. Methods 

After extracting the users’ typing features and creating 
their profile templates has been completed, the 
classification process is performed to find the similarities 
and differences between the user’s template stored at the 
enrolment phase and the sample provided during the 
session the system is being used. Similar to fixed-text 
systems, many methods have been used for classification 
in free-text keystroke systems; ranging from simple 
statistical methods to more complex pattern recognition 
and neural network algorithms. Moreover, an even more 
sophisticated combination of methods was used in some 
cases. This section highlights the major classification 
approaches used in the current literature. Please refer to 
Table1 for more details. 

Simple statistical methods were used as a classification 
mean for typing behavior in several free-text keystroke 
systems studies. A variety of distance techniques have 
been used; Euclidean distance [18], weighted Euclidean 
distance [23], scaled Manhattan distance [9] and 
Bhattacharyya distance [24] were all utilized to find the 
level of similarity between samples. In addition, other 
statistical techniques were also used; decision trees were 
used in [22] while Kolmogorov-Smirnov Test (KS-test) 
was used in [13, 17].  

One of the most cited free-text studies was that conducted 
by Gunetti and Picardi (P&G) [15] which depended on 
two measures, the first of which was the relative measure 
which was used to find the degree of disorder between the 
two samples. The second was the absolute measure which 
was used to calculate the absolute distance between the 
two samples. In both the relative and absolute measures 
only n-graphs occurring in both typing samples were 
considered. Even though the results were very good, the 
computational costs required to identify users was 
expensive because it needed to compare the test sample 
with all users’ templates in the database which obviously 
makes it less scalable. Hu et al. [25] attempted to solve 
the scalability issue of P&G’s method using the k-nearest 
classifier.  In this approach, training samples were divided 
into clusters such that, every test sample was compared 
only with the samples of those users in the same cluster. 
Results for this modification revealed accuracy which 
compared well with that of P&G. Computation speed, on 
the other hand, proved to be 66.7% better. 
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A number of extensions have been carried out on P&G’s 
method by Davoudi and Kabir. In [12] they combined 
P&G’s method with a distance-calculating method that 
used histogram-based density estimation for each di-graph 
in order to find the probability density function of the di-
graph’s duration time. While in [26], they modified the 
relative distance in the P&G method by choosing the di-
graph with the highest difference in duration between the 

two samples to compute the difference of its positions 
first. After that, it was removed from the two timing 
vectors, and then, the new vectors were sorted again. They 
also applied one further modification to P&G’s method in 
[14] by adding a weight factor to the digraphs when 
computing the relative distance. This weight was defined 
as the ratio of the number of occurrences of this digraph 
and its standard deviation.  

Table 1: Chronological list of free-text keystroke systems. 

Study Features Method Subjects Samples Performance 
Monrose & Rubin [1] Di-graph latency, key duration Euclidian distance, probability 

score, weighted di-graph 
probability 

31 -  23% accuracy 

Gunetti & Ruffo [22] Di-graph latency, executed 
commands  

Decision tree 10 - 90% accuracy 

Dowland et al. [11] Di-graph latency Mean, Standard deviation  4 - 50% accuracy 
Gunetti & Picardi [15] N-graph duration Relative distance, absolute 

distance  
205 765 0.005% FAR, 

5% FRR 
Villani et al. [20] Di-graph latency & duration, 

key duration, typing speed, 
percentage of special 
characters, editing patterns 

Euclidian distance, k-nearest 
neighbour 

118 2360 99.8% - 44.2 
% accuracy 

Curtin et al. [19] Di-graph latency & duration, 
key duration, typing speed, 
percentage of special 
characters, editing patterns 

Euclidian distance, k-nearest 
neighbour 

30 - 100% - 97% 
accuracy 

Filho & Freire [30] Di-graph latency Simplified Markov chain 
model 

15 150 41.6% - 12.7% 
EER 

Janakiraman & Sim [24] Di-graph latency, key duration Bhattacharyya distance 22 - 100% - 70% 
accuracy 

Buch et al. [34] Di-graph latency & duration, 
percentage of special 
characters 

Euclidian distance 36 650 100% - 98% 
accuracy 

Hu et al. [25] N-graph duration Relative distance, absolute 
distance, k-nearest neighbour 

36 36554 0.045% FAR, 
0.005% FRR 
 

Hempstalk et al. [21] Di-graph latency, key duration, 
typing speed, error rate, P-R 
ordering 

One-class classification 10 150 11.3% FAR, 
20.4% FRR 

Ahmed et al. [29] Di-graph latency Neural network 22 - 0.015% FAR, 
4.82% FRR 

Davoudi & Kabir [12] Di-graph duration Relative distance, absolute 
distance, histogram-based 
density estimation  

21 315 0.015% FAR, 
0.0025% FRR 

Pilsung et al. [13] Di-graph duration Kolmogorov-smirnov Test - - 0.17% EER 
Samura & Nishimura [23] Di-graph latency & duration, 

key duration 
Weighted Euclidian distance 112 - 67.5% - 81.2% 

accuracy 
Bours & Barghouthi, [10] Di-graph latency, key duration Distance measure 25 - 79 – 348 

keystrokes 
Davoudi & Kabir [26] Di-graph duration Modified relative distance 21 315 0.08% FAR, 

18.8% FRR 
Davoudi & Kabir [14] Di-graph duration Weighted relative distance 21 315 0.07% FAR, 

15.2% FRR 
Park et al. [17] Key-pair duration  Kolmogorov-smirnov Test 35 - 0.089% EER 
Messerman et al. [38] N-graph duration Normalized relative distance 55 - 2.20% FAR, 

1.84% FRR 
Singh & Arya [18] Key-pair latency Euclidian distance 20 - 0.02% FAR, 

0.04% FRR 
Chantan et al. [28] Di-graph duration Bayes classifier - - 0% EER 
Bakelman et al. [27] Di-graph duration K-nearest neighbour 20 200 4% EER 

Bours [9] Di-graph latency, key duration Scaled Manhattan distance 25 - 182 keystrokes 
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Pattern recognition methods were also exploited in order 
to be used as a classification method for free-text 
keystroke authentication. For example: K-nearest 
neighbor was used in [27] and Bayes classifier was used 
in [28].  

Ahmed et al. [29] used a feed forward multi-layer 
perceptron neural network system for the purpose of 
classifying users. Two neural networks were used; a 
behavior-modeling network and a detection network. The 
first used the di-graph’s first and second keys press and 
release times to find the elapse time it took a user to press 
two successive keys. The second neural network used the 
di-graph’s times and the matching output from the 
behavior-modeling network to estimate which user’s 
typing patterns it represented.  

5. Performance 

Unfortunately, not only keystroke systems but all 
biometric authentication systems sometimes suffer from 
mistakes in the authentication decision. This is due to a 
number of reasons that has to do not only with the 
efficiency of the technique but also with the user himself 
or with his surroundings. First of all it is possible, yet not 
likely, that an imposter is mistakenly identified as the 
legitimate user if by chance the two persons typing 
patterns are close enough to the extent that the 
classification method fails to distinguish between them. 
Conversely, when one of the legitimate user’s fingers 
slips off the keyboard and causes the typing pattern to 
change slightly, the user may not be successfully 
authenticated. Thus, it is important to have some metrics 
to exactly measure the error rate which will help to 
identify the performance level that can be expected and 
tolerated by that system’s users.  

A very simple way to measure the error rate was used in 
earlier studies; using the Accuracy measure which is the 
percentage of successfully authenticated attempts 
compared to the total number of completed attempts. This 
technique was adapted in [1, 27, 22]. 

The most frequently used error rates for inferring the 
performance of an authentication system are: the False 
Accept Rate (FAR), also referred to as the Imposter Pass 
Rate (IPR) and the False Reject Rate (FRR), also called 
the False Alarm Rate (FAR). The FAR is the percentage 
of impostors who have successfully gained access to the 
system while the FRR is the percentage of legitimate 
users who have been denied access to the system. These 
two error rates were used by the majority of free-test 
keystroke systems including [15, 21, 18].  

Clearly, there is a trade-off between the FAR and FRR 
which can be controlled according to the level of security 
strictness required. FAR is required to be as low as 
possible in strictly secure applications while there is a 
compromise of having a higher FRR. Meanwhile, a higher 
FAR is acceptable in systems where security is not the 
major aim yet system usability has higher priority.  

The other commonly used error rate is the Equal Error 
Rate (EER), also referred to as Cross-over Error Rate 
(CER), which is the value where FAR and FRR are equal. 
It was used in many methods such as [17, 30, 27] where 
lower EER values indicate a more secure system.  

Due to the fact that free-text keystroke authentication is a 
continuous process, another metric which defines exactly 
how much time, in number of keystrokes, did it take the 
system to discover that an imposter had had access to the 
system has been proposed in some studies. This aims to 
detect the impostor as fast as possible, incorporating as 
few keystrokes as possible. This implies that an attacker 
would be detected before he can do more harm to the 
system.  A penalty-reward technique was introduced in [9, 
10] where a user was initially given the highest trust level 
prior to the user being successfully authenticated via a 
static authentication procedure. During the typing session, 
the user obtained a reward which he received in the form 
of an increase of his trust level when he typed in a manner 
sufficiently close to his typing template. Likewise, he 
obtained a penalty in the form of a decrease of his trust 
level when he typed in a manner far from his typing 
template. The system then locks-out a user if his/her trust 
level falls below a pre-determined threshold.  

6. Factors Affecting Performance 

There are many different performance measures used to 
determine the error rate in free-text keystroke systems, it 
is therefore often difficult to compare studies. This is also 
due to not having any form of standardization in the data 
collection process in these different experiments. Even 
though, the error rate in study A is lower than the error 
rate in study B, that does not necessarily mean that the 
method adapted in A is better than that used in B. 
Different factors may have a positive or a negative impact 
on the authentication process regardless of the actual 
method’s functionality. Standardization of such factors 
requires information exchange amongst researchers which 
would offer an improved comparing mechanism between 
different algorithms. There are a lot of different factors to 
be considered in free-text keystroke systems; a detailed 
list of these factors is provided in this section.  

Nevertheless, there are some solutions that can be used to 
standardize the factors involved. The first solution is 
using a widely available automated program for collecting 
data. A broad range of software is available 
commercially; for example: BehavioSec and 
KeystrokeID. Another solution involves the use of 
standardized databases which has been formerly created 
and published for the purpose of keystroke dynamics 
research. A list of some of the databases available online 
can be found in [31]. Using these solutions could not only 
standardize the data collection method, it could also 
decrease a duplication of effort among researchers. 

6.1 Environment Controlling  

There are two basic categories in the way experiments 
have been conducted in free-text keystroke studies. 
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Experiments have either been conducted in a controlled 
environment or in an uncontrolled one. In a controlled 
environment, users are asked to type on a specific 
machine which has built-in software for recording the 
keystrokes. Thus, the same external conditions are 
consistent for all users. The issue with this kind of 
arrangement is that it may not have the same 
characteristics as those encountered in realistic situations, 
therefore, the response may not be representative of a 
user’s typical typing patterns.  

In uncontrolled environments, on the other hand, users are 
asked to either download a program on their machines to 
collect their keystrokes [24, 30] or to use an online data 
collection form [15, 25]. This indicates that the data is 
collected wherever and whenever it is convenient to the 
user. Although, this method provides a realistic 
representation of normal circumstances for the user, each 
user’s surroundings can be very different, which makes 
the data harder to analyze. This might be the reason for 
inconsistencies in the keystroke data provided by the 
users. A lot research done using free-text keystroke 
systems has so far been conducted in uncontrolled 
environments due to the desire to imitate the lifelike 
conditions of a real authentication system [15, 12, 28]. 

6.2 Keyboard Type 

Using different brands of computer has a big impact on 
the user’s typing pattern since the keyboard of different 
brands differs in key size and spacing between keys which 
is clearly a reason that users may type differently than 
normal [31]. Furthermore, different keyboards have 
different key pressing sensitivity levels which 
consequently may affect the timing data collected from 
the users. Using a laptop keyboard adds another variation 
which can also affect the typing behavior; because laptops 
provide the freedom of movement, users may use it in 
different positions such as on a bed or on a table. 

Villani et al. [20] investigated the case of using different 
keyboards in free-text keystroke systems. One of their 
experiments was conducted using a desktop keyboard and 
another was performed on a lab top keyboard. A 
significant finding was produced in this study which can 
be summarized as: the system has a good chance of 
accurately identifying a user as long as he uses the same 
type of keyboard for training and testing. It is therefore 
important that researchers attempt to stick to using the 
same keyboard in order to maintain the same level of 
consistency throughout the data collecting process [19]. 

6.3 Entry Mode  

Because free-text keystroke systems are used for long 
text, it makes more sense to allow the users to enter 
whatever text they prefer. Having said that, studies 
conducted have actually used two different methods for 
text entry in the experiments conducted for free-text 
authentication. The first technique allowed the users to 
type completely free text as they desired, such as: typing 
an e-mail or typing a report for work or an essay for 
school [15, 16]. The second approach required the users to 

type a specific long text from an article, in which the users 
needed to copy specific text into a section specified for 
text entry [19, 25].  

In the research conducted by Villani et al. [20], 
participants were asked to be a part of several experiments 
with different conditions. One of these tests incorporated 
a copy-task in which the participants were asked to copy a 
predefined long text. Another included a free-text input 
where users were free to type-in arbitrary text. In this 
study, it was found that the accuracy of correctly 
authenticating a user decreased considerably when the 
user used different input modes in the training and testing 
phases. Moreover, it was also shown that the accuracy in 
free-text typing mode was higher than that in the copying-
task mode. This can be explained by the frequent pauses 
that a user has to perform in order to look at the text 
during the copy-task which might cause the collected data 
to be inconsistent. 

6.4 Text Length 

One area that keystroke systems lack in is the amount of 
information that can be obtained. The only data that can 
be collected while the user is actually typing is the time 
each key is pressed and released, from which only little 
information can be inferred, including the time interval 
between each two consecutive keys and the duration time 
for each key press. In addition the data is often not stable 
since it changes based on the environment surrounding the 
experiment or based on the state of mind of the user at the 
time. As a result, to reduce the effect of such instabilities, 
much research has shown more interest in using short 
free-text [e.g. 28, 1, 18]. Realistically though, it is not 
enough to use short texts to analyze keystrokes since it 
does not offer an adequate amount of information to 
distinguish between users. Consequentially, using longer 
sample texts is considered a better alternative [11, 15, 16].  

Moreover, Curtin et al. [19] provided evidence that using 
long-texts increases the chance of having more repetitions 
of the same di-graph in the training and testing samples 
which will, consequently, increase the stability of its mean 
and standard deviation significantly. The only problem 
with using long texts systems is that the training phase 
unavoidably needs more time. In their experiment, Curtin 
et al. investigated the accuracy of identifying users when 
typing long-texts under the condition that training and 
testing texts were different in length. The accuracy from 
different text/same length experiments was better than 
that from different text/different length experiments.  
Therefore, improving authentication accuracy can be 
achieved via standardization of the feature measurements 
i.e. the text size in this case. 

6.5 User’s Experience  

The user’s health and state of mind are a very crucial part 
of the authentication process using keystroke dynamics. 
The user’s typing skills and level of comfort while using a 
keyboard are additional characteristics that have a clear 
impact on the user’s typing behavior. The more skillful 
the user is, the more stable his/her fingers are located on 
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the keyboard and the more familiar he is with the position 
of each character on the keyboard. This will result in a 
more consistent typing pattern all through.  

Samura and Nishimura [23] conducted a study that 
examined keystroke dynamics for long free-texts. The 
experiment participants were divided into three groups 
based on their typing speed, specifically the number of 
letters typed in a 5 minute period. This study indicated 
that the best recognition accuracy was obtained from the 
group which typed fastest. 

6.6 Monitoring Mode 

A free-text keystroke system is a continual process of 
identity verification which is taking place during the 
course of the whole time a user is using the system. This 
can be done in either a continuous manner or a periodic 
manner. Continuous authenticating is done, in real time, 
every time a key is clicked on the keyboard [9]. Although 
this method provides strong imposter detection, it is 
computationally expensive. Periodic authentication, 
alternatively, is repeated every time a certain text is 
entered [24]. This is a less strict method, security wise, 
yet it is computationally cheaper. Moreover, waiting until 
a specific text is entered may cause the system to wait for 
long periods of time if this particular text does not occur 
frequently enough in the typed text; which will represent a 
security threat for the system.  

A periodic verification scheme that included the use of 
interruptions was utilized in [27]. In this research, the 
identity of the user was only verified after text breaks e.g. 
user leaving the PC for a coffee break. The system only 
captured the first burst of input after each pause in order 
to analyze it. The method does though reduce the 
frequency of authentication checks which is a key reason 
for reducing the false alarm rate in addition to decreasing 
the computational cost. 

6.7 Words Choice  

As mentioned, some free-text systems depend on periodic 
authentication where the authentication process is actually 
performed every time a particular text is entered. It is 
clear that choosing a specific piece of text is crucial for 
training and testing the system. It might be thought that 
using familiar English words may realize more consistent 
typing patters. However this has been shown to be wrong 
by Janakiraman and Sim [24].  

In their research, Janakiraman and Sim introduced a new 
“goodness” measure which was suggested to be used to 
calculate the universality, accuracy and expectancy of a 
word used for free-text keystroke authentication. 
Universality is a measure to identify if a word is one of 
the words commonly used by users or not. Accuracy 
measures how unique a word is. Lastly, expectance is 
used to calculate the average number of keystrokes typed 
before that word actually appears in the text. 
Unexpectedly, using the goodness measure, the result of 
this experiment revealed that non-English words, such as: 
‘tmr’ which is an abbreviation of ‘tomorrow’ used in 

online chats, are better than English words for 
identification and verification purposes. 

6.8 Number of Training Samples 

When considering the training phase in fixed-text 
keystroke systems, it is hard to ignore the time required 
for training the system by retyping the password again 
and again. This is not an issue in free-text keystroke 
systems where the user’s data is collected while 
performing daily tasks. This implies that the free-text 
method is more practical in real life situations and easier 
to use since it causes less burden for the user. For 
example, 15 samples were collected from the participants 
over a two weeks period in [27]; each sample was 400 
characters long of whatever the user needed to type at the 
time. This demonstrates that even though the samples 
were long, they were collected transparently to the user. 

From the experiment results conducted by Gunetti et al. 
[32] it was found that the accuracy of the system generally 
escalated when the number of samples in the user’s 
profile was increased. Meanwhile an effective mechanism 
for profile enhancement was suggested in [18] where the 
user’s profile was expanded, during the typing session, by 
adding new key-pairs timing data attained from text 
entered by the user after being authenticated. 

7. Applications 

Although more than a quarter of a century has passed 
since keystroke authentication was first researched, it has 
not yet been applied much in the security field. In addition 
to the security that keystroke authentication systems can 
provide by locking-up the workstation when an imposter 
is detected at any point of time during which the system is 
used, a wide variety of other applications can also benefit 
from such authentication schemes. The applications, listed 
in this section, are examples of some situations where 
free-text keystroke authentication is more applicable than 
fixed-text systems.   

7.1 Different Languages Authentication 

Most of the work done on keystroke dynamics has 
concentrated on using the same language for training and 
testing the system. Gunetti et al. [32] though gave 
empirical proof that free-text typing patterns could be 
used to authenticate the user even when the test samples 
were written in different languages to that of the samples 
in the user’s profile. Evidently, this only works when the 
two languages share a significant number of di-graphs. 
So, languages like English and Italian which have largely 
the same alphabet can be used for this kind of 
authentication but English and Arabic, for example, 
cannot be used because they have a completely different 
set of letters.  

The data used in this study was provided by Italian 
speakers each of whom provided two samples typed in 
Italian and another two samples typed in English. From 
the experimental results, about 10% mistakes in 
identification occurred when the test sample was in a 
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language different to that of the user’s profile. Better 
performance was obtained when the user’s profile 
contained samples in both languages. The error rate was 
even smaller when the test sample was in the same 
language as that which dominated the samples in the 
user’s profile. By experimenting with different 
combinations of template samples and test samples, it was 
clear that samples provided by the same person while 
typed in different languages were more similar than 
samples provided by different persons while typed in the 
same language. An average performance of 1.61% FRR 
and 3.23% FAR was achieved in total.  Thus, keystroke 
authentication for different language texts, is possible, 
though more difficult than the case where all samples are 
in the same language. 

7.2 Old Profile Authentication 

Most of the studies conducted in the free-text keystroke 
authentication field have had only a few months gap 
between the time the training samples were collected and 
the time in which the test samples were gathered. Gunetti 
et al., however, showed in [33] that a typing profile could 
still be used to identify a user, even though, it has been 
created a long time before the test samples are provided 
and investigated. Their original experiment involved 30 
participants whom were asked to provide 15 samples 
each. The samples consisted of whatever the users choose 
to type. One and a half years later, the same 30 volunteers 
were asked again to provide another two free-text 
samples. It was discovered that even after such a long 
period of time their keystroke dynamics system was still 
able to identify users with an average accuracy of a 1.67% 
FAR and a 11.67% FRR. 

7.3 Intrusion Detection 

The continual authentication scheme that the free-text 
method provides is a very effective intrusion detection 
method. It is mainly used to notice any warnings with 
regards to irregularities in the typing patterns of a specific 
user. Moreover, free-text keystroke systems are used for 
active monitoring of the system which can aid in finding 
any intrusion quickly and reliably. One important issue 
that has to be addressed here is the generation of false 
alarms in continual keystroke-based authentication 
systems. It might cause frequent and rapid system halts 
with much annoyance for the users when they falsely 
occur. Therefore, Gunetti et al. [32] suggested using it 
combined with other authentication methods in order to 
reduce the false alarm rate.  

7.4 Online Marketing 

Free-text keystroke systems can also be utilized for 
identifying users over the internet. This is done by 
capturing a user’s typing patters on their first visit to the 
website and then it can be used to identify returning users 
[32]. This data can be used to determine user preferences 
and interests which can be employed for marketing 
purposes. This approach, on the other hand, has many 

privacy issues regarding the amount of information that 
users are happy to hand-in to the websites they visit.   

7.5 Cybercrime Investigating 

User tracking through typing patterns can also help in 
cybercrime and investigating illegal electronic movements 
of anonymous users. Using free-text keystroke schemes 
was suggested for network forensics in [29] through 
attacker profiling which is conducted by collecting his/her 
typing patterns when surfing websites on the internet. 
This profile, collected for each user, can be used as a 
digital fingerprint gathered from the cybercrime scenes. 
This is considered as passive fingerprinting because it can 
be created without the knowledge of the attacker which 
can be extremely beneficial in fraud or identity theft cases 
where attackers are completely oblivious that they are 
being monitored. The issue with such a digital fingerprint 
is that it must be built progressively which requires a lot 
of internet service providers to collaborate and work 
together in facing such threats. 

7.6 Identification and Authentication 

Keystroke dynamics systems are used for two different 
purposes. Firstly: identification, which is a way of 
determining the user’s identity when no data is available 
about their identity beforehand.  In this method, a test 
sample is matched with all the templates stored in a 
database. The system assigns the user to the identity of the 
person whose template is the most similar to the test 
sample. The second purpose is authentication which is 
used to verify the identity of the user. The user supplies 
his identity and the system takes on the responsibility of 
making sure that the user is who he/she claims to be. The 
test sample in this case is only compared with the user’s 
template in the database.  

The complexity of performing identification is clearly 
higher than that of authentication since it includes 
comparing the test sample with all available templates 
which may be a very large undertaking in large scale 
systems. Identification also requires a larger amount of 
data i.e. longer text. From the definition of both methods, 
fixed-text keystrokes system is used mostly for 
authentication since it employs a password that is 
considered a mean for providing the user’s identity.  Free-
text keystrokes system, on the other hand, is used for both 
identification and authentication [e.g. 34, 15]. 

7.7 User’s Emotion Detection 

Since free-text keystroke systems gather a lot of data from 
the user during the whole time he/she is using the 
computer, this data can also be used to infer the emotional 
state that the user is going through during the typing 
process. This has been employed in [35] to determine 
what the user is feeling during every day free typing. 
Feelings like frustration, focus, anger, stress, relaxation, 
excitement and tiredness were derived from the user’s 
typing behavior. Extracting the emotional state that the 
user is going through in a particular period of time that the 
user is using the system has many benefits for intelligent 
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computers. It helps the system make the right decisions 
regarding the best interaction method to practice with the 
user. The issue with using keystrokes for user emotion 
detection is that it can cause an invasion into the user’s 
typing experience. For example, in [35], the user was 
required to determine his emotion every 10 minutes in 
order to train the system to identify his emotions 
automatically.  

8. Security Issues 

In this section we discuss the security level that free-text 
keystroke authentication systems provide. A list of the 
most common threats is provided here along with the 
degree of safety that free-text keystroke systems deliver 
against these dangers [36].     

1. Shoulder surfing and user mimicking: is an attack in 
which the attacker monitors the victim typing, during the 
typing process, in order to try imitating his/her typing 
behavior. Even though there is little possibility of an 
attacker successfully mimicking a user typing pattern in 
fixed-text keystrokes, it is even harder to do so in free-text 
systems. Since it requires the attacker to observe the 
user’s behavior for the whole time the user is logged-in, it 
is very rare that an attacker can actually imitate all the 
aspects of the user’s typing behavior. 

2. Spyware: is software downloaded into the victims’ 
computer without their consent which is used to record 
information about them. Spyware is perhaps the biggest 
threat to keystroke dynamic authentication systems 
because it can record exactly the time each key is pressed 
and released. This can be used by the attacker to simulate 
the legitimate user’s typing behavior. Nevertheless, it is 
still a hard task for the attacker to undertake in the case of 
the huge amount of data that free-text systems need to 
analyze. 

3. Social engineering:  is manipulating the user in order 
to obtain his/her private information. Tricking the victim 
to reveal his typing pattern is though not possible using 
telephone calls or face to face meetings. Yet, phishing e-
mails can be used to trick the user to type some text which 
can be used to extract the victim’s typing patterns.  But 
even then, the attacker has to get hold of a sufficient 
amount of keystrokes to be able to actually simulate the 
victim’s free-text typing patterns. 

4. Guessing: is trying to guess the way that a victim 
types.  There are simply too many different ways that a 
user might normally follow when typing. Therefore, 
guessing the typing behavior of another person is almost 
impossible in free-text keystroke dynamics. 

9. Conclusions 

Free-text keystroke dynamics is a non-intrusive method, 
since it only uses the behavioral data that users convey 
during regular typing tasks. In addition to that, it is 
relatively inexpensive; the only required hardware is the 
keyboard. However the most important benefit that free-
text keystroke systems provide is that the typing patterns 

can still be used for authenticating users even after the 
authentication phase has passed. In addition, free-text 
authentication provides a valuable balance between 
security and usability which is highly desirable in the 
businesses world.  

One concern about free-text keystrokes is that it tends to 
be instable in the sense that it might be influenced by the 
user state or by environmental conditions. Indeed some 
level of instability might occur without any obvious 
cause. Therefore, free-text authentication is probably best 
used as a part of a multi-factor authentication scheme [28, 
37] that provides a higher level of security.  

Generally, it is obvious that keystroke dynamics works 
more accurately for fixed-text compared with free-text. 
Therefore, it might be a good practice for free-text tests to 
take into consideration the actual words that the user is 
typing, in addition to the key hold time the di-graph’s 
duration and latency times.  

Moreover, determining the best method to follow to 
achieve the best authentication accuracy is not a 
straightforward task. Due to the variation of conditions 
that might be affecting the study participants, environment 
or procedure, the comparison between two or more 
methods is not always accurate. Therefore, a 
standardization mechanism has to be established to assure 
that factors affecting performance are in agreement in all 
the studies and hence can be properly compared. 

Lastly, it is clear that the idea of using keystroke 
dynamics is not only restricted to the traditional keyboard, 
it can be conveyed to many other mechanisms like ATM 
machines and cell phones, which will then provide better 
every day protection for the standard user. 

References 

[1] F. Monrose and A. Rubin, “Authentication via Keystroke 
Dynamics”, in the Fourth ACM Conference on Computer 
and Communication Security, 1997. 

[2] M. Karnan, M. Akila and N. Krishnaraj, “Biometric Personal 
Authentication Using Keystroke Dynamics: a Review”, 
Applied Soft Computing, Vol. 11, No. 2, 2011, pp. 1565–
1573. 

[3] R. Gaines, W. Lisowski, S. Press and N. Shpiro, 
“Authentication by Keystroke Timing:  some Preliminary 
Results”, Rand Corporation, Rep.  R-256-NSF, 1980. 

[4] S. J. Shepherd, “Continuous Authentication by Analysis of 
Keyboard Typing Characteristics”, in European Convention 
on Security and Detection, 1995, pp. 111-114. 

[5] R. Giot, M. El-Abed, B. Hemery and C. Rosenberger, 
“Unconstrained Keystroke Dynamics Authentication with 
Shared Secret”, Computers and Security, Vol. 30, 2011, pp. 
427-445. 

[6] J. Garcia, “Personal Identification Apparatus”, U.S. Patent 
4621334, 1986. 

[7] M. S. Obaidat and B. Sadoun, “Verification of Computer 
Users Using Keystroke Dynamics”, in IEEE Transactions on 
Systems, Man and Cybernetics - Part B: cybernetics, 1997, 
Vol. 27. 

[8] K. S. Killourhy, “A Scientific Understanding of Keystroke 
Dynamics”, PhD thesis, Computer Science Department, 
Carnegie Mellon University, Pittsburgh, US, 2012. 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 9

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



[9] P. Bours, “Continuous Keystroke Dynamics: a Different 
Perspective Towards Biometric Evaluation”, Information 
Security Technical Report, Vol. 17, 2012, pp. 36-43. 

[10] P. Bours and H. Barghouthi, “Continuous Authentication 
Using Biometric Keystroke Dynamics”, in The Norwegian 
Information Security Conference, 2009. 

[11] P. S. Dowland, H. Singh and S. M. Furnell, “A Preliminary 
Investigation of User Authentication Using Continuous 
Keystroke Analysis”, in the IFIP 8th Annual Working 
Conference on Information Security Management and Small 
Systems Security, 2001. 

[12] H. Davoudi and E. Kabir, “A New Distance Measure for 
Fee Text Keystroke Authentication”, in the14th International 
CSI Computer Conference, 2009, pp. 570-575. 

[13] K. Pilsung, P. Jooseong, P. Sunghoon , Y. Joonha and C. 
Sungzoon, “Keystroke Dynamics Analysis Based on Long 
and Free Text”, in Fall Korean Industrial Engineering 
Conference, 2009. 

[14] H. Davoudi and E. Kabir, “Modification of the Relative 
Distance for Free Text Keystroke Authentication”, in the 5th 
International Symposium on Telecommunications, 2010. 

[15] D. Gunetti and C. Picardi, “Keystroke Analysis of Free 
Text”, ACM Transactions on Information System Security, 
Vol.8, No.3, 2005, pp. 312-347. 

[16] T. Sim and R. Janakiraman, “Are Digraphs Good for Free-
text Keystroke Dynamics?”, in the IEEE Conference on 
Computer Vision and Pattern Recognition, 2007, pp.1-6. 

[17] S. Park, J. Park and S. Cho, “User Authentication Based on 
Keystroke Analysis of Long Free Texts with a Reduced 
Number of Features”, in the Second International 
Conference on Communication Systems, Networks and 
Applications, 2010. 

[18] S. Sing and K.V. Arya, “Key Classification: a New 
Approach in Free Text Keystroke Authentication System”, 
in Third Pacific-Asia Conference on Circuits, 
Communications and System, 2011, pp. 1-5. 

[19] M. Curtin , C. Tappert, M. Villani, G. Ngo, J. Simone, H. 
St. Fort, and S.-H. Cha, “Keystroke Biometric Recognition 
on Long-text Input: a Feasibility Study”, in IMECS, 2006.  

[20] M. Villani, C. Tappert, G. Ngo, J. Simone, H. St. Fort and 
S. Cha, “Keystroke Biometric Recognition Studies on Long-
text Input Under Ideal and Application-oriented Conditions”, 
in the IEEE Computer Society Workshop on Biometrics, 
2006.  

[21] K. Hempstalk, E. Frank and I. H. Witten, “One-class 
Classification by Combining Density and Class Probability 
Estimation”, in the European Conference on Machine and 
Learning and Principles and Practice of Knowledge 
Discovery in Database, 2005, pp.505-519.   

[22] D. Gunetti and G. Ruffo, “Intrusion Detection through 
Behavioral Data”, in the Third International Symposium on 
Advances, 1999, pp. 383-394. 

[23] T. Samura and H. Nishimura, “Keystroke Timing Analysis 
for Individual Identification in Japanese Free Text Typing”, 
in ICROS-SICE International Joint Conference, 2009. 

[24] R. Janakiraman and T. Sim, “Keystroke Dynamics in a 
General Setting,” in Advances in Biometrics, 2007, Vol. 
4642, pp. 584–593. 

[25] J. Hu, D. Gingrich and A. Sentosa, “A K-nearest Neighbor 
Approach for User Authentication through Biometric 
Keystroke Dynamics”, in IEEE International Conference on 
Communications, 2008, pp. 1556-1560. 

[26] H. Davoudi, E. Kabir, ”User Authentication Based on Free 
Text Keystroke Patterns”, in the 3rd Joint Congress on 
Fuzzy and Intelligent Systems, 2010. 

[27] N. Bakelman, J. V. Monaco, S. H. Cha, and C. C. Tappert, 
“Continual Keystroke Biometric Authentication on Short 

Bursts of Keyboard Input”, in Pace University CSIS 
Research Day, 2012. 

[28] C. Chantan, S. Sinthupinyo and T. Rungkasiri, “Improving 
Accuracy of Authentication Process via Short Free Text 
Using Bayesian Network”, International Journal of 
Computer Science Issues, Vol. 9, No. 3, 2012. 

[29] A. A. E. Ahmed, I. Traore and A. Almulhem, “Digital 
Fingerprinting Based on Keystroke Dynamics”, in the 
Second International Symposium on Human Aspects of 
Information Security and Assurance, 2008. 

[30] J. R. M. Filho and E. O. Freire, “On the Equalization of 
Keystroke Timing Histogram”, Pattern Recognition Letters, 
Vol. 27, No.13, 2006, pp. 1440-1446. 

[31] S. P. Banerjee and D. L. Woodard, “Biometric 
Authentication and Identification Using Keystroke 
Dynamics: a Survey”, Journal of Pattern Recognition 
Research, Vol. 7, 2012, pp. 116-139. 

[32] D. Gunetti, C. Picardi, and G. Ruffo, “Keystroke Analysis 
of Different Languages: a Case Study”, in the Advances in 
Intelligent Data Analysis, 2005, Vol. 3646, pp. 133–144, 

[33] D. Gunetti, C. Picardi, and G. Ruffo, “Dealing with 
Different Languages and Old Profiles in Keystroke Analysis 
of Free Text”, in the Advances in Artificial Intelligence, 
2005, Vol. 3673, pp. 347–358. 

[34] T. Buch, A. Cotoranu, E. Jeskey, F. Tihon and M. Villani, 
“An Enhanced Keystroke Biometric System and Associated 
Studies”, in Pace University CSIS Research Day, 2008. 

[35] C. Epp, M. Lippold and R. L. Mandryk, “Identifying 
Emotional States Using Keystroke Dynamics”, in the 
Conference on Human Factors in Computing Systems, 2011, 
pp. 715-724. 

[36] D. Shanmugapriya and G. Padmavathi, “A Survey of 
Biometric Keystroke Dynamics: Approaches, Security and 
Challenges”, International Journal of Computer Science and 
Information Security, Vol. 5, No. 1, 2009. 

[37] O. S. Adeoye, “Evaluating the Performance of Two-factor 
Authentication Solution in the Banking Sector”, 
International Journal of Computer Science Issues, Vol. 9, 
No. 2, 2012. 

[38] A. Messerman, T. Mustafic, S. A. Camtepe and S. 
Albayrak, “Continuous and Non-intrusive Identity 
Verification in Real-time Environments Based on Free-text 
Keystroke Dynamics,” in the International Joint Conference 
on Biometrics, 2011, pp.1-8. 

 
 
Arwa Alsultan is pursuing a PhD degree in Computer Science 
from the School of Systems Engineering at the University of 
Reading, Reading, Berkshire, UK. She completed her Master’s 
degree in Computer Science from the Computer and Information 
Science College at the King Saud University, Riyadh, SA in 2010. 
She works as a lecturer at the IT Department in the Computer and 
Information Science College at the King Saud University, Riyadh, 
SA. 
 
Kevin Warwick is Professor of Cybernetics at the University of 
Reading. His research interests are in Artificial Intelligence, 
Robotics, Biomedical Engineering and Control Systems. He has 
D.Sc. degrees from both Imperial College London and the Czech 
Academy of Sciences. He has published over 500 research 
papers and is perhaps best known for his experimentation with 
implant technology. 
 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 10

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



IET Biometrics
Research Article
Free-text keystroke dynamics authentication
for Arabic language
IET Biom., 201
164 This is an open access article published by the IET under the Creative Co

(http://creativeco
ISSN 2047-4938
Received on 29th October 2015
Revised on 11th January 2016
Accepted on 8th February 2016
doi: 10.1049/iet-bmt.2015.0101
www.ietdl.org
Arwa Alsultan1 ✉, Kevin Warwick2, Hong Wei1

1School of Systems Engineering, University of Reading, Reading RG6 6AH, UK
2Vice Chancellors Office, Coventry University, Priory Street, Coventry CV1 5FB, UK

✉ E-mail: a.f.a.alsultan@pgr.reading.ac.uk

Abstract: This study introduces an approach for user authentication using free-text keystroke dynamics which
incorporates text in Arabic language. The Arabic language has completely different characteristics to those of English.
The approach followed in this study involves the use of the keyboard’s key-layout. The method extracts timing features
from specific key-pairs in the typed text. Decision trees were exploited to classify each of the users’ data. In parallel for
comparison, support vector machines were also used for classification in association with an ant colony optimisation
feature selection technique. The results obtained from this study are encouraging as low false accept rates and false
reject rates were achieved in the experimentation phase. This signifies that satisfactory overall system performance
was achieved by using the typing attributes in the proposed approach, while typing Arabic text.
1 Introduction

The ongoing quest to find a technique to protect sensitive data and
computer systems from harmful imposters, whilst maintaining ease
of use, is an important challenge in the field of information
security. This paper focuses on a novel method that verifies the
identities of users based on their unique typing rhythms in Arabic
language. Keystroke dynamics is considered to be an effortless
behaviour-based method for user authentication which employs the
person’s typing patterns for validating his/her identity. As
mentioned in [1], keystroke dynamics is ‘not what you type, but
how you type’. In this approach, the user types in text, as usual,
without any extra work to be done for authentication. Moreover, it
only involves the user’s own keyboard and no other external
hardware.

Keystroke dynamics is based on timing features that compute time
lapses between two actions on the keyboard such as key press and
key release. In this paper, we investigate the use of such timing
features with Arabic input. We consider a keyboard-layout-based
method to compare timing features of free-text typing samples. A
large feature set is deployed in this research for the purpose of
trying to find the best representative features of the typing patterns
in human behaviour using the least amount of training, specifically
while typing in Arabic.

Keystroke dynamics have been studied comprehensively using
English input. Other languages have not yet received the same
attention as English has in the research literature to date.
Languages such as Italian, which share the same alphabet with
English, have been included in some research on keystroke
dynamics, e.g. [2]. To our knowledge, there has been no reported
research that has utilised Arabic input in keystroke dynamics
authentication. Use of handwriting identification in Arabic writing
has however been reported on in the Arabic-related literature [3].
Therefore, in this paper we are attempting to incorporate Arabic
input in keystroke dynamics user authentication. The Arabic
language has completely different characteristics to those of
English, thus using typing patterns for Arabic input to authenticate
users is an important contribution of this paper.

Arabic and English languages are very different to each other.
Whereas English is a Germanic language from the Indo-European
language family, Arabic is a Semitic language belonging to the
Afro-Asiatic language family [4]. Arabic has 28 letters which are
completely different from the English alphabet. Moreover, Arabic
text is written from right to left which is a unique characteristic for
merely Arabic, Urdu and Hebrew scripts [5]. In addition, there is
no distinction between upper and lower cases in Arabic.
Punctuation rules are much looser than those in English and less
commonly used [6].

In this paper, decision trees (DTs) and support vector machines
(SVMs) associated with ant colony optimisation (ACO) are used
to classify the typing samples collected from participants.

The rest of this paper proceeds as follows. Section 2 briefly
introduces keystroke dynamics theory and discusses similar prior
research in the area of keystroke dynamics user authentication.
Section 3 describes the method developed in this paper, in which
we discuss the timing features included in this paper. In Section 4,
we present our experimental results and consider the data space
under investigation. Discussion about our results and some
comparisons with previous studies are also included in this
section. The final section concludes the topic and points out our
research contributions and future work.
2 Related work

There are two basic classes of keystroke dynamics: namely,
fixed-text and free-text [7]. The fixed-text keystroke dynamics
method uses the typing pattern of the user while entering a
predefined text. This text has been previously used to train the
system and is delivered by the user at log-in time. Contrariwise,
the free-text keystroke method is considered easier for the user as
it overcomes the problem of memorising the text, something that
the fixed-text keystrokes method suffers from [8]. As its name
suggests in the free-text keystrokes method, the text used for
enrolment does not have to be the same as the text used for log-in.
Moreover, free-text keystroke dynamics is used for enhancing
security through continuous and non-intrusive authentication [9].
Thus, the latter method is the one that has been considered in this
paper as it can be applied in many useful settings to aid in real-life
situations in addition to the benefit it provides in balancing
between security and usability [10].

Keystroke dynamics is utilised in user authentication by extracting
timing features at the log-in session and comparing them with the
timing features extracted at the enrolment session. These features
6, Vol. 5, Iss. 3, pp. 164–169
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include, among others: typing latency [11], keystroke duration [1],
typing speed and shift key usage patterns [12]. Another feature
which requires a specific keyboard for its measurement is typing
pressure [13]. If the extracted features are adequately similar, the
user is authenticated and if not the user might be denied access or
at least asked to provide further identity information.

A large amount of research has been carried out over the years to
investigate how keystroke dynamics can aid user authentication.
Joyce and Gupta [11] used a statistical method that employs the
absolute distances between the means of the signature data and
test data; each of which consists of a fixed-text that includes
username, password, first name and last name.

Gunetti and Picardi [14] meanwhile introduced an effective
method for free-text authentication which was further explored by
many other researchers. Their method was based on two measures:
a relative (R) measure and an absolute (A) measure. These
measures were used to calculate the degree of disorder and the
absolute distance between two samples that share some n-graphs,
i.e. n-characters-long letter combinations.

Another technique was introduced by Singh and Arya [15] that
considered benefiting from key-pairs for free-text authentication. In
that research, a keyboard grouping technique was used for creating
timing vectors of flight times entered by the user. The keys were
grouped based on their position on the keyboard, which was
divided into 8 sections; two left and right halves and then each
half divided into 4 lines representing the rows of the keyboard.
The Euclidean distance was then used to calculate the similarity
between the two vectors.

Other researchers relied on pattern recognition classifying
methods such as the work done by Hu et al. [16]. They used the
k-nearest neighbour approach together with the distance
measurement proposed by Gunetti and Picardi [14] in order to
classify the users’ keystroke dynamics profiles. Neural networks
have also been used for keystroke pattern classification such as the
research conducted by Raghu et al. [17], in which they
incorporated a three-layered back propagation neural network to
verify the identity of users.

It should be indicated that the previously mentioned studies,
involved only English input from the user. Whilst such
experimentation is very important, there is clearly a lack of
language variation used in such systems.

The work done by Gunetti et al. [2] is one of the very few research
involving languages other than English in keystroke dynamics. In
that study, a combination of the two measures developed by
Gunetti and Picardi [14] is also used to assess the similarities
between the typing patterns using the duration time of the
di-graphs in samples typed in both English and Italian. Italian was
used since the two languages, i.e. English and Italian, share a
considerable number of di-graphs (key-pairs). From experimenting
with different combinations of template samples and test samples,
the best results were achieved when the user’s profile contains
samples in both languages yet the performance increases when the
language of the testing samples is the dominant language in the
samples forming the user profile.

Another study directly relevant to the research reported in this
paper was that by Samura and Nishimura [18], in which they
conducted a study that examined keystroke dynamics for long
free-texts in Japanese language. In this paper, hold time and flight
Fig. 1 Key-pair relationship formation
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time of Japanese language-specific keystrokes were used as timing
features. To compare the test and training timing vectors, a
weighted Euclidean distance was used. However, though this
paper was applied to Japanese language, the keyboard used was an
English standard keyboard. Subjects carried out the typing process
by entering the alphabet letters (in English) corresponding to the
Japanese characters.
3 Methodology

3.1 Key-pair formation

This research examines the use of Arabic input in the novel approach
we introduced in [19] for free-text keystroke dynamics
authentication. This approach specifically makes use of the
keyboard’s key-layout. The technique employs the keystroke
features extracted between two keys (key-pair) that are pressed
consecutively and have a relationship on the keyboard layout. This
relationship depends mainly on the key position of each character
on the keyboard in relation to the other characters. Moreover,
these relationships can vary depending on the location of the two
keys with respect to the overall keyboard layout. The keyboard
used in this paper was the standard Arabic keyboard since it is the
most commonly used Arabic keyboard [20].

There are five categories for key-pair relationships:

(i) Adjacent: keys located next to each other on the keyboard.
(ii) Second adjacent: keys that are one key apart from each other.
(iii) Third adjacent: keys that are two keys apart.
(iv) Fourth adjacent: keys that are three keys apart.
(v) None adjacent: keys that are more than three keys apart.

Fig. 1 illustrates the key relationship concept when considering the
key ل‘ ’. This is just an example, as the relationship formation can be
performed in the same way for all the key-pairs in the typed text.

Each of these relationship categories can fall into one of the
following overall locations:

(i) Both keys are on the right-hand side of the keyboard.
(ii) Both keys are on the left-hand side of the keyboard.
(iii) The two keys are located on different sides of the keyboard, i.e.
the first key is located on the right-hand side while the second key is
on the left or vice versa.

For further explanation, an example is provided in Fig. 2. One
colour represents the right-hand side section of the keyboard,
whereas the other colour represents the left-hand side. Other
characters that are not located in the main part of the keyboard, e.
g. the num-pad keys, arrows and the function keys are excluded
from the key-pair formation; they are therefore shown in white.

As an example, we demonstrate the key-pairs forming the text ‘ مئلاتن ’
which is entered from right to left as the following sequence: ‘ مئالتن ’.
The key-pairs are:

† ‘ تن ’: Adjacent/RightSide.
† ‘ لات ’: SecondAdjacent/DifferentSide.
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Fig. 2 Overall key location
† ‘ ئلا ’: FourthAdjacent/LeftSide.
† ‘ مئ ’: NonAdjacent/DifferentSide.

This process is pursued to break the text down into key-pairs and
then classify each key-pair typed on the main part of the keyboard.
In total, there are 15 different combinations of key-pairs that any
two keys can be classified into.

Given that the key-pairing method significantly boosts the number
of key-pairs that can be found and compared in the training and
testing samples, it was adopted as a way to increase the soundness
of the mean and standard deviation of the timing features. This
will help to increase the stability of the timing vectors. This is an
obvious benefit of the suggested scheme as it utilises a small
amount of typing data in the best possible way. Therefore, it
succeeds in authenticating users based on the smallest amount of
training possible.

For example, the following training and testing data have only two
similar key-pairs (‘ لا ’ and ‘ ري ’) to which typing times can be
compared in the conventional keystroke dynamics authentication
process, i.e. without the use of key-pairs [14]. However, this is not
the case when using the key-pair method as there are more instances
of each key-pair extracted from both the training and testing data.

Training data: ‘ ريغصةباغلادرق ’.
Testing data: ‘ ريبكرحبلاتوح ’.

Pairs that involve spaces were discarded because of the work
conducted in [15], which provided evidence that a user normally
experiences unusual pauses before and after pressing the space
key, thereby leading to inconsistent typing behaviour. Moreover,
key-pairs that included the backspace key were also excluded for
similar reasons.
Fig. 3 Keystroke timing features

Table 1 Feature set

Key-pair category Feature set

Adjacent/RightSide AR-H1 AR-H2 AR-DD AR-UU AR-UD
Adjacent/LeftSide AL-H1 AL-H2 AL-DD AL-UU AL-UD
Adjacent/DifferentSide AD-H1 AD-H2 AD-DD AD-UU AD-UD
SecondAdjacent/
RightSide

SR-H1 SR-H2 SR-DD SR-UU SR-UD

SecondAdjacent/LeftSide SL-H1 SL-H2 SL-DD SL-UU SL-UD
SecondAdjacent/
DifferentSide

SD-H1 SD-H2 SD-DD SD-UU SD-UD

ThirdAdjacent/RightSide TR-H1 TR-H2 TR-DD TR-UU TR-UD
ThirdAdjacent/LeftSide TL-H1 TL-H2 TL-DD TL-UU TL-UD
ThirdAdjacent/
DifferentSide

TD-H1 TD-H2 TD-DD TD-UU TD-UD

FourthAdjacent/RightSide FR-H1 FR-H2 FR-DD FR-UU FR-UD
FourthAdjacent/LeftSide FL-H1 FL-H2 FL-DD FL-UU FL-UD
FourthAdjacent/
DifferentSide

FD-H1 FD-H2 FD-DD FD-UU FD-UD

NonAdjacent/RightSide NR-H1 NR-H2 NR-DD NR-UU NR-UD
NonAdjacent/LeftSide NL-H1 NL-H2 NL-DD NL-UU NL-UD
NonAdjacent/
DifferentSide

ND-H1 ND-H2 ND-DD ND-UU ND-UD
3.2 Feature definition

Once the key-pairs have been obtained from the users’ raw data, the
keystroke features are extracted [21]. These features were computed
for every key and key-pair using two main values, specifically: the
press time (Dn) and the release time (Un) of each key (n) in
milliseconds. In this research, five keystroke features were
extracted from each key-pair as shown in Fig. 3:

(i) Dwell time or keystroke duration or hold time: is the time for
which a key is pressed until it is released. Consequently, each
key-pair has two hold times:
(a) Hold time for the first key (H1).
(b) Hold time for the second key (H2).

(ii) Flight time or keystroke latencies: there are three types of
latencies:
(a) Down–Down (DD) or Press–Press time: is the interval time
between two successive key presses.
(b) Up–UP (UU) or Release–Release time: is the interval time
between two successive key releases.
(c) Up–Down (UD) or Release–Press time: is the interval time
between a key release and the next key press.
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3.3 Feature subset selection and classification

Five timing features were defined for each key-pair appearance in the
text. This was done for all 15 types of key-pairs. Therefore, the
overall number of timing features was 75 (5 timing features × 15
key-pairs). Table 1 lists all the 75 features extracted from all
key-pairs. The feature abbreviations listed in this table combine
the key-pair category and the timing feature, for example:
‘AR-H1’ stands for: Adjacent/RightSide-Hold1 and so on.

Having such a large feature set in its entirety adds more
computational cost in addition to raising the complexity of the
classification process [22]. Therefore, it is necessary to incorporate
a feature subset selection mechanism.

Feature subset selection is considered as an optimisation problem,
in which the space of all possible features is scrutinised to recognise
the feature or set of features that produce optimal or near-optimal
performance, i.e. those that minimise the classification error [7].
ACO proved to be a good candidate for achieving that goal [19].

SVMs have been chosen as a classifier in this research as it is one
of the most successful classification techniques [23]. Moreover, for
IET Biom., 2016, Vol. 5, Iss. 3, pp. 164–169
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comparison purposes, DTs were also used in this experiment. DTs
were chosen as a rival classifier because the technique follows a
completely different mechanism to that of SVMs.

None the less, when using SVMs in classification, feature subset
selection was in place in order to reduce redundancy among the
features [24]. Contrariwise, feature subset selection was impeded
in the building process of the DT where all redundant features
were removed [25].
Table 2 System performance using Arabic input

FAR FRR

DT 0.205 0.512
SVMs 0.169 0.423
4 Experiment, results and discussion

4.1 Data space

A total of 21 users participated in this paper for data collection. All
participants were native Arabic language speakers. They had
different levels of typing skills that varied between moderate and
very good.

During data collection, the participants were asked to perform two
typing tasks. The tasks involved copying text that consisted of
around 180 characters. The text employed was an excerpt from an
Arabic online newspaper. The text included, in addition to letters,
numbers and punctuation marks.

In this research, we used keystrokes produced by typing free-text
to authenticate users. Free-text refers to the utilisation of any text for
first training and then testing. Importantly the two texts do not have
to be the same, as opposed to the use of predefined text in the
fixed-text keystroke method, in which the enrolment text and
log-in text must be identical [26].

Though the tasks included text that was chosen for the users to type,
it is still considered free-text as the text used for training is not related
at all to that used for testing [8]. Therefore, based on the definition of
free-text [14], all text used in this paper was free-text but with a
different method for sourcing the text. In fact, the results produced
by the experiments carried out in [27] illustrates that using either
un-copied or copied text has no effect on the results of free-text
keystroke systems. Copied text was however provided for the
participants to ease the process of data collection.

Users were directed to enter the samples in the most natural way
possible, i.e. the same way they usually follow when typing. They
were also allowed to enter carriage returns and backspaces if
needed. Data collection was performed by a graphical user
interface (GUI) programme implemented using the C++ language.
The application was downloaded on the users’ personal machines
to maximise their comfort, on the basis that they are more familiar
with their own machine and its surroundings. Therefore, they were
able to feel more at ease, and thus, to perform the typing tasks in
a manner closer to that of their real typing behaviour. Thus, an
uncontrolled environment was adapted due to the fact that the data
was collected wherever and whenever it was convenient to the
user, thereby as much as possible providing a realistic
representation of the normal conditions for the user.

Moreover, on observing the data collected in this experiment, a
number of outliers were detected. Outlier data was identified to be
as much as three standard deviations above or below the mean, as
was suggested in [11]. These particularly very large or very small
data points were discarded from the final data as it was considered
that they represented noise that might affect the overall system
performance.

In addition, it was seen as preferable to normalise the data before
handing it to the machine learning technology [28]. Therefore, all the
data was normalised to be between [0,1] to add a sense of uniformity
to the data as otherwise attributes in greater numeric ranges might
have dominated those in smaller numeric ranges [29].

The final step of data pre-processing involved creating the timing
vector and storing it in the database as the user’s profile. This process
was carried out by combining the text from the two tasks and, then,
dividing it into eight equal parts. Each one of the eight parts was
considered as a single typing sample, the features from which
were extracted and its mean calculated and stored separately.
Therefore, eight samples per subject were included in the analysis
phase for classifier training and testing.
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Though there were 15 key-pairs, from which 75 timing features
were captured, there were not enough instances that appeared in
the used text for some of the key-pairs which made it unfeasible to
include them in the final feature set, the omitted key-pairs were:
NonAdjacent/RightSide, ThirdAdjacent/LeftSide, FourthAdjacent/
LeftSide and NonAdjacent/LeftSide. In total 20 timing features
were excluded from the final feature set; resulting in the inclusion
of only 55 features in the final feature vector.
4.2 Experiment and results

After creating users’ profiles, feature subset selection was performed
using ACO [30] for each user’s data. The selected features were then
passed to the SVMs machine learning mechanism in order to be used
as the basic data for differentiating between classes. The radial basis
kernel multiclass SVMs classification process [31] was implemented
on MATLAB with the aid of the LIBSVM library [32].

The DT technique, on the other hand, is capable of performing
feature selection in the tree building phase [25]. Therefore, this
was fed with the complete set of features. The Statistics toolbox in
MATLAB was used to fit the tree and predict the class of each of
the test data.

Classification, for both classifiers, was carried out through
cross-validation which is a statistical sampling technique that aims
to ensure that every example from the original dataset has the
same chance of appearing in the training and testing set. We
followed the leave-one-out cross-validation protocol which is a
special case of the well-known n-fold cross-validation [33].

N-fold cross-validation divides the data up into n chunks and
trains n times, treating a different chunk as the test sample each
time; such that for each of n experiments, it uses n−1 folds for
training and the remaining one for testing. Leave-one-out
cross-validation is exactly the same except that all chunks contain
only a single sample.

In our experiment, eight samples were used to perform eight
cross-validation experiments. Seven of the samples were treated as
the training sample set and the remaining sample was regarded as
the testing sample. In each experiment, a different sample was
selected to act as the test data.

Furthermore, two error rates were used to infer the performance:
namely, false accept rate (FAR) and false reject rate (FRR). FAR
is the percentage of impostors who have successfully gained
access to the system, whereas FRR indicates the percentage of
legitimate users who were denied access to the system [7]. In both
cases, it is therefore desirable for these figures to be as low as
possible.

SVMs have a slight performance advantage over DTs, as shown in
Table 2. This is due to the fact that SVMs are more advanced in
distinguishing between classes in similar situations [34]. The
classification is done in SVMs by performing optimisation to find
the separating hyperplane [35], whereas classification in DTs is
purely based on rules [36]. It is worth noting that by using a more
sophisticated subset selection mechanism such as ACO this has
also contributed to the SVM’s superior results [37]. The subset
selection in DTs, on the other hand, is relatively primitive
compared with ACO as it is carried out internally in the tree
building stage [25].

The features selected by the ACO were AR-H2, TD-H1, TD-H2,
TD-DD and FD-H2. Meanwhile, the features selected by DTs were:
TR-UD, TD-H1, TD-DD and FD-DD. The two subsets are different
except for two features: TD-H1and TD-DD. It is noted that the
features selected by DTs are dominated by latency features whilst
the features selected by ACO are dominated by duration features.
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Table 3 System performance using English input

FAR FRR

DT 0.281 0.702
SVMs 0.245 0.613
This partially explains the lower error rate produced by SVMs
classification. As found in [38], duration time appears to be a
more reliable method to capture a user typing pattern compared
with latency in systems concerned with user authentication.
4.3 Discussion and comparison of Arabic and English

In this paper, we performed the same experiment using English input
on the same 21 subjects. The results of the English input experiment
are shown in Table 3. Similar to Arabic input, SVMs proved to
outperform DTs as they produced lower error rates. SVMs used
features selected by ACO in the classification stage, these features
were: AL-H1, AL-H2, AD-UU, AD-UD and SR-H2. Meanwhile,
with DTs subset selection was performed in the tree building
stage. The features chosen by DTs in the classification were:
SL-UU, TL-DD, FL-UD, FD-DD and ND-DD. The features subset
selected by the ACO consisted of both duration times and latency
times, while the features selected by DTs were exclusively latency
times. As with Arabic input, this contributed to the superiority of
the SVMs system performance as duration time has been shown to
produce better system performance [38].

It is worth mentioning that we noted a difference between the
key-pairs in English and Arabic. In Arabic the number of
key-pairs on the right-hand side of the keyboard is more than
those on the left as most of the commonly used letters are on the
right-hand side of the keyboard. English, on the other hand, has a
greater number of the most used letters (letters such as e, t, a, s
and r) on the left-hand side of the keyboard, thus key-pairs from
that side are larger in number than those on the right-hand side.
Owing to that, the key-pairs that were used to create the users’
Arabic profile have some differences to those used for creating the
user’s English profile, as mentioned in Section 4.1. The key-pairs
included in the English experiment can be found in previous
research [19].

Moreover, Arabic input results were generally better than those
based on English input due to the fact that all of the subjects
chosen to be part of the experiments of this paper were native
Arabic speakers and ten of the 21 subjects do not type in English
regularly. As Arabic speakers are used to typing in Arabic, their
typing skills have developed in Arabic and they are more familiar
with an Arabic keyboard and how to operate it. This provides their
typing with enough uniformity to be used to correctly identify the
users based on their typing patterns. In addition, subjects who are
not familiar with English typing have less familiarity with an
English keyboard and typing in that language. Therefore, the
absence of English experience has caused non-English natives to
lack the typing consistency needed to identify users based on their
typing patterns [39].

The same key-pairing approach has been used in our previous
research for user authentication using English text [19], in which
the SVMs/ACO method resulted in an FAR of 0.001 and an FRR
of 0.504. The performance of that experiment outperformed the
English experiment we performed in this paper for two reasons.
First, the features selected in that experiment were: SR-H2,
FL-H2, FD-H2, ND-H1 and ND-UD. Thus, the selected feature
subset is dominated by duration times; this contributed to the
superiority of the previous study system performance as duration
time has better distinguishing capabilities in keystroke dynamics
[38]. Moreover, nine of the 21 participants in the previous
English experiment were native English speakers and the rest
were very familiar with English and were used to typing in
English on a daily basis. This clearly improves the consistency of
the typing patterns of such users compared with the subjects in
168 This is an open access article publi
this new study, in which the majority were not familiar with
English typing.

Both experiments provided results demonstrating the effect that
the most commonly used language has on system performance.
Lower error rates are achieved when the system uses the native
language for most of the users or a language that most of the users
are familiar with. In the experiment performed in this research, the
use of Arabic language was shown to achieve higher performance
as all of the subjects involved in the experiment were either native
to Arabic or more familiar with Arabic. In contrast, in the previous
research, the English experiment yielded good results due to the
participants being either native to English or more familiar with
English typing.

To compare the results we found from Arabic native speakers with
results from English native speakers, we conducted a further
experiment. In this test, we collected English data from eight
English natives and analysed it in a manner similar to that used to
analyse the Arabic data. Employing SVMs/ACO, system
performances of 0.089 FAR and 0.125 FRR were achieved using
English input. This result is considered satisfactory and it
demonstrates that using the native language of the users affects the
system performance positively. This agrees with the conclusion we
made using Arabic native speakers’ data. Yet more investigation is
needed to achieve better understanding of the English/Arabic
native speakers’ typing differences and similarities.
5 Conclusions

In this paper, we examined the usefulness of applying free-text
keystroke dynamics user authentication on Arabic text by an
original keyboard’s key-layout-based method. This key-pairing
approach works by classifying every two characters typed
consecutively based on their relation to each other and their
overall location on the keyboard. For each key-pair, five timing
features were extracted to be used in the user’s feature vector.

SVMs and DTs were employed to classify individuals based on
the proposed timing features. The experiment produced good
results considering the fact that it used free-text for user
authentication. Moreover, it accomplished user authentication
based on the smallest amount of training possible. The FAR and
FRR rates were both satisfactory with the FAR being the slightly
better of the two.

This paper proved that the proposed method has been successful in
authenticating users based on their Arabic typing. The method was
originally created to be used with English typing, yet it has crossed
over to Arabic input successfully. Moreover, in the comparative
study SVMs produced lower error rates compared with DTs.
Duration times also proved to contribute more in increasing the
system performance when compared with the latency times.

In addition, experimenting with two languages showed that the
user’s familiarity with a certain language has a high impact on the
user’s typing patterns in that language. This considerably affects
the system performance as lower error rates are produced from
systems incorporating a language native or familiar to the users.

There is much more that can be done to improve this approach,
one example of which is to expand the typing features to include
other non-timing features such as typing speed, error rate and
special keys usage patterns. Experimenting with different
classification methods might also contribute positively to the
overall system performance. Moreover, experimenting with other
languages, which have a different alphabet to English such as
Chinese or Thai can be carried out to understand how they
compare with English and Arabic.
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ABSTRACT  

In this paper, two kinds of typing features are extracted for free-text keystroke dynamics authentication. These features 

are: timing features and non-conventional features. Feature selection is a vital process in the success of applying free-text 

keystroke dynamics in individuals’ authentication. In this study, Ant Colony Optimization (ACO), an optimization 

algorithm, is implemented to perform feature subset selection. The selected features are used for user authentication by 

Support Vector Machines (SVMs). A comparison is made between the selected feature sets of the two sets of features. 

The selected subset of non-conventional features succeeded in producing a better overall system performance. The non-

conventional features provided the appropriate balance between imposters’ accessing the system (false accept rate) and 

legitimate users denied access to the system (false reject rate) in this study. It is believed that the selected features 

represent users’ typing pattern to a great extent.  

Keyword: 

Free-text  

Keystroke dynamics  

Feature selection  

ACO 

SVMs 

1. INTRODUCTION  

Keystroke dynamics is an effortless behavior-based method for authenticating users, which employs 

the person’s typing patterns for validating his/her identity. As mentioned in [1], keystroke dynamics is “not 

what you type, but how you type.” In this approach, the user types- in text, as usual, without any extra work 

to be done for authentication. Moreover, it only involves the user’s own keyboard and no other external 

hardware. These criteria make keystroke dynamics an excellent alternative or addition to the more 

conventional ID/password authentication scheme. 

There are two basic classes of keystroke dynamics, namely: fixed-text and free-text [2]. The fixed-

text keystroke dynamics method uses the typing pattern of the user while entering a predefined text. This text 

has been previously used to train the system and is delivered by the user at log-in time. Contrariwise, the 

free-text keystroke method is considered easier for the user as it overcomes the problem of memorizing the 

text, something that fixed-text keystrokes suffers from.  As its name suggests, in free-text keystrokes, the text 



 

 

used for enrolment does not have to be the same as the text used for log-in. Moreover, free-text keystroke 

dynamics is used for enhancing security through continuous and nonintrusive authentication [3]. Thus, the 

latter method is the one that has been considered in this paper as it can be applied in many useful settings to 

aid real life situations in addition to the benefit it provides in balancing between security and usability [2]. 

Existing research in the literature of keystroke dynamics primarily has focused on exploiting timing 

features for authentication purposes. These features include: typing latency [4], and keystroke duration [1]. 

Other research has included different kinds of typing features such as typing speed and shift key usage 

patterns [5], and error rate [6]. 

In this study we consider in depth both the timing features and the non-conventional features and 

investigate how to apply feature subset selection to both feature sets. This is done for the purpose of 

comparing the two feature sets and their ability to differentiate between users. For that purpose, Ant Colony 

Optimization (ACO) is utilized for feature selection in both features sets. Moreover, Support Vector 

Machines (SVMs) is used for classification.  

The feature subset selection mechanism is considered a very important step in applications such as 

keystroke dynamics authentication as it aids in choosing features that most represent the user’s typing 

patterns and eliminate any redundancy or noise that can affect the authentication process negatively. ACO 

was utilized in keystroke dynamics in several studies. An example of the studies utilizing ACO, together with 

other feature selection techniques, is the one performed in [7].  In addition to ACO, Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA) were applied to the data before feeding it into a back 

propagation neural network (BPNN) classifier. Based on feature reduction rate and classification accuracy, 

this study proved that ACO yields better performance than PSO and GA. 

Moreover, while ACO, PSO and GA were all used in [8] for feature subset selection, the Extreme 

Learning Machine (ELM) was chosen to be the learning method. Supportive of the conclusions found in [7], 

this work demonstrated that ACO results in the best feature subset selection with ELM. 

The rest of this paper proceeds as follows. Section 2 introduces the feature sets used in this study. It 

also describes the Ant Colony Optimization (ACO) idea and how it works. In Section 3 we present 

experimental results with discussion, in which the data space is indicated. The final section concludes the 

topic and points out our research contributions and future work. 

2. RESEARCH METHOD  

In this section the features extracted for authentication are discussed. In addition, the feature subset 

selection algorithm, i.e. ACO, is also explained. 

2.1. Keystroke Features 

Both timing features and non-convenational typing features are discussed in this section. 

2.1.1. Timing Features 

The timing features used in this study are extracted between two keys (key-pair) that are pressed 

consecutively and have a relationship on the keyboard layout. This relationship depends mainly on the key 
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position of each character on the keyboard in relation to the other characters. Moreover, these relationships 

can vary depending on the location of the two keys with respect to the overall keyboard layout.  

There are five categories for key-pair relationships: 

1. Adjacent: keys located next to each other on the keyboard. 

2. Second adjacent: keys that are one key apart from each other. 

3. Third adjacent: keys that are two keys apart. 

4. Fourth adjacent: keys that are three keys apart. 

5. None adjacent: keys that are more than three keys apart. 

An example is provided in Figure 1 demonstrating the key relationship concept; while considering 

the key ‘G’. 

 

Figure 1. Key-pair classification 

Each of these categories can fall into one of the following overall locations: 

1. Both keys are on the right hand side of the keyboard. 

2. Both keys are on the left hand side of the keyboard. 

3. The two keys are located on different sides of the keyboard, i.e. the first key is located on 

the right hand side while the second key is on the left or vice versa. 

The text is broken down into di-graphs, or key-pairs, and each di-graph typed on the main part of the 

keyboard is classified using the above categories and locations. In total, there are fifteen different 

combinations of key-pairs that any two keys can be classified into. Based on the previously explained 

technique, the key-pair “vr” is categorized as: SecondAdjacent/LeftSide. 

Once the key-pairs have been obtained from the users’ raw data, the keystroke features are extracted 

[9]. These features were computed for every key and key-pair using two main values, specifically: the press 

time (Dn) and the release time (Un) of each key (n) in milliseconds. These features are (as shown in Figure 2): 

1. Hold time (also called Dwell time or keystroke duration): is the time a key is pressed until 

it is released. Consequently, each key-pair has two hold times: 

a. Hold time for the first key (H1). 

b. Hold time for the second key (H2). 

2. Keystroke latencies (also called Flight Time): There are three types of latencies: 

a. Down-Down (DD) (also called Press-Press (PP) time): is the interval time 

between two successive key presses. 



 

 

b. Up-UP (UU) (also called Release-Release (RR) time): is the interval time between 

two successive key releases. 

c. Up-Down (UD) (also called Release-Press (RP) time): is the interval time between 

a key release and the next key press. 

 

Figure 2. Timing features for a key-pair 

Thus, five timing features were defined for each key-pair appearance in the text. This was done for 

all fifteen types of key-pairs. Therefore, the overall number of timing features was 75 (5 timing features * 15 

key-pairs). Table 1 lists all the 75 features extracted from all key-pairs. The features abbreviations listed in 

the table combine the key-pair category and the timing feature, for example: “AR-H1” stands for: 

Adjacent/RightSide-Hold1 and so on. 

Table 1. Overview of the timing features 

 

2.1.2. Non-conventional Features 

The non-conventional features used here include two types of typing features, namely: semi-timing 

features and editing features. Both categories are explained in this section. 

 

Key-pair Category Feature Set 

Adjacent/RightSide AR-H1 AR-H2 AR-DD AR-UU AR-UD 

Adjacent/LeftSide AL-H1 AL-H2 AL-DD AL-UU AL-UD 

Adjacent/DifferentSide AD-H1 AD-H2 AD-DD AD-UU AD-UD 

SecondAdjacent/RightSide SR-H1 SR-H2 SR-DD SR-UU SR-UD 

SecondAdjacent/LeftSide SL-H1 SL-H2 SL-DD SL-UU SL-UD 

SecondAdjacent/DifferentSide SD-H1 SD-H2 SD-DD SD-UU SD-UD 

ThirdAdjacent/RightSide TR-H1 TR-H2 TR-DD TR-UU TR-UD 

ThirdAdjacent/LeftSide TL-H1 TL-H2 TL-DD TL-UU TL-UD 

ThirdAdjacent/DifferentSide TD-H1 TD-H2 TD-DD TD-UU TD-UD 

FourthAdjacent/RightSide FR-H1 FR-H2 FR-DD FR-UU FR-UD 

FourthAdjacent/LeftSide FL-H1 FL-H2 FL-DD FL-UU FL-UD 

FourthAdjacent/DifferentSide FD-H1 FD-H2 FD-DD FD-UU FD-UD 

NonAdjacent/RightSide NR-H1 NR-H2 NR-DD NR-UU NR-UD 

NonAdjacent/LeftSide NL-H1 NL-H2 NL-DD NL-UU NL-UD 

NonAdjacent/DifferentSide ND-H1 ND-H2 ND-DD ND-UU ND-UD 
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2.1.2.1. Semi-timing Features.  

Semi-timing features are different from the standard timing features, as the time calculation 

followed in this category is slightly different from that of the regular timing features. These features have a 

collective property, as all of them are calculated during longer periods of time. The features included in this 

category are: 

1. Word-per-Minute (WPM): measures the user’s average typing speed.  

2. Negative Up-Down percentage (negUD): measures the percentage of negative Up-Down actions 

detected in the user’s typing stream. Negative Up-Down is due to the overlap happening between 

two successive keys being typed. This particular typing behavior is found in the typing stream of 

users who have the tendency to press the second key before releasing the first one. Figure 3 

illustrates a negUD caused by two-key sequences overlapping.   

3. Negative Up-Up percentage  (negUU): measures the percentage of negative Up-Up actions detected 

in the user’s typing stream. Negative Up-Up occurs when the typist tends to release the second key 

before releasing the first key. Negative UU only happens when there is a negative UD between the 

two successive keys. 

 

Figure 3. Negative UD caused by overlapping keystroke events 

2.1.2.2. Editing Features.  

Editing features does not give any attention to the time a user spends typing, rather it considers the 

way a user goes about the process of typing. The features included in this category are: 

1. Error rate: captures the percentage of times a user performs a typing error.  

2. Capital letters incorporation practices: this subcategory is concerned with the specific ways a capital 

letter is included in the user’s typing stream. This is usually done using either Caps Lock key or shift 

key. It has been noted that if a user has the habit of using the CapsLock key, then he or she will 

hardly ever use the shift key for capitalizing letters, and vice versa. Therefore, using these two 

attributes simultaneously might lead to a better understanding of the user’s editing habits. Thus, the 

following features are derived: 

a. CapsLock usage: calculates the percentage of the CapsLock keys being used to produce 

capital letters in a given typing task. 

b. Shift Key usage: this subcategory has two different aspects of user’s habits. The first shift 

key usage attribute is the right/left shift key choice. Some users use strictly the right shift or 



 

 

strictly the left shift and others alternate between the two [5]. The second attribute is the 

order of which the shift/letter keys are released. The shift key is always pressed before the 

letter key if the user is intending to produce a capital version of that letter. However, there are 

two orders that users go about when releasing those keys, they either release the letter key 

before releasing the shift key or they release the letter key after releasing the shift key. Based 

on the previous observations, four different features that combine the two aspects of shift key 

usage are used: 

i. Percentage of Right Shift released after letter (RSA). 

ii. Percentage of Right Shift released before letter (RSB). 

iii. Percentage of Left Shift released after letter (LSA).  

iv. Percentage of Left Shift released before letter (LSB).   

Table 2 gives an overview of all the nine non-conventional typing features used. 

Table 2. Overview of the non-conventional typing features. 

Category Features 

Semi-Timing Features 

WPM 

negUD 

negUU 

Editing Features 

Error Rate 

CapsLock Usage 

RSA 

RSB 

LSA 

LSB 
 

2.2. Ant Colony Optimization (ACO) 

Having a large feature set means more computational time in addition to raising the complexity of 

the classification process. Therefore, it is necessary to incorporate a feature subset selection mechanism in 

cases where the feature set needs more examining [10]. Feature subset selection works by scrutinizing all 

possible features to recognize the feature or set of features that produce optimal or near-optimal performance, 

i.e. those that minimize classification error [11]. 

ACO is used in this study as it is one of the most successful mechanisms of swarm intelligence used 

for feature subset selection. It is an optimization technique that was inspired by the indirect communication 

between real ants using chemical pheromones that they leave on trails, which permits them to find the 

shortest path between the nest and the food supply [12].   

The transition rule for any ant 'm' that allows it to decide on including the ith feature at any time ‘t’ 

in the solution is influenced by two aspects: the heuristic desirability (ηi) and the level of pheromone (τi) [13]. 

Often a classifier performance is used as heuristic information for feature selection. 

The probabilistic transition rule is calculated in (1) as follows: 
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P t
	

∗	

∑ ∗	
																																					if	i	ϵh

0																																																														otherwise
	                               (1) 

Where hk is the set of feasible features that can be added to the partial solution; the two parameters α 

and β are used to control the relative importance of the pheromone value and heuristic information.  

The process of pheromone evaporation on all nodes is activated after all ants have completed their 

solutions. The evaporation rate is shown in (2).                                                       

  ∆τ t φ	 ∗ 	
	

1 φ ∗ 	

0																																																			otherwise	
											if	i	ϵS t                                   (2) 

Where Sk(t) is the feature subset found by ant k at iteration t, and |Sk(t)| is its length while C(Sk(t)) 

is the classifier performance for that ant at that iteration. N is the total number of features in the data set and 

the parameter φ controls the relative weight which dictates the importance of the classifier performance and 

the feature subset length.  

Afterwards, each ant k deposits a specific quantity of pheromone on each node that it has navigated.  

Equation (3) shows the pheromone update for all ants, which also includes the effect of evaporation: 

τ t 1 ρ ∗ 	τ t 	∑ ∆τ t                                                                     (3) 

Where ρ is the pheromone trail decay coefficient which ranges from 0 to 1 and m is the number of 

ants. 

The stopping criterion for feature selection has been targeted in numerous ways such as using a 

fixed number of features, in which the user defines the minimum and maximum limit for the feature subset 

length [14]. The overall process of ACO feature selection is shown in Figure 4. 

3. EXPERMENTS, RESULTS AND ANALYSIS 

The data space used in this study is indicated in this section. Moreover, the expermintal results are 

also discussed in this section together with a discussion about the outcomes of the experiment. 

3.1.  Data Space  

A total of twenty-five users participated in this study. During data collection, the participants were 

asked to perform eight typing tasks each of which consisted of around 1000 characters. The text included 

both upper and lower case letters in addition to numbers and punctuation marks. Furthermore, the data was 

acquired in different sessions as the users were requested to complete each of the eight tasks in a separate 

session. Users were directed to enter the samples in the most natural way possible, i.e. the same way they 

usually follow when typing.  

The data collection was performed on a GUI program implemented using the C++ language. The 

application was downloaded on the users’ personal machines to maximize their comfort as they are more 

familiar with their own machine and its surroundings. Therefore, they were able to feel more at ease, and thus 

to perform the typing tasks in a manner closer to that of their real typing behavior.  



 

 

 

Figure 4. ACO feature selection process. 
 

Although there were 75 timing features captured from each user’s typing stream, there were only 55 

having enough instances appearing in the used text. Therefore 20 timing features were excluded from the 

final feature set. The discarded features are shaded in Table I. Thus, a total of 55 timing features were 

considered in the experiments. 

Outlier elimination was performed on the timing features data set. Outlier data has been identified to 

be as much as three standard deviations above or below the mean as suggested in [4]. These particularly very 

large or very small data points were discarded from the final data as they were deemed to represent noise that 

might affect the overall system performance.  

In addition, timing data was normalized before being handed to the machine learning technology 

[15]. Therefore, all the data was normalized between [0,1] to add a sense of uniformity to the data as 

attributes in greater numeric ranges might otherwise have dominated those in smaller numeric ranges [16]. 

The final step of data pre-processing for the timing features involved creating the timing vector and 

storing it in the database as the user’s profile. This was done by computing the mean of each timing feature 

and storing it in the timing features vector. This process was carried-out by considering each one of the eight 

typing tasks as a single typing sample. 



 

Feature Selection: A Comparison Study in Free-text Keystroke Dynamics Authentication 

For non-conventional typing features, there was no need for outlier discarding as the features did not 

rely on a time factor that might add noise in the form of too large or too small time lags. Moreover, no 

scaling was needed as all non-conventional features were percentages in the [0, 1] range. Lastly the non-

conventional typing features were calculated and stored in the non-conventional features vector at the 

database as the user’s profile. Similar to the timing features, each one of the eight typing tasks was 

considered as a single typing sample. 

3.2. Experiment and Results 

In the experimentation stage, ACO was implemented by generating a total number of ants which is 

equal to the number of features. A total of 55 and 9 ants were generated for timing and non-conventional 

features, respectively. In addition, an initial pheromone of 1.0 was used and as the importance of the heuristic 

information, i.e. classification rate, was more than that of the pheromone level in the transition rule, we used 

α=1.0 and β=0.1. For both timing and non-conventional features, the features selected by the ACO were fed 

into SVMs in order to be classified. A Radial Basis Kernel multiclass SVMs was used [17]. The 

classification process was implemented on MATLAB with the aid of the LIBSVM library [18]. 

Both feature subsets were classified through cross-validation which is a statistical sampling 

technique that aims to ensure that every example from the original dataset has the same chance of appearing 

in the training and testing set [19]. N-fold cross-validation divides the data up into n chunks and trains it n 

times, treating a different chunk as the test sample each time; such that for each of n experiments, it uses n-1 

folds for training and the remaining one for testing.  

In our experiment, eight samples were used to perform eight cross-validation experiments. Seven of 

the samples were treated as the training sample set and the remaining sample was regarded as the testing 

sample. In each experiment, a different sample was selected to act as the test data.  

 
Figure 5. ROC curve of the timing features and the non-conventional features. 

 

Furthermore, two error rates were used to infer the performance, namely: False Accept Rate (FAR) 

and False Reject Rate (FRR). FAR is the percentage of impostors who have successfully gained access to the 
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system whereas FRR indicates the percentage of legitimate users who were denied access to the system [20]. 

The error rates resulting from the timing features and the non-conventional features are shown in Table 3. 

Table 3. Timing features and non-conventional features error rates 

Features FAR FRR 

Timing 0.147 0.61 

Non-conventional 0.018 0.435 

 

Conclusively, non-conventional features have a considerable performance advantage over SVMs (as 

shown in Figure 5). They produced a higher accuracy system as the ROC is plotted closer to the upper left 

corner of the diagram. 

3.3. Discussion  

Using all features with no feature selection did not produce particularly good results as the level of 

noise was larger in such high features dimensionality [10]. However, when looking more closely at the 

features selected to be utilized in both feature sets (shown in Table 4), we noticed that the majority of the 

selected timing features were duration features. Furthermore, the non-conventional features subset is 

dominated by editing features. This denotes the significance of these two kinds of features in the area of user 

authentication by free-text keystroke dynamics. 

Table 4. Timing features and non-conventional selected subsets 

 

 

The FAR produced by non-conventional features is very good, but the FRR is not as satisfactory. 

The FAR and FRR figures in the case of non-conventional features denotes the fact that there is hardly any 

imposters accessing the system. Yet there were a number of  legitimate users that were denied access. In 

timing features, on the other hand, both FAR and FRR are not satisfactory as a considerable number of 

imposters were granted access and more than half of the legitimate users were denied access. 

These results support the belief that non-conventional features represent human typing patterns more 

precisely compared with timing features in free-text keystroke systems. Non-conventional features appear to 

have a strong relationship between input values and target values, in this data set. A strong input-target 

relationship is formed when knowledge of the value of an input improves the ability to predict the value of 

the target which helps in understanding the characteristics of the target [21]. 

CONCLUSION  

In this paper, a comparison between timing features and non-conventional features has been 

presented to improve the overall understanding of free-text keystroke dynamics authentication. A subset of 

each feature set was selected based on ACO. The subsets were then used for user classification with the aid 

of SVMs.  

Timing features Non-conventional features 

SR-H2 | FL-H2 | FD-H2 | ND-H1 | ND-UD negUD | Error Rate | RSB | LSA | LSB 
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It has been noted that non-conventional typing features have outperformed the timing features as the 

subset selected from non-conventional features provided a better recognition rate in this study. The utilization 

of the non-conventional features subset produced a system that have a better balance between the number of 

legitimate users denied access and the number of imposters accessing the system.  

Feature subset selection is considered crucial in the process of machine learning, particularly in the 

field of keystroke dynamics authentication. ACO, as one of the most successful mechanisms of swarm 

intelligence used in optimization, can perform the feature selection in a more natural way. 

There is much more that can be done to improve this study. One example of which is to investigate 

other feature selection techniques and classification methods. Experimenting with more key-pairing methods 

for timing features and more non-conventional features could also be explored to contribute to the overall 

system performance. 
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ABSTRACT 

This paper introduces an approach for user authentication using free-text keystroke dynamics which incorporates the use of non-
conventional keystroke features. Semi-timing features along with editing features are extracted from the users’ typing stream.
Decision trees were exploited to classify each of the users’ data. In parallel for comparison, Support Vector Machines (SVMs)
were also used for classification in association with an Ant Colony Optimization (ACO) feature selection technique. The results
obtained from this study are encouraging as low False Accept Rates (FAR) and False Reject Rates (FRR) were achieved in the
experimentation phase. This signifies that satisfactory overall system performance was achieved by using the typing attributes in 
the proposed approach. Thus, the use of non-conventional typing features improves the understanding of human typing behavior 
and therefore, provides significant contribution to the authentication system.  
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1. Introduction  

The ongoing quest to find a technique to protect sensitive data 
and computer systems from harmful imposters, whilst also 
maintaining ease of use, is an important challenge in the field of 
computer and information security. Because the ID/password 
pair, the most common method for authentication, frequently 
fails to deliver an adequate balance between security and user-
friendliness, more sophisticated methods have to be used. This is 
due to the ID/password pair being prone to social engineering, 
cracking and other forms of exploitation. Therefore, users are 
compelled to use extreme measures to safeguard their passwords, 
a procedure which includes remembering long and complex 
passwords in addition to the need for changing their passwords 
periodically [1] which causes them to endure great amounts of 
frustration and apprehension. 

This research focuses on an alternative to the ID/password that 
verifies the identities of users based on their unique typing 
rhythms. This method provides a sufficient balance between 
practicality and safety, without requiring any additional 
hardware. Keystroke dynamics is considered to be an effortless 
behavior-based method for user authentication which employs 
the person’s typing patterns for validating his/her identity. As 
was mentioned in [2], keystroke dynamics is “not what you type, 
but how you type.” In this approach, the user types in text, as 
usual, without any extra work to be done for authentication. 
Moreover, it only involves the user’s own keyboard and no other 
external hardware. 

Keystroke dynamics is normally based on timing features that 
compute time lapses between two actions on the keyboard such 
as key press and key release. In this study, however, we 
investigate the use of non-conventional keystroke features in the 
authentication of users. Features such as typing speed, error rate, 
and shift key usage are utilized to find typing patterns that can be 
used to distinguish between individuals. Non-conventional 
features are considered during long free text input as they are 
extracted using calculations that spread along extended typing 
time.  

These non-conventional features are important due to the lack 
of sufficient measurements that conventional keystroke dynamics 
present. Conventional keystroke data, in a very different way to 
other biometrics (e.g. image processing), captures very little 
information [3]. This information consists of the data that can be 
extracted from two consecutive keystrokes such as: the elapsed 
time between the release of the first key and the press of the 
second (digraph latency) and the amount of time each key is held 
down (keystroke duration) [2]. The majority of research, carried-
out earlier in this area, focused only on these conventional 
features. 

To enlarge the amount of information that can be extracted 
from a user input and therefore assemble better indications about 
his/her typing behavior, we focus our studies on non-
conventional typing features that can be extracted collectively 
during long text input, in which more information is available. 
Long free text input is experienced daily in a manner that can be 
used to achieve continuous authentication [4].  

Although there are many applications of keystroke biometrics 
used with fixed short text such as password hardening [5], there 
are scenarios where long free text input is more suited. For 
example: identification of one-of-many users who all have access 
to the resources in a work environment, the subject is identified 
when using any easily accessed desktop by his/her typing 
behavior of an e-mail or any other document. Another potential 

application for such long free text is verifying the 
identity of students taking online quizzes or tests. 

Most of the work done in the field of keystroke dynamics 
authentication focuses primarily on timing features while 
ignoring other typing behavior such as editing patterns. Even 
previous studies that have included some non-timing features 
have not delivered the significance of these features in the way 
that they still focused on the importance of the conventional 
timing features, in the authentication process [6,7]. For that 
reason, we were motivated to explore the area of non-
conventional typing features in order to concentrate on their 
distinctive ability to distinguish between individuals. A more in 
depth study on the effect of using various non-conventional 
feature subset sizes, which is to our knowledge not covered in the 
literature, has also been conducted.  

In our work decision trees and Support Vector Machines 
(SVMs) are used to classify the typing samples collected from 
participants. Also Ant Colony Optimization (ACO) is utilized to 
select features that contribute more to the system in the case of 
SVMs, as decision trees are capable of performing feature 
selection in the tree building phase [8]. 

The rest of this paper proceeds as follows. Section 2 briefly 
introduces keystroke dynamics theory and discusses similar prior 
research in the area of keystroke dynamics user authentication. 
Section 3 describes the method developed in this study, in which 
we discuss the specific non-conventional features included in the 
study. In Section 4 we present our experimental results and 
consider the data space under investigation. Discussion about our 
results and some comparisons with previous studies are also 
included in this section. The final section concludes the topic and 
points out our research contributions and future work.  

2. Keystroke Dynamics 

Keystroke dynamics is categorized into two basic classes, 
namely: fixed-text and free-text [9]. The fixed-text keystroke 
dynamics method uses the typing pattern of the user when 
entering a predefined text. The same text has been previously 
used to train the system and is delivered by the user at log-in 
time. In contrast, the free-text keystroke method is considered 
easier for the user as it overcomes the problem of memorizing the 
text, something that the fixed-text method suffers from.  As its 
name suggests, in free-text keystrokes, the text used for 
enrolment does not have to be the same as the text used for log-
in. Moreover, free-text keystroke dynamics is used for enhancing 
security through continuous and nonintrusive authentication [10]. 
Thus, this research uses the typing behavior of free-text to 
resemble real-world situations, which allows users the freedom 
of not having to remember any text in order to go through the 
authentication process. 

Keystroke dynamics is utilized in users’ authentication by 
extracting typing features at the log-in session and comparing 
them with the typing features extracted at the enrolment session. 
These features include, among others: typing latency[11], 
keystroke duration [2], typing speed [11], shift key usage patterns 
[12] and typing pressure [13].  If the extracted features are 
adequately similar, the user is authenticated and if not the user is 
denied access.  

Keystroke features extraction is usually performed after 
obtaining the users’ raw data [14]. Among the data, timing 
features are popularly used and they are computed using two 
main values, specifically: the press time and the release time of 
each key, in milliseconds. These features are: Hold time, Down-
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Down, UP-UP and Up-Down time. Most previous studies have 
typically employed more than one of these features [15]. 

Other non-conventional features, which are mainly used in 
free-text keystroke dynamics, were also considered in few 
studies. These features make use of extra information that can be 
obtained collectively during the training process. Unique patterns 
were produced after observing users for a longer period of time. 
Attributes such as the error rate and editing patterns have been 
found to give a fair idea about a user’s typing behavior [9].   

A large amount of research has been carried-out for quite 
some time to investigate how keystroke dynamics can aid user 
authentication in general. Specifically, we look here at some of 
the research that focuses on the extraction of non-conventional 
keystroke features, utilizing them in different ways. 

The research conducted by Hempstalk et al. [16] included, in 
total, eight features in the typist dataset. Most of these features 
were based around the typing speed or error rate. The typing 
speed features included: average words-per-minute (WPM) rate, 
peak WPM and trough WPM, whilst error rate features included: 
backspaces, paired backspaces and average backspace block 
length.  

In the research conducted by Villani et al. [3] long-text-input 
features were extracted. The feature set mainly consisted of 
percentages of key presses of many of (what were referred to as) 
special keys. Some of these percentage features were intended to 
capture the users’ preferences for using certain keys or key 
groups. For instance some users do not capitalize or use much 
punctuation, which is a distinctive trait of their typing behavior.  

Other percentage features were planned to acquire the user’s 
text editing patterns. As an example, there are many ways to 
locate a specific key, such as using other keys, i.e. Home, End 
and Arrow keys, or using mouse clicks. There is also a large 
number of ways to delete, such as Backspace, Delete keys and 
Edit-Delete. Inserting and moving of words and characters can be 
done in different ways too, such as: Insert, shortcut keys, or Edit-
Paste. 

Shift-key patterns were incorporated in Bartlow and Cukic’s 
research [17]. A password designed to enforce shift-key behavior 
consisting of 12 randomly generated characters was employed. 
The feature vector collected for each input sequence included 
many shift-related features. Examples of such features are: the 
average, standard deviation, maximum, minimum and total of the 
hold time for right shifts and left shifts. It also included the 
average, standard deviation, maximum, minimum and total of the 
delay time for right shifts and left shifts. 

Based on the literature, only a few studies have taken into 
consideration non-conventional typing features such as features 
associated with editing patterns. Therefore, we are focusing, in 
this study, on these features to try and find consistent typing 
patterns that can be utilized for recognizing the particular typist. 

3. Methodology 

3.1. Feature Definition 

A great deal of the research done in the keystroke dynamics 
field has been focused mainly on the timing features extracted 
from the user’s typing stream. These features compute the time 
lapses between performing two actions on the keyboard such as 
calculating the time it takes a person to press a certain key, i.e. 
the Hold time, which can be done by subtracting the release time 
from the press time of that key. Latency time is computed in a 
similar way but the two actions are performed on two different 

keys pressed successively rather than both actions being 
performed on one key in the case of the Hold time. It is 
calculated by finding the time difference between the press time 
of the first key and the press time of the second key, in the case 
of Down-Down time. The Up-Up time and Up-Down time are 
also computed in similar manner [9]. 

In this research, we are striving to explore new features. Non-
conventional features step away from the conventional methods 
which rely on computing the time lapses between performing two 
actions on the keyboard. Instead, non-conventional features focus 
on the overall typing patterns that a user follows during input that 
extends over a relatively long period of time. It considers the 
percentage of performing certain actions (in relation to the total 
number of actions), i.e. general typing actions or editing actions, 
which leads to understanding the user’s typing behavior. Better 
perception of human typing patterns is particularly easier to 
capture while typing long free text in which more information 
can be extracted. We consider two types of typing features, 
namely: semi-timing features and editing features. We will 
briefly describe each category in this section as follows:  

3.1.1 .  Semi-Timing Features 
Different from the standard timing features used in most of the 

literature, we incorporate features that have been extracted using 
some form of time calculation. The time calculation followed in 
this category however, is slightly different from that of the 
regular timing features. These features have a collective property 
to them, as most of them are calculated during longer periods of 
time.  

The first feature is the Word-per-Minute (WPM) feature 
which, as the name suggests, measures the user’s average typing 
speed [16]. The total typing time is calculated from the very first 
key press until the very last key release and this is used in the 
final calculation of the WPM. The number of words are totaled 
and then divided by the total typing time in minutes; this is 
shown in Equation (1). Of course, this feature will easily 
distinguish between slow and fast typists. Nonetheless, it is not 
enough to find the difference between individuals who are close 
in typing speed.  

WPM
Number	of	words

Total	typing	time	in	minutes
																																									 1  

Fig. 1. Negative UD caused by overlapping keystroke events. 

An interesting characteristic that can be found in some user’s 
typing behavior is the number of negative Up-Down (negUD) 
actions detected in their typing stream. The negative Up-Down is 
due to an overlap happening between two successive keys being 
typed. This particular typing behavior is found in the typing 
stream of users who have the tendency to press the second key 
before releasing the first one. While most timing features are 
always positive because they represent the sequence determining 
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the keyboard output, the Up-Down feature, can be negative in 
some cases that might involve fast typists [3].  

Figure 1 illustrates two different two-key sequences showing 
the Up-Down time in a non-overlapping situation and in an 
overlapping one. A keystroke is represented as a horizontal line 
with the down arrow marking the press and the up arrow 
indicating the release time.  In part (a), a positive Up-Down time 
was produced from non-overlapping keystroke events and in part 
(b), a negative Up-Down time was produced from overlapping 
keystroke events where the first key was released after the second 
was pressed. 

Some studies found it challenging to deal with negative UD 
time [18]. Here we are using it to our advantage by finding the 
percentage of negative Up-Down instances for each user. As 
mentioned in [19], a negative value of UD implies time reduction 
or faster pressing while positive values imply time addition or 
slower pressing between two sequences of keystrokes. We found 
that some users have absolutely no negative UDs whilst others 
have a fair amount, which was consistent in all the typing tasks 
they produced. This gives a good indication that comparing the 
percentage of negative UDs can be a good method to assist in 
user recognition. NegUD is computed as the percentage of the 
number of negative UD appearances and the total number of key-
pairs, i.e. two keys typed consecutively, this is shown in the 
following equation: 

negUD	 	
Number	of	negative	UDs
Total	number	of	keypairs

																																										 2  

A very similar typing behavior that has been, to our 
knowledge, hardly ever referred to in the literature is the negative 
Up-Up (negUU) time, which occurs when the typist tends to 
release the second key before releasing the first key. This 
characteristic happened with a few of our volunteers who 
participated in the data collection. Moreover, a negative UU only 
happens when there is a negative UD between the two successive 
keys. However if there happens to be a negative UD this does not 
mean that there is definitely a negative UU as shown in Figure 2.  

 Having said that, negative UU has the property of occurring 
less frequently, but if it does, there is a high possibility that it is a 
particular characteristic that an individual possesses intuitively. 
Thus there is a very good chance that it can be a good measure to 
employ in order to recognize that particular typist.  

Similar to the previous feature, negUU is calculated as: 

negUU	 	
Number	of	negative	UUs
Total	number	of	keypairs

																																										 3  

 

 

Fig. 2. Cases of negative UD only and negative UD/negative UU. 

 

 

3.1.2 .  Edi t ing Features  
The second category of features does not give any attention to 

the time a user spends typing, rather it considers the way a user 
goes about the process of typing. Characteristics such as how 
frequently a user commits typing errors and how he/she edits text 
are studied here.  

The error rate is the first feature in this category and it 
captures the percentage of times a user performs a typing error 
and corrects it [16]. This is simply calculated by dividing the 
number of times that a user commits an error, i.e. presses the 
backspace button, by the total number of letters typed, as follows: 

Error	rate	 	
Number	of	errors

Total	number	of	letters
																																								 4  

The next five features are closely related as they all associate 
with the way a user incorporates capital letters in typing. 
Including a capital letter is done either by using the CapsLock 
key on the keyboard or by using a shift key together with the 
letter intended to be capitalized. We noted that if a user has the 
habit of using the CapsLock key, then he will hardly ever use the 
shift key for capitalizing letters, and vice versa. Therefore, using 
these two attributes simultaneously might be a good clue to 
understand the user’s editing habits. 

The first measure is CapsLock key usage which calculates the 
percentage of the CapsLock keys being used to produce capital 
letters in a given typing task. This is simply computed using the 
following equation: 

CapsLock	usage 	
Number	of	CapsLocks
Total	number	of	keys

																																 5  

Shift key usage is a bit more complicated than it might appear 
to be as there are two different aspects in which users differ when 
it comes to shift key usage. The first shift key usage attribute is 
the right/left shift key choice. Some users use strictly the right 
shift or strictly the left shift whilst others alternate between the 
two [7]. The second attribute is the order of which the shift/letter 
keys are released. The shift key is always pressed before the 
letter key if the user is intending to produce a capital version of 
that letter. However, there are two orders that users go about 
when releasing those keys, they either release the letter key 
before releasing the shift key or they release the letter key after 
releasing the shift key. This behavior proved to be quite 
consistence throughout the different typing tasks for most users.  

Based on the previous observations we suggest four different 
features that combine the two aspects of shift key usage. The 
percentage of each of the following was utilized; for the right 
shift key: Right Shift released After letter (RSA), Right Shift 
released Before letter (RSB); and for the left shift key: Left Shift 
released After letter (LSA), Left Shift released Before letter 
(LSB). They are calculated using Equation (6).  

S 	
Number	of	x

Total	number	of	shifts
																																																												 6  

Where:  x= right shifts released after letter, incase S=RSA; 
x= right shifts released before letter, incase S= RSB; 
x = left shifts released after letter, incase S= LSA; 
x = left shifts released before letter, incase S= LSB. 

4. Experiment, Results and Discussion 

4.1. Data Space  

A total of thirty users participated in this study for data 
collection. Participants had different levels of typing skills that 
varied between moderate and very good.  
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During data collection, the participants were asked to perform 

eight typing tasks. The tasks involved copying text that consisted 
of around 1000 characters. The text was an excerpt from the 
Guardian newspaper. The text included both upper and lower 
case letters in addition to numbers and punctuation marks. 
Although the tasks included text that was chosen for the users to 
type, it is still considered free-text as the text used for training is 
not related at all to that used for testing [20]. 

Users were directed to enter the samples in the most natural 
way possible, i.e. the same way they usually follow when typing. 
Users were allowed to enter carriage returns and backspaces if 
needed. The data collection was performed by a GUI program 
implemented using the C++ language. The application was 
downloaded on the users’ personal machines to maximize their 
comfort as they are more familiar with their own machine and its 
surroundings. Therefore, they were able to feel more at ease, and 
thus, to perform the typing tasks in a manner closer to that of 
their real typing behavior.  

A feature vector, containing the nine features used in this 
study, was created and was stored in the database as the user’s 
profile. This process was carried out by considering each one of 
the eight typing tasks as a single typing sample, the features from 
which were extracted separately. Therefore, eight samples per 
subject were included in the analysis phase for classifier training 
and testing.  

4.2.  Experiment and Results 

Decision trees have been chosen as a classifier in this research 
as they are strictly nonparametric and do not require assumptions 
regarding the distributions of the input data [21]. Furthermore, 
decision trees handle nonlinear relations between features and 
classes [22].  

Classification was carried-out through cross-validation as the 
number of samples was not sufficient enough to perform a 
regular training/testing process. Cross-validation is a statistical 
sampling technique that aims to ensure that every example from 
the original dataset has the same chance of appearing in the 
training and testing set. We followed the leave-one-out cross-
validation protocol which is a special case of the well-known n-
fold cross-validation [23].   

N-fold cross-validation divides the data up into n chunks and 
trains n times, treating a different chunk as the test sample each 
time; such that for each of n experiments, it uses n-1 folds for 
training and the remaining one for testing. Leave-one-out cross-
validation is exactly the same except that all chunks contain only 
a single sample.  

In our experiment, eight samples were used to perform eight 
cross-validation experiments. Seven of the samples were treated 
as the training sample set and the remaining sample was regarded 
as the testing sample. In each experiment, a different sample was 
selected to act as the test data.  

The Statistics toolbox in Matlab was used to fit the tree and 
predict the class of each of the test data. Moreover, the tree 
structure, i.e. the order in which attributes were chosen to be 
tested at each node, differs each time when a different training set 
was selected. 

 Furthermore, two error rates were used to infer the 
performance, namely: False Accept Rate (FAR) and False Reject 
Rate (FRR). FAR is the percentage of impostors who have 
successfully gained access to the system whereas FRR indicates 
the percentage of legitimate users who were denied access to the 
system [24]. Low error rates were produced by this study. The 

FAR and FRR derived from the decision tree 
classification process are listed in Table 1. Both error rates are 
presented utilizing datasets created by different numbers of 
participants. Results produced by 15, 25 and 30 users showed an 
increase in the error rates between 15 and 25 users. Yet, when 
increasing the number of users from 25 to 30 the error rates were 
very similar. When slightly enlarging the number of participants, 
we noticed the system reaching a stable performance level. 
However, more work is needed to prove this methods ability to 
work with datasets with large number of participants.  

Using the nine features simultaneously had a good impact on 
the overall classification performance as the decision tree 
performs a form of feature selection in which only features that 
contribute to the overall-system decision are used in building the 
tree [8]. This is not the case when using only one or two features 
separately. This is due to the individual characteristics that each 
feature holds and that contribute collectively to the system’s 
performance. 

Table 1: System performance using multiclass classification. 

 FAR FRR 

Participants no. 15 25 30 15 25 30 

Decision Tree 0.007 0.0104 0.0109 0.1 0.25 0.28 

SVMs 0.0125 0.0181 0.0183 0.175 0.435 0.444 

 

For comparison purposes, Support Vector Machines (SVMs) 
were also used in this experiment as it is one of the most 
successful classification techniques [25]. SVMs were chosen as a 
rival classifier because it follows a completely different 
mechanism to that of decision trees [26]. 

When using SVMs in classification, feature subset selection is 
in place. This is because a number of the non-conventional 
features are correlated with each other.   Therefore, it is necessary 
to incorporate a feature subset selection mechanism when 
utilizing these features in order to reduce the dependency levels 
between the features [27]. Feature subset selection is also 
included in the building process of the decision tree where all 
redundant features are removed [8].  

Feature subset selection is considered as an optimization 
problem, in which the space of all possible features is scrutinized 
to recognize the feature or set of features that produce optimal or 
near-optimal performance, i.e. those that minimize classification 
error [28]. Ant Colony Optimization (ACO) proved to be a good 
candidate for achieving that goal [29]. 

The selected features were passed to the multiclass SVMs 
machine learning mechanism in order to be used as the basic data 
for differentiating between classes. Leave-one-out cross-
validation was also used to treat seven of the samples as the 
training sample set and the remaining one as the testing sample, 
in each cross-validation experiment. The classification process 
was implemented on MATLAB with the aid of the LIBSVM 
library [30].  

This was done gradually by selecting one feature, using ACO, 
and then increasing the size of the feature set. Using only one or 
a small number of features yielded higher error rates. Similarly, 
using all or most of the nine features caused performance 
deterioration. The ideal size of feature set was 5 features which 
produced good FAR and FRR rates. A 0.0183 FAR and a 0.444 
FRR were delivered using 5 features. Table 2 illustrates the 
influence of increasing the feature set size on the overall system’s 
performance in a database containing 30 users.  
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Having the best features subset size to be only 5 features 
refers directly to the Curse of Dimensionality which corresponds 
to the problem that the amount of training needed grows 
exponentially with the number of features [31]. Since there were 
only 8 samples per person in this experiment, there has to be a 
reduction in the number of features used for classification to the 
least amount possible while conserving the maximum benefit 
provided to the classification process. 

Using ACO, the features that contribute the most to the system 
performance in our experimentation were: negUD, Error Rate, 
RSB, LSA and LSB. Using these features solely in the 
classification process eliminated the redundancy caused by using 
all 9 features. That clearly contributes to improving the overall 
system performance. Furthermore, using only one or two of these 
features is not enough to find the fine differences between the 
typing behaviour of individuals in free-text keystroke dynamics. 

 

Table 2: Error rates using different feature subset sizes. 

 No. 1 2 3 4 5 6 7 8 9 

FAR 0.0315 0.0251 0.0248 0.0226 0.0183 0.0187 0.0191 0.0194 0.0203_

FRR 0.8194 0.6528 0.6435 0.5879 0.444 0.4861 0.4954 0.5046 0.52788

 

We understand that using a larger dataset and incorporating 
data from a greater number of participants will likely produce 
more reliable results. Therefore, similar to DTs, we incorporated 
data from datasets with different numbers of participants in the 
SVMs tests to understand how increasing the sample size will 
affect the system performance. In all these tests we decided to 
perform a subset selection of 5 features which proved to yield the 
best performance (as shown in Table 2).  

Using datasets of samples size varying between 15, 25 and 30 
users delivered a noticeable reduction in the system performance 
when increasing the number of participants from 15 to 25 (as 
shown in Table 1). Nonetheless, the increase from 25 users to 30 
have produced very similar FAR and FRR. Similar to what was 
found in the DTs experiment; this shows the system reaching a 
stable performance level when slightly enlarging the number of 
participants. Nonetheless, experimenting with much larger 
number of participants is needed to provide sufficient evidence 
about the method’s ability to work with datasets with large 
number of participants.       

Moreover, decision trees operate by automatically performing 
feature subset selection in which the non-important or redundant 
features are not involved in the tree building process [8]. 
Features: LSB, negUD, negUU and CapsLock usage contributed 
most in building the decision tree as they formed the first levels 
of the tree structure. Thus, they collectively have a high ability to 
split the targets [32], which allows for better differentiation 
between individuals.  Therefore, these features correspond to the 
features with higher impact on the performance of the recognition 
system. This partly matches the features extracted using ACO; as 
both LSB and negUD were found to have a considerable effect 
on system performance in both decision tree and SVMs/ACO 
classification cases. 

Conclusively, Decision trees have a slight performance 
advantage over SVMs. They produced a higher accuracy system 
as the ROC is plotted closer to the upper left corner of the 
diagram in Fig.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparison between DT and SVMs by ROC curves. 

 

The authentication process used until this point was done by 
training the system using data produced by the system’s users to 
test if the system is able to recognize which of the system’s users 
produced the test samples. Multiclass classification was utilized 
to achieve this aim. Multiclass classification works by deciding 
the test sample belongs to which of the available classes using 
the training data produced by all of the available classes [33]. 

In the second part of this study, we will focus on true 
intruder’s recognition. In this section, typing samples from users 
who are completely un-known to the system are used to test the 
system’s ability to recognize them as intruders and reject them. 
To achieve true intruder recognition, binary classification is used. 
For every test sample, binary classification, i.e. one-to-one 
classification,   is performed against all available class to check if 
the system recognizes the intruder as any of the legitimate users.  

  Binary classification was performed using the training data 
of 25 genuine users and testing data from five intruders 
producing three typing samples each for testing the system. Table 
3 shows the error rates produced by the 25 legitimate users 
without any intruders. The binary classification was performed 
for each user by representing the sample produced by that user as 
the positive class and all other samples are represented as the 
negative class [34]. This was carried-out using cross-validation 
similar to the multiclass classification experiment.  

Lastly, the data from the five intruders was tested against each 
of the legitimate users’ training data using binary classification. 
This produced similar FAR to that produced by the 25 legitimate 
users especially in case of SVMs. This provides some  evidence 
that the system is able to recognize un-known intruders even 
when there is no prior knowledge about their typing patterns and 
the system was trained using samples from only legitimate users. 
Nonetheless, more experimenting is needed to prove that 
recognizing un-known intruders is in-place when there are much 
larger number of intruders. 

Moreover, in true intruder recognition SVMs performed better 
than DTs. This is due to the nature of SVMs which leans towards 
the class with heavy samples [35] i.e. the class with negative 
samples in this study. The FRR in the intruders test was not 
computed due to not testing any legitimate users in this 
experiment. 
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Table 3: System performance using binary classification. 

 Legitimate users  Intruders 

 FAR FRR FAR FRR 

Decision Tree 0.011 0.375 0.051 n/a 

SVMs 0.0112 0.49 0.014 n/a 

4.3. Discussion 

This study was performed using the data collected in the 
research conducted by Alsultan et al. [29] in which the 
researchers considered user classification based on timing 
features only. These features included the hold time, Up-Up, 
Down-Down and Up-down of specific key-pairs. Although the 
performance of the system described in [29] was acceptable, 
there was a larger than desired FRR.  

By using non-conventional features the FRR has been 
dramatically improved with a value of 0.28 in this study. While 
this figure is still not ultimate, it is quite good when considering 
the small amount of text used to recognize individuals. 
Nonetheless, a satisfactory FAR was also produced. The FAR, 
being as small as 0.011, is very comparable that produced by 
conventional features which leads to high expectations of further 
research in this area. The superiority of such non-conventional 
typing features over conventional timing ones, in user 
authentication, is proven by the low FAR and FRR produced by 
the non-conventional features. 

The use of non-conventional features proposed in this paper 
have succeeded in providing a reliable  medium for user 
authentication because employing these features enlarges the 
amount of information that can be extracted from a user’s input.  
This is due to the fact that non-conventional typing features are 
extracted collectively during the whole time a text is being input 
by the user, in which more information is available, such as: 
words-per-minute, error rate, percentage of negative UDs … etc. 
Therefore, using this wide range of information available about 
the user’s typing patterns, the system is able to assemble better 
indications about the user’s typing behaviour, thus distinctively 
distinguish between individuals. Moreover, as the none-
conventional features are collected during the whole time of text 
typing i.e. relatively long period, any random incidence that 
might occur will be averaged. As appose to the conventional 
timing features where few noisy appearances can affect the 
overall understanding of the use’s typing pattern significantly. 

Moreover, non-conventional features were utilized in the 
research conducted by Hempstalk et al. [16]. In their experiment, 
8 features were extracted, some of which were based around the 
typist’s speed:  average words-per-minute (WPM) rate, peak 
WPM, trough WPM, error rate: backspaces, paired backspaces, 
average backspace block length or slurring of key press and 
release events: press/release ordering, press/release rate. A 
dataset consisting of 15 emails for each of 10 participants was 
created. Using one-class SVMs an FAR of 0.113 and an FRR of 
0.331 were achieved. These results show that our research proved 
to realize better FAR/FRR despite having more subjects involved 
in the study.  

Similar research was conducted by Curtin et al. [36] in which 
58 features were extracted. The features varied between 
conventional timing ones and non-conventional ones such as total 
time to enter the text, total number of key presses for Space, 
Backspace, Delete, Insert, Home, End, Enter, Ctrl, all four arrow 
keys, left and right shift keys and the number of left, right and 
double mouse clicks. Recognition accuracy of 98.5% resulted 
from data collected from 8 subjects typing ten 600-characters 
long training samples and ten 300-characters long testing 

samples. This would have been a very encouraging 
result if the number of subjects was larger.  A comparison 
between the method proposed here and some of the state of the 
art similar studies is presented in Table 3. 

 

Table 3: Comparison with state of the art studies. 

Study 
Participant 

no. 
Features System performance 

Convent. 
Non-

convent. 
Accuracy FAR FRR 

Alsultan et al. 
[29] 

25 √   0.001 0.504

Hempstalk et al. 
[16] 

10  √  0.113 0.331

Curtin et al. 
[36] 

8 √ √ 0.985   

Proposed 
method 

30  √ 0.76 0.011 0.28 

 

5. Conclusion 

In this paper we examined the usefulness of incorporating 
non-conventional keystroke features in the user authentication 
process. Unlike conventional timing features, non-conventional 
features benefit from the extra information that can be extracted 
from long free-text input. Features that have semi-timing 
properties such as words-per-minute, percentage of negative Up-
Down time and percentage of negative Up-Up time were used. 
Moreover, features that explain the user’s editing behavior were 
also used. These included the error rate, percentage of CapsLock 
usage, and percentage of both right and left shift keys usage. 

The experiment produced good results considering the fact 
that it used free-text for user authentication which gave a good 
balance between the system’s security and the user’s comfort. 
The FAR and FRR rates were both satisfactory with the FAR 
being the slightly better of the two. 

Therefore, non-conventional features such as those used in 
this study appear to be highly significant in keystroke dynamics 
applications such as user authentication. Moreover, decision tree 
classifiers also demonstrated a high level of success in such 
cases. 

There is much more that can be done to improve this 
approach. One example of which is to expand on the typing 
features to include other non-conventional features such as the 
users’ inserting and moving habits. Experimenting with different 
classification methods might also contribute positively to the 
overall system performance.  

The fusion of conventional timing features and the non-
conventional features presented here might work in favor of a 
better understanding the user’s typing patterns which can be 
utilized to improve the error rates produced by merely non-
conventional features. This is clearly ongoing research in which 
results thus far are extremely encouraging.  
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 Figure (3) Timing features for a key-pair. 

 Experiment and Results  

 The overall number of timing features is 75 (15 key-pairs * 5 timing 

features). A total of fifteen users participated in this study for data 

collection. During data collection, the participants were asked to 

perform two 180 characters-long typing tasks. Ant Colony 

Optimization (ACO) [2] was utilized for feature subset selection. In 

addition, Radial Basis Kernel multiclass SVMs [3] was used for 

classification. 

 

 

  

 

 

 

 

 

Figure (4) Flow of the system. 
 

 
Table (1) System performance. 

  
 
 
 
 

 Conclusion 

 Results obtained from this study are encouraging as low FAR and FRR 

[4] were achieved in the experimentation phase. This signifies that 

satisfactory overall system performance was achieved by using the 

typing attributes in the proposed approach, while typing text in Arabic.  
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 Introduction 

 The approach followed in this study involves the use of the keyboard’s 

key-layout. The method extracts timing features from specific key-pairs. 

These key-pairs are pressed consecutively and have a relationship on 

the keyboard’s layout. This relationship depends mainly on the key 

position of each character on the keyboard with relation to the other 

character. Moreover, these relationships can vary depending on the 

location of the two keys with respect to the overall keyboard layout.  

 Related Work 

 Most studies in keystroke dynamics involved only English input from the 

user [1]. Whilst such experimentation is very important, there is a 

clearly a lack of language variation used in such systems. 

 Key-pair Formation 
There are five categories for key-pair relationships:  

1. Adjacent: keys located next to each other on the keyboard. 

2. Second adjacent: keys that are one key apart from each other. 

3. Third adjacent: keys that are two keys apart. 

4. Fourth adjacent: keys that are three keys apart. 

5. None adjacent: keys that are more than three keys apart.  
 

 

 

 
 

 

Figure (1) Key-pair formation example. 

Each of these relationship categories can fall into one of the following 

overall locations:  

1. Both keys are on the right hand side of the keyboard. 

2. Both keys are on the left hand side of the keyboard 

3. The two keys are located on different sides of the keyboard. 

 

 

 

  
 

Figure (2) Overall key location. 

 Feature Definition 

 Features computed for every key-pair in the text [1]: 

1. Hold time: is the time a key is pressed until it is released. Consequently, 

each key-pair has two hold times:  

1. Hold time for the first key (H1). 

2. Hold time for the second key (H2).  

2. Keystroke latencies: there are three types of latencies:  

1. Down-Down (DD) time: is the interval time between two successive key 

presses. 

2. Up-UP (UU) time: is the interval time between two successive key releases. 

3. Up-Down (UD) time: is the interval time between a key release and the 

next key press. 
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