3,105 research outputs found

    Improving the expressiveness of black-box models for predicting student performance

    Get PDF
    Early prediction systems of student performance can be very useful to guide student learning. For a prediction model to be really useful as an effective aid for learning, it must provide tools to adequately interpret progress, to detect trends and behaviour patterns and to identify the causes of learning problems. White-box and black-box techniques have been described in literature to implement prediction models. White-box techniques require a priori models to explore, which make them easy to interpret but difficult to be generalized and unable to detect unexpected relationships between data. Black-box techniques are easier to generalize and suitable to discover unsuspected relationships but they are cryptic and difficult to be interpreted for most teachers. In this paper a black-box technique is proposed to take advantage of the power and versatility of these methods, while making some decisions about the input data and design of the classifier that provide a rich output data set. A set of graphical tools is also proposed to exploit the output information and provide a meaningful guide to teachers and students. From our experience, a set of tips about how to design a prediction system and the representation of the output information is also provided

    Local Learning Strategies for Data Management Components

    Get PDF
    In a world with an ever-increasing amount of data processed, providing tools for highquality and fast data processing is imperative. Database Management Systems (DBMSs) are complex adaptive systems supplying reliable and fast data analysis and storage capabilities. To boost the usability of DBMSs even further, a core research area of databases is performance optimization, especially for query processing. With the successful application of Artificial Intelligence (AI) and Machine Learning (ML) in other research areas, the question arises in the database community if ML can also be beneficial for better data processing in DBMSs. This question has spawned various works successfully replacing DBMS components with ML models. However, these global models have four common drawbacks due to their large, complex, and inflexible one-size-fits-all structures. These drawbacks are the high complexity of model architectures, the lower prediction quality, the slow training, and the slow forward passes. All these drawbacks stem from the core expectation to solve a certain problem with one large model at once. The full potential of ML models as DBMS components cannot be reached with a global model because the model’s complexity is outmatched by the problem’s complexity. Therefore, we present a novel general strategy for using ML models to solve data management problems and to replace DBMS components. The novel strategy is based on four advantages derived from the four disadvantages of global learning strategies. In essence, our local learning strategy utilizes divide-and-conquer to place less complex but more expressive models specializing in sub-problems of a data management problem. It splits the problem space into less complex parts that can be solved with lightweight models. This circumvents the one-size-fits-all characteristics and drawbacks of global models. We will show that this approach and the lesser complexity of the specialized local models lead to better problem-solving qualities and DBMS performance. The local learning strategy is applied and evaluated in three crucial use cases to replace DBMS components with ML models. These are cardinality estimation, query optimizer hinting, and integer algorithm selection. In all three applications, the benefits of the local learning strategy are demonstrated and compared to related work. We also generalize the strategy’s usability for a broader application and formulate best practices with instructions for others

    IMPLEMENTATION OF GAIN RATIO AND K-NEAREST NEIGHBOR FOR CLASSIFICATION OF STUDENT PERFORMANCE

    Get PDF
    Predicting student performance is very useful in analyzing weak students and providing support to students who face difficulties. However, the work done by educators has not been effective enough in identifying factors that affect student performance. The main predictor factor is an informative student academic score, but that alone is not good enough in predicting student performance. Educators utilize Educational Data Mining (EDM) to predict student performance. KK-Nearest Neighbor is often used in classifying student performance because of its simplicity, but the K-Nearest Neighbor has a weakness in terms of the high dimensional features. To overcome these weaknesses, a Gain Ratio is used to reduce the high dimension of features. The experiment has been carried out 10 times with the value of k is 1 to 10 using the student performance dataset. The results of these experiments are obtained an average accuracy of 74.068 with the K-Nearest Neighbor and obtained an average accuracy of 75.105 with the Gain Ratio and K-Nearest Neighbor. The experimental results show that Gain Ratio is able to reduce the high dimensions of features that are a weakness of K-Nearest Neighbor, so the implementation of Gain Ratio and K-Nearest Neighbor can increase the accuracy of the classification of student performance compared to using the K-Nearest Neighbor alone

    A Prescriptive Learning Analytics Framework: Beyond Predictive Modelling and onto Explainable AI with Prescriptive Analytics and ChatGPT

    Full text link
    A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of prediction only. The component of predictive analytics concerned with interpreting the internals of the models and explaining their predictions for individual cases to stakeholders has largely been neglected. Additionally, works that attempt to employ data-driven prescriptive analytics to automatically generate evidence-based remedial advice for at-risk learners are in their infancy. eXplainable AI is a field that has recently emerged providing cutting-edge tools which support transparent predictive analytics and techniques for generating tailored advice for at-risk students. This study proposes a novel framework that unifies both transparent machine learning as well as techniques for enabling prescriptive analytics, while integrating the latest advances in large language models. This work practically demonstrates the proposed framework using predictive models for identifying at-risk learners of programme non-completion. The study then further demonstrates how predictive modelling can be augmented with prescriptive analytics on two case studies in order to generate human-readable prescriptive feedback for those who are at risk using ChatGPT.Comment: revision of the original paper to include ChatGPT integratio

    Automated Measurement of Heavy Equipment Greenhouse Gas Emission: The case of Road/Bridge Construction and Maintenance

    Get PDF
    Road/bridge construction and maintenance projects are major contributors to greenhouse gas (GHG) emissions such as carbon dioxide (CO2), mainly due to extensive use of heavy-duty diesel construction equipment and large-scale earthworks and earthmoving operations. Heavy equipment is a costly resource and its underutilization could result in significant budget overruns. A practical way to cut emissions is to reduce the time equipment spends doing non-value-added activities and/or idling. Recent research into the monitoring of automated equipment using sensors and Internet-of-Things (IoT) frameworks have leveraged machine learning algorithms to predict the behavior of tracked entities. In this project, end-to-end deep learning models were developed that can learn to accurately classify the activities of construction equipment based on vibration patterns picked up by accelerometers attached to the equipment. Data was collected from two types of real-world construction equipment, both used extensively in road/bridge construction and maintenance projects: excavators and vibratory rollers. The validation accuracies of the developed models were tested of three different deep learning models: a baseline convolutional neural network (CNN); a hybrid convolutional and recurrent long shortterm memory neural network (LSTM); and a temporal convolutional network (TCN). Results indicated that the TCN model had the best performance, the LSTM model had the second-best performance, and the CNN model had the worst performance. The TCN model had over 83% validation accuracy in recognizing activities. Using deep learning methodologies can significantly increase emission estimation accuracy for heavy equipment and help decision-makers to reliably evaluate the environmental impact of heavy civil and infrastructure projects. Reducing the carbon footprint and fuel use of heavy equipment in road/bridge projects have direct and indirect impacts on health and the economy. Public infrastructure projects can leverage the proposed system to reduce the environmental cost of infrastructure project

    Technology behaviors in education innovation

    Get PDF
    Change and improvement are two keywords embedded in innovation in general (OECD, 2005) and, in particular, in teaching and learning innovation (Miles, 1964). Based on those two keywords, educational innovation could be defined as “the application of one idea that produces a planned change in educational processes, services, or products, then leading to an improvement in learning goals”. The role of the computer in educational innovation is seen as a facilitating tool, as both educational innovation and computation address the same topic, i.e. “Knowledge”. The computer's capability to manage information makes it an ideal tool to potentiate different implementations in teaching and learning contexts. The several distinct ways teachers and students interact are oriented by teaching methods. This means the computer may be used to: improve existing methods for teacher-students interaction, e.g. traditional lectures; enable alternative methods that are difficult to apply under current conditions, e.g. personalized learning; create new methods, e.g. flipped teaching; or, in addition, analyse data generated from teacher-students interactions and help in the learning improvement decision-making process..

    On the Design Fundamentals of Diffusion Models: A Survey

    Full text link
    Diffusion models are generative models, which gradually add and remove noise to learn the underlying distribution of training data for data generation. The components of diffusion models have gained significant attention with many design choices proposed. Existing reviews have primarily focused on higher-level solutions, thereby covering less on the design fundamentals of components. This study seeks to address this gap by providing a comprehensive and coherent review on component-wise design choices in diffusion models. Specifically, we organize this review according to their three key components, namely the forward process, the reverse process, and the sampling procedure. This allows us to provide a fine-grained perspective of diffusion models, benefiting future studies in the analysis of individual components, the applicability of design choices, and the implementation of diffusion models

    Early-warning prediction of student performance and engagement in open book assessment by reading behavior analysis

    Get PDF
    Digitized learning materials are a core part of modern education, and analysis of the use can offer insight into the learning behavior of high and low performing students. The topic of predicting student characteristics has gained a lot of attention in recent years, with applications ranging from affect to performance and at-risk student prediction. In this paper, we examine students reading behavior using a digital textbook system while taking an open-book test from the perspective of engagement and performance to identify the strategies that are used. We create models to predict the performance and engagement of learners before the start of the assessment and extract reading behavior characteristics employed before and after the start of the assessment in a higher education setting. It was found that strategies, such as: revising and previewing are indicators of how a learner will perform in an open ebook assessment. Low performing students take advantage of the open ebook policy of the assessment and employ a strategy of searching for information during the assessment. Also compared to performance, the prediction of overall engagement has a higher accuracy, and therefore could be more appropriate for identifying intervention candidates as an early-warning intervention system
    corecore